
Natural Language Processing: Python and
NLTK

Table of Contents

Natural Language Processing: Python and NLTK
Natural Language Processing: Python and NLTK
Credits
Preface

What this learning path covers
What you need for this learning path
Who this learning path is for
Reader feedback
Customer support

Downloading the example code
Errata
Piracy
Questions

1. Module 1
1. Introduction to Natural Language Processing

Why learn NLP?
Let's start playing with Python!

Lists
Helping yourself
Regular expressions
Dictionaries
Writing functions

Diving into NLTK
Your turn
Summary

2. Text Wrangling and Cleansing
What is text wrangling?
Text cleansing
Sentence splitter
Tokenization
Stemming
Lemmatization
Stop word removal
Rare word removal
Spell correction
Your turn
Summary

3. Part of Speech Tagging
What is Part of speech tagging

Stanford tagger
Diving deep into a tagger
Sequential tagger

N-gram tagger

Regex tagger
Brill tagger
Machine learning based tagger

Named Entity Recognition (NER)
NER tagger

Your Turn
Summary

4. Parsing Structure in Text
Shallow versus deep parsing
The two approaches in parsing
Why we need parsing
Different types of parsers

A recursive descent parser
A shift-reduce parser
A chart parser
A regex parser

Dependency parsing
Chunking
Information extraction

Named-entity recognition (NER)
Relation extraction

Summary
5. NLP Applications

Building your first NLP application
Other NLP applications

Machine translation
Statistical machine translation
Information retrieval

Boolean retrieval
Vector space model
The probabilistic model

Speech recognition
Text classification
Information extraction
Question answering systems
Dialog systems
Word sense disambiguation
Topic modeling
Language detection
Optical character recognition

Summary
6. Text Classification

Machine learning
Text classification
Sampling

Naive Bayes
Decision trees

Stochastic gradient descent
Logistic regression
Support vector machines

The Random forest algorithm
Text clustering

K-means
Topic modeling in text

Installing gensim
References
Summary

7. Web Crawling
Web crawlers
Writing your first crawler
Data flow in Scrapy

The Scrapy shell
Items

The Sitemap spider
The item pipeline
External references
Summary

8. Using NLTK with Other Python Libraries
NumPy

ndarray
Indexing

Basic operations
Extracting data from an array
Complex matrix operations

Reshaping and stacking
Random numbers

SciPy
Linear algebra
eigenvalues and eigenvectors
The sparse matrix
Optimization

pandas
Reading data
Series data
Column transformation
Noisy data

matplotlib
Subplot
Adding an axis
A scatter plot
A bar plot
3D plots

External references
Summary

9. Social Media Mining in Python
Data collection

Twitter
Data extraction

Trending topics
Geovisualization

Influencers detection
Facebook
Influencer friends

Summary
10. Text Mining at Scale

Different ways of using Python on Hadoop
Python streaming
Hive/Pig UDF
Streaming wrappers

NLTK on Hadoop
A UDF
Python streaming

Scikit-learn on Hadoop
PySpark
Summary

2. Module 2
1. Tokenizing Text and WordNet Basics

Introduction
Tokenizing text into sentences

Getting ready
How to do it...
How it works...
There's more...

Tokenizing sentences in other languages
See also

Tokenizing sentences into words
How to do it...
How it works...
There's more...

Separating contractions
PunktWordTokenizer
WordPunctTokenizer

See also
Tokenizing sentences using regular expressions

Getting ready
How to do it...
How it works...
There's more...

Simple whitespace tokenizer
See also

Training a sentence tokenizer

Getting ready
How to do it...
How it works...
There's more...
See also

Filtering stopwords in a tokenized sentence
Getting ready
How to do it...
How it works...
There's more...
See also

Looking up Synsets for a word in WordNet
Getting ready
How to do it...
How it works...
There's more...

Working with hypernyms
Part of speech (POS)

See also
Looking up lemmas and synonyms in WordNet

How to do it...
How it works...
There's more...

All possible synonyms
Antonyms

See also
Calculating WordNet Synset similarity

How to do it...
How it works...
There's more...

Comparing verbs
Path and Leacock Chordorow (LCH) similarity

See also
Discovering word collocations

Getting ready
How to do it...
How it works...
There's more...

Scoring functions
Scoring ngrams

See also
2. Replacing and Correcting Words

Introduction
Stemming words

How to do it...
How it works...
There's more...

The LancasterStemmer class
The RegexpStemmer class
The SnowballStemmer class

See also
Lemmatizing words with WordNet

Getting ready
How to do it...
How it works...
There's more...

Combining stemming with lemmatization
See also

Replacing words matching regular expressions
Getting ready
How to do it...
How it works...
There's more...

Replacement before tokenization
See also

Removing repeating characters
Getting ready
How to do it...
How it works...
There's more...
See also

Spelling correction with Enchant
Getting ready
How to do it...
How it works...
There's more...

The en_GB dictionary
Personal word lists

See also
Replacing synonyms

Getting ready
How to do it...
How it works...
There's more...

CSV synonym replacement
YAML synonym replacement

See also
Replacing negations with antonyms

How to do it...
How it works...
There's more...
See also

3. Creating Custom Corpora
Introduction

Setting up a custom corpus
Getting ready
How to do it...
How it works...
There's more...

Loading a YAML file
See also

Creating a wordlist corpus
Getting ready
How to do it...
How it works...
There's more...

Names wordlist corpus
English words corpus

See also
Creating a part-of-speech tagged word corpus

Getting ready
How to do it...
How it works...
There's more...

Customizing the word tokenizer
Customizing the sentence tokenizer
Customizing the paragraph block reader
Customizing the tag separator
Converting tags to a universal tagset

See also
Creating a chunked phrase corpus

Getting ready
How to do it...
How it works...
There's more...

Tree leaves
Treebank chunk corpus
CoNLL2000 corpus

See also
Creating a categorized text corpus

Getting ready
How to do it...
How it works...
There's more...

Category file
Categorized tagged corpus reader
Categorized corpora

See also
Creating a categorized chunk corpus reader

Getting ready
How to do it...

How it works...
There's more...

Categorized CoNLL chunk corpus reader
See also

Lazy corpus loading
How to do it...
How it works...
There's more...

Creating a custom corpus view
How to do it...
How it works...
There's more...

Block reader functions
Pickle corpus view
Concatenated corpus view

See also
Creating a MongoDB-backed corpus reader

Getting ready
How to do it...
How it works...
There's more...
See also

Corpus editing with file locking
Getting ready
How to do it...
How it works...

4. Part-of-speech Tagging
Introduction
Default tagging

Getting ready
How to do it...
How it works...
There's more...

Evaluating accuracy
Tagging sentences
Untagging a tagged sentence

See also
Training a unigram part-of-speech tagger

How to do it...
How it works...
There's more...

Overriding the context model
Minimum frequency cutoff

See also
Combining taggers with backoff tagging

How to do it...
How it works...

There's more...
Saving and loading a trained tagger with pickle

See also
Training and combining ngram taggers

Getting ready
How to do it...
How it works...
There's more...

Quadgram tagger
See also

Creating a model of likely word tags
How to do it...
How it works...
There's more...
See also

Tagging with regular expressions
Getting ready
How to do it...
How it works...
There's more...
See also

Affix tagging
How to do it...
How it works...
There's more...

Working with min_stem_length
See also

Training a Brill tagger
How to do it...
How it works...
There's more...

Tracing
See also

Training the TnT tagger
How to do it...
How it works...
There's more...

Controlling the beam search
Significance of capitalization

See also
Using WordNet for tagging

Getting ready
How to do it...
How it works...
See also

Tagging proper names
How to do it...

How it works...
See also

Classifier-based tagging
How to do it...
How it works...
There's more...

Detecting features with a custom feature detector
Setting a cutoff probability
Using a pre-trained classifier

See also
Training a tagger with NLTK-Trainer

How to do it...
How it works...
There's more...

Saving a pickled tagger
Training on a custom corpus
Training with universal tags
Analyzing a tagger against a tagged corpus
Analyzing a tagged corpus

See also
5. Extracting Chunks

Introduction
Chunking and chinking with regular expressions

Getting ready
How to do it...
How it works...
There's more...

Parsing different chunk types
Parsing alternative patterns
Chunk rule with context

See also
Merging and splitting chunks with regular expressions

How to do it...
How it works...
There's more...

Specifying rule descriptions
See also

Expanding and removing chunks with regular expressions
How to do it...
How it works...
There's more...
See also

Partial parsing with regular expressions
How to do it...
How it works...
There's more...

The ChunkScore metrics

Looping and tracing chunk rules
See also

Training a tagger-based chunker
How to do it...
How it works...
There's more...

Using different taggers
See also

Classification-based chunking
How to do it...
How it works...
There's more...

Using a different classifier builder
See also

Extracting named entities
How to do it...
How it works...
There's more...

Binary named entity extraction
See also

Extracting proper noun chunks
How to do it...
How it works...
There's more...
See also

Extracting location chunks
How to do it...
How it works...
There's more...
See also

Training a named entity chunker
How to do it...
How it works...
There's more...
See also

Training a chunker with NLTK-Trainer
How to do it...
How it works...
There's more...

Saving a pickled chunker
Training a named entity chunker
Training on a custom corpus
Training on parse trees
Analyzing a chunker against a chunked corpus
Analyzing a chunked corpus

See also
6. Transforming Chunks and Trees

Introduction
Filtering insignificant words from a sentence

Getting ready
How to do it...
How it works...
There's more...
See also

Correcting verb forms
Getting ready
How to do it...
How it works...
See also

Swapping verb phrases
How to do it...
How it works...
There's more...
See also

Swapping noun cardinals
How to do it...
How it works...
See also

Swapping infinitive phrases
How to do it...
How it works...
There's more...
See also

Singularizing plural nouns
How to do it...
How it works...
See also

Chaining chunk transformations
How to do it...
How it works...
There's more...
See also

Converting a chunk tree to text
How to do it...
How it works...
There's more...
See also

Flattening a deep tree
Getting ready
How to do it...
How it works...
There's more...

The cess_esp and cess_cat treebank
See also

Creating a shallow tree
How to do it...
How it works...
See also

Converting tree labels
Getting ready
How to do it...
How it works...
See also

7. Text Classification
Introduction
Bag of words feature extraction

How to do it...
How it works...
There's more...

Filtering stopwords
Including significant bigrams

See also
Training a Naive Bayes classifier

Getting ready
How to do it...
How it works...
There's more...

Classification probability
Most informative features
Training estimator
Manual training

See also
Training a decision tree classifier

How to do it...
How it works...
There's more...

Controlling uncertainty with entropy_cutoff
Controlling tree depth with depth_cutoff
Controlling decisions with support_cutoff

See also
Training a maximum entropy classifier

Getting ready
How to do it...
How it works...
There's more...

Megam algorithm
See also

Training scikit-learn classifiers
Getting ready
How to do it...
How it works...

There's more...
Comparing Naive Bayes algorithms
Training with logistic regression
Training with LinearSVC

See also
Measuring precision and recall of a classifier

How to do it...
How it works...
There's more...

F-measure
See also

Calculating high information words
How to do it...
How it works...
There's more...

The MaxentClassifier class with high information words
The DecisionTreeClassifier class with high information words
The SklearnClassifier class with high information words

See also
Combining classifiers with voting

Getting ready
How to do it...
How it works...
See also

Classifying with multiple binary classifiers
Getting ready
How to do it...
How it works...
There's more...
See also

Training a classifier with NLTK-Trainer
How to do it...
How it works...
There's more...

Saving a pickled classifier
Using different training instances
The most informative features
The Maxent and LogisticRegression classifiers
SVMs
Combining classifiers
High information words and bigrams
Cross-fold validation
Analyzing a classifier

See also
8. Distributed Processing and Handling Large Datasets

Introduction
Distributed tagging with execnet

Getting ready
How to do it...
How it works...
There's more...

Creating multiple channels
Local versus remote gateways

See also
Distributed chunking with execnet

Getting ready
How to do it...
How it works...
There's more...

Python subprocesses
See also

Parallel list processing with execnet
How to do it...
How it works...
There's more...
See also

Storing a frequency distribution in Redis
Getting ready
How to do it...
How it works...
There's more...
See also

Storing a conditional frequency distribution in Redis
Getting ready
How to do it...
How it works...
There's more...
See also

Storing an ordered dictionary in Redis
Getting ready
How to do it...
How it works...
There's more...
See also

Distributed word scoring with Redis and execnet
Getting ready
How to do it...
How it works...
There's more...
See also

9. Parsing Specific Data Types
Introduction
Parsing dates and times with dateutil

Getting ready

How to do it...
How it works...
There's more...
See also

Timezone lookup and conversion
Getting ready
How to do it...
How it works...
There's more...

Local timezone
Custom offsets

See also
Extracting URLs from HTML with lxml

Getting ready
How to do it...
How it works...
There's more...

Extracting links directly
Parsing HTML from URLs or files
Extracting links with XPaths

See also
Cleaning and stripping HTML

Getting ready
How to do it...
How it works...
There's more...
See also

Converting HTML entities with BeautifulSoup
Getting ready
How to do it...
How it works...
There's more...

Extracting URLs with BeautifulSoup
See also

Detecting and converting character encodings
Getting ready
How to do it...
How it works...
There's more...

Converting to ASCII
UnicodeDammit conversion

See also
A. Penn Treebank Part-of-speech Tags

3. Module 3
1. Working with Strings

Tokenization
Tokenization of text into sentences

Tokenization of text in other languages
Tokenization of sentences into words
Tokenization using TreebankWordTokenizer
Tokenization using regular expressions

Normalization
Eliminating punctuation

Conversion into lowercase and uppercase
Dealing with stop words

Calculate stopwords in English
Substituting and correcting tokens

Replacing words using regular expressions
Example of the replacement of a text with another text

Performing substitution before tokenization
Dealing with repeating characters

Example of deleting repeating characters
Replacing a word with its synonym

Example of substituting word a with its synonym
Applying Zipf's law to text
Similarity measures

Applying similarity measures using Ethe edit distance algorithm
Applying similarity measures using Jaccard's Coefficient
Applying similarity measures using the Smith Waterman distance
Other string similarity metrics

Summary
2. Statistical Language Modeling

Understanding word frequency
Develop MLE for a given text
Hidden Markov Model estimation

Applying smoothing on the MLE model
Add-one smoothing
Good Turing
Kneser Ney estimation
Witten Bell estimation

Develop a back-off mechanism for MLE
Applying interpolation on data to get mix and match
Evaluate a language model through perplexity
Applying metropolis hastings in modeling languages
Applying Gibbs sampling in language processing
Summary

3. Morphology – Getting Our Feet Wet
Introducing morphology
Understanding stemmer
Understanding lemmatization
Developing a stemmer for non-English language
Morphological analyzer
Morphological generator
Search engine

Summary
4. Parts-of-Speech Tagging – Identifying Words

Introducing parts-of-speech tagging
Default tagging

Creating POS-tagged corpora
Selecting a machine learning algorithm
Statistical modeling involving the n-gram approach
Developing a chunker using pos-tagged corpora
Summary

5. Parsing – Analyzing Training Data
Introducing parsing
Treebank construction
Extracting Context Free Grammar (CFG) rules from Treebank
Creating a probabilistic Context Free Grammar from CFG
CYK chart parsing algorithm
Earley chart parsing algorithm
Summary

6. Semantic Analysis – Meaning Matters
Introducing semantic analysis

Introducing NER
A NER system using Hidden Markov Model
Training NER using Machine Learning Toolkits
NER using POS tagging

Generation of the synset id from Wordnet
Disambiguating senses using Wordnet
Summary

7. Sentiment Analysis – I Am Happy
Introducing sentiment analysis

Sentiment analysis using NER
Sentiment analysis using machine learning
Evaluation of the NER system

Summary
8. Information Retrieval – Accessing Information

Introducing information retrieval
Stop word removal
Information retrieval using a vector space model

Vector space scoring and query operator interaction
Developing an IR system using latent semantic indexing
Text summarization
Question-answering system
Summary

9. Discourse Analysis – Knowing Is Believing
Introducing discourse analysis

Discourse analysis using Centering Theory
Anaphora resolution

Summary
10. Evaluation of NLP Systems – Analyzing Performance

The need for evaluation of NLP systems
Evaluation of NLP tools (POS taggers, stemmers, and morphological analyzers)
Parser evaluation using gold data

Evaluation of IR system
Metrics for error identification
Metrics based on lexical matching
Metrics based on syntactic matching
Metrics using shallow semantic matching
Summary

B. Bibliography
Index

Natural Language Processing: Python and
NLTK

Natural Language Processing: Python and
NLTK

Learn to build expert NLP and machine learning projects using NLTK and other Python
libraries

A course in three modules

BIRMINGHAM - MUMBAI

Natural Language Processing: Python and
NLTK
Copyright © 2016 Packt Publishing

All rights reserved. No part of this course may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case of
brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this course to ensure the accuracy of the information
presented. However, the information contained in this course is sold without warranty, either express or
implied. Neither the authors, nor Packt Publishing, and its dealers and distributors will be held liable for
any damages caused or alleged to be caused directly or indirectly by this course.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this course by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Published on: November 2016

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78728-510-1

www.packtpub.com

http://www.packtpub.com

Credits
Authors

Nitin Hardeniya

Jacob Perkins

Deepti Chopra

Nisheeth Joshi

Iti Mathur

Reviewers

Afroz Hussain

Sujit Pal

Kumar Raj

Patrick Chan

Mohit Goenka

Lihang Li

Maurice HT Ling

Jing (Dave) Tian

Arturo Argueta

Content Development Editor

Aishwarya Pandere

Production Coordinator

Arvindkumar Gupta

Preface
NLTK is one of the most popular and widely used library in the natural language processing (NLP)
community. The beauty of NLTK lies in its simplicity, where most of the complex NLP tasks can be
implemented using a few lines of code. Start off by learning how to tokenize text into component words.
Explore and make use of the WordNet language dictionary. Learn how and when to stem or lemmatize
words. Discover various ways to replace words and perform spelling correction. Create your own
custom text corpora and corpus readers, including a MongoDB backed corpus. Use part-of-speech
taggers to annotate words with their parts of speech. Create and transform chunked phrase trees using
partial parsing. Dig into feature extraction for text classification and sentiment analysis. Learn how to do
parallel and distributed text processing, and to store word distributions in Redis.

This learning path will teach you all that and more, in a hands-on learn-by-doing manner. Become an
expert in using NLTK for Natural Language Processing with this useful companion.

What this learning path covers
Module 1, NLTK Essentials, talks about all the preprocessing steps required in any text mining/NLP
task. In this module, we discuss tokenization, stemming, stop word removal, and other text cleansing
processes in detail and how easy it is to implement these in NLTK.

Module 2, Python 3 Text Processing with NLTK 3 Cookbook, explains how to use corpus readers and
create custom corpora. It also covers how to use some of the corpora that come with NLTK. It covers the
chunking process, also known as partial parsing, which can identify phrases and named entities in a
sentence. It also explains how to train your own custom chunker and create specific named entity
recognizers.

Module 3, Mastering Natural Language Processing with Python, covers how to calculate word
frequencies and perform various language modeling techniques. It also talks about the concept and
application of Shallow Semantic Analysis (that is, NER) and WSD using Wordnet.

It will help you understand and apply the concepts of Information Retrieval and text summarization.

What you need for this learning path
Module 1:

We need the following software for this module:

Chapter
number

Software required
(with version)

Free/
Proprietary

Download links to the
software

Hardware
specifications

OS
required

1-5 Python/Anaconda

NLTK

Free https://www.python.org/

http://continuum.io/downloads

http://www.nltk.org/

Common
Unix Printing
System

any

6 scikit-learn and
gensim

Free http://scikit-learn.org/stable/

https://radimrehurek.com/
gensim/

Common
Unix Printing
System

any

7 Scrapy Free http://scrapy.org/ Common
Unix Printing
System

any

8 NumPy, SciPy,
pandas, and
matplotlib

Free http://www.numpy.org/

http://www.scipy.org/

http://pandas.pydata.org/

http://matplotlib.org/

Common
Unix Printing
System

any

9 Twitter Python APIs
and Facebook python
APIs

Free https://dev.twitter.com/
overview/api/twitter-libraries

https://developers.facebook.com

Common
Unix Printing
System

any

Module 2:

You will need Python 3 and the listed Python packages. For this learning path, the author used Python
3.3.5. To install the packages, you can use pip (https://pypi.python.org/pypi/pip/). The following is the

https://www.python.org/
http://continuum.io/downloads
http://www.nltk.org/
http://scikit-learn.org/stable/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
http://scrapy.org/
http://www.numpy.org/
http://www.scipy.org/
http://pandas.pydata.org/
http://matplotlib.org/
https://dev.twitter.com/overview/api/twitter-libraries
https://dev.twitter.com/overview/api/twitter-libraries
https://developers.facebook.com
https://pypi.python.org/pypi/pip/

list of the packages in requirements format with the version number used while writing this learning
path:

• NLTK>=3.0a4
• pyenchant>=1.6.5
• lockfile>=0.9.1
• numpy>=1.8.0
• scipy>=0.13.0
• scikit-learn>=0.14.1
• execnet>=1.1
• pymongo>=2.6.3
• redis>=2.8.0
• lxml>=3.2.3
• beautifulsoup4>=4.3.2
• python-dateutil>=2.0
• charade>=1.0.3

You will also need NLTK-Trainer, which is available at https://github.com/japerk/nltk-trainer.

Beyond Python, there are a couple recipes that use MongoDB and Redis, both NoSQL databases. These
can be downloaded at http://www.mongodb.org/ and http://redis.io/, respectively.

Module 3:

For all the chapters, Python 2.7 or 3.2+ is used. NLTK 3.0 must be installed either on 32-bit machine or
64-bit machine. Operating System required is Windows/Mac/Unix.

https://github.com/japerk/nltk-trainer
http://www.mongodb.org/
http://redis.io/

Who this learning path is for
If you are an NLP or machine learning enthusiast and an intermediate Python programmer who wants to
quickly master NLTK for natural language processing, then this Learning Path will do you a lot of good.
Students of linguistics and semantic/sentiment analysis professionals will find it invaluable.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this course—what you
liked or disliked. Reader feedback is important for us as it helps us develop titles that you will really get
the most out of.

To send us general feedback, simply e-mail <feedback@packtpub.com>, and mention the course's
title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or contributing to a
course, see our author guide at www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer support
Now that you are the proud owner of a Packt course, we have a number of things to help you to get the
most from your purchase.

Downloading the example code

You can download the example code files for this course from your account at
http://www.packtpub.com. If you purchased this course elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the course in the Search box.
5. Select the course for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this course from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the course's webpage at
the Packt Publishing website. This page can be accessed by entering the course's name in the Search
box. Please note that you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest
version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the course is also hosted on GitHub at https://github.com/PacktPublishing/Natural-
Language-Processing-Python-and-NLTK. We also have other code bundles from our rich catalog of
books, videos and courses available at https://github.com/PacktPublishing/. Check them out!

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you
find a mistake in one of our books—maybe a mistake in the text or the code—we would be grateful if
you could report this to us. By doing so, you can save other readers from frustration and help us improve
subsequent versions of this course. If you find any errata, please report them by visiting
http://www.packtpub.com/submit-errata, selecting your course, clicking on the Errata Submission
Form link, and entering the details of your errata. Once your errata are verified, your submission will be
accepted and the errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Natural-Language-Processing-Python-and-NLTK
https://github.com/PacktPublishing/Natural-Language-Processing-Python-and-NLTK
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata

To view the previously submitted errata, go to https://www.packtpub.com/books/content/support and
enter the name of the book in the search field. The required information will appear under the Errata
section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt, we take
the protection of our copyright and licenses very seriously. If you come across any illegal copies of our
works in any form on the Internet, please provide us with the location address or website name
immediately so that we can pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions

If you have a problem with any aspect of this course, you can contact us at
<questions@packtpub.com>, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
mailto:copyright@packtpub.com
mailto:questions@packtpub.com

Part 1. Module 1
NLTK Essentials

Build cool NLP and machine learning applications using NLTK and other Python libraries

Chapter 1. Introduction to Natural Language
Processing
I will start with the introduction to Natural Language Processing (NLP). Language is a central part of
our day to day life, and it's so interesting to work on any problem related to languages. I hope this book
will give you a flavor of NLP, will motivate you to learn some amazing concepts of NLP, and will
inspire you to work on some of the challenging NLP applications.

In my own language, the study of language processing is called NLP. People who are deeply involved in
the study of language are linguists, while the term 'computational linguist' applies to the study of
processing languages with the application of computation. Essentially, a computational linguist will be a
computer scientist who has enough understanding of languages, and can apply his computational skills
to model different aspects of the language. While computational linguists address the theoretical aspect
of language, NLP is nothing but the application of computational linguistics.

NLP is more about the application of computers on different language nuances, and building real-world
applications using NLP techniques. In a practical context, NLP is analogous to teaching a language to a
child. Some of the most common tasks like understanding words, sentences, and forming grammatically
and structurally correct sentences, are very natural to humans. In NLP, some of these tasks translate to
tokenization, chunking, part of speech tagging, parsing, machine translation, speech recognition, and
most of them are still the toughest challenges for computers. I will be talking more on the practical side
of NLP, assuming that we all have some background in NLP. The expectation for the reader is to have
minimal understanding of any programming language and an interest in NLP and Language.

By end of the chapter we want readers

• A brief introduction to NLP and related concepts.
• Install Python, NLTK and other libraries.
• Write some very basic Python and NLTK code snippets.

If you have never heard the term NLP, then please take some time to read any of the books mentioned
here—just for an initial few chapters. A quick reading of at least the Wikipedia page relating to NLP is a
must:

• Speech and Language Processing by Daniel Jurafsky and James H. Martin
• Statistical Natural Language Processing by Christopher D. Manning and Hinrich Schütze

Why learn NLP?
I start my discussion with the Gartner's new hype cycle and you can clearly see NLP on top of the cycle.
Currently, NLP is one of the rarest skill sets that is required in the industry. After the advent of big data,
the major challenge is that we need more people who are good with not just structured, but also with
semi or unstructured data. We are generating petabytes of Weblogs, tweets, Facebook feeds, chats, e-
mails, and reviews. Companies are collecting all these different kind of data for better customer
targeting and meaningful insights. To process all these unstructured data source we need people who
understand NLP.

We are in the age of information; we can't even imagine our life without Google. We use Siri for the
most of basic stuff. We use spam filters for filtering spam emails. We need spell checker on our Word
document. There are many examples of real world NLP applications around us.

Image is taken from http://www.gartner.com/newsroom/id/2819918

Let me also give you some examples of the amazing NLP applications that you can use, but are not
aware that they are built on NLP:

• Spell correction (MS Word/ any other editor)
• Search engines (Google, Bing, Yahoo, wolframalpha)
• Speech engines (Siri, Google Voice)
• Spam classifiers (All e-mail services)
• News feeds (Google, Yahoo!, and so on)
• Machine translation (Google Translate, and so on)
• IBM Watson

Building these applications requires a very specific skill set with a great understanding of language and
tools to process the language efficiently. So it's not just hype that makes NLP one of the most niche
areas, but it's the kind of application that can be created using NLP that makes it one of the most unique
skills to have.

To achieve some of the above applications and other basic NLP preprocessing, there are many open
source tools available. Some of them are developed by organizations to build their own NLP
applications, while some of them are open-sourced. Here is a small list of available NLP tools:

• GATE

http://www.gartner.com/newsroom/id/2819918

• Mallet
• Open NLP
• UIMA
• Stanford toolkit
• Genism
• Natural Language Tool Kit (NLTK)

Most of the tools are written in Java and have similar functionalities. Some of them are robust and have
a different variety of NLP tools available. However, when it comes to the ease of use and explanation of
the concepts, NLTK scores really high. NLTK is also a very good learning kit because the learning curve
of Python (on which NLTK is written) is very fast. NLTK has incorporated most of the NLP tasks, it's
very elegant and easy to work with. For all these reasons, NLTK has become one of the most popular
libraries in the NLP community:

I am assuming all you guys know Python. If not, I urge you to learn Python. There are many basic
tutorials on Python available online. There are lots of books also available that give you a quick
overview of the language. We will also look into some of the features of Python, while going through
the different topics. But for now, even if you only know the basics of Python, such as lists, strings,
regular expressions, and basic I/O, you should be good to go.

Note

Python can be installed from the following website:

https://www.python.org/downloads/

http://continuum.io/downloads

https://store.enthought.com/downloads/

I would recommend using Anaconda or Canopy Python distributions. The reason being that these
distributions come with bundled libraries, such as scipy, numpy, scikit, and so on, which are used
for data analysis and other applications related to NLP and related fields. Even NLTK is part of this
distribution.

Note

Please follow the instructions and install NLTK and NLTK data:

http://www.nltk.org/install.html

Let's test everything.

Open the terminal on your respective operating systems. Then run:

$ python

This should open the Python interpreter:

https://www.python.org/downloads/
http://continuum.io/downloads%20
https://store.enthought.com/downloads/
http://www.nltk.org/install.html

Python 2.6.6 (r266:84292, Oct 15 2013, 07:32:41)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-4)] on linux2
Type "help", "copyright", "credits" or "license" for more
information.
>>>

I hope you got a similar looking output here. There is a chance that you will have received a different
looking output, but ideally you will get the latest version of Python (I recommend that to be 2.7), the
compiler GCC, and the operating system details. I know the latest version of Python will be in 3.0+
range, but as with any other open source systems, we should tries to hold back to a more stable version
as opposed to jumping on to the latest version. If you have moved to Python 3.0+, please have a look at
the link below to gain an understanding about what new features have been added:

https://docs.python.org/3/whatsnew/3.4.html.

UNIX based systems will have Python as a default program. Windows users can set the path to get
Python working. Let's check whether we have installed NLTK correctly:

>>>import nltk
>>>print "Python and NLTK installed successfully"
Python and NLTK installed successfully

Hey, we are good to go!

https://docs.python.org/3/whatsnew/3.4.html

Let's start playing with Python!
We'll not be diving too deep into Python; however, we'll give you a quick tour of Python essentials. Still,
I think for the benefit of the audience, we should have a quick five minute tour. We'll talk about the
basics of data structures, some frequently used functions, and the general construct of Python in the next
few sections.

Note

I highly recommend the two hour Google Python class. https://developers.google.com/edu/python
should be good enough to start. Please go through the Python website https://www.python.org/ for more
tutorials and other resources.

Lists

Lists are one of the most commonly used data structures in Python. They are pretty much comparable to
arrays in other programming languages. Let's start with some of the most important functions that a
Python list provide.

Try the following in the Python console:

>>> lst=[1,2,3,4]
>>> # mostly like arrays in typical languages
>>>print lst
[1, 2, 3, 4]

Python lists can be accessed using much more flexible indexing. Here are some examples:

>>>print 'First element' +lst[0]

You will get an error message like this:

TypeError: cannot concatenate 'str' and 'int' objects

The reason being that Python is an interpreted language, and checks for the type of the variables at the
time it evaluates the expression. We need not initialize and declare the type of variable at the time of
declaration. Our list has integer object and cannot be concatenated as a print function. It will only accept
a string object. For this reason, we need to convert list elements to string. The process is also known as
type casting.

>>>print 'First element :' +str(lst[0])
>>>print 'last element :' +str(lst[-1])
>>>print 'first three elements :' +str(lst[0:2])
>>>print 'last three elements :'+str(lst[-3:])
First element :1
last element :4

https://developers.google.com/edu/python
https://www.python.org/

first three elements :[1, 2,3]
last three elements :[2, 3, 4]

Helping yourself

The best way to learn more about different data types and functions is to use help functions like
help() and dir(lst).

The dir(python object) command is used to list all the given attributes of the given Python
object. Like if you pass a list object, it will list all the cool things you can do with lists:

>>>dir(lst)
>>>' , '.join(dir(lst))
'__add__ , __class__ , __contains__ , __delattr__ , __delitem__ ,
__delslice__ , __doc__ , __eq__ , __format__ , __ge__ ,
__getattribute__ , __getitem__ , __getslice__ , __gt__ , __hash__ ,
__iadd__ , __imul__ , __init__ , __iter__ , __le__ , __len__ ,
__lt__ , __mul__ , __ne__ , __new__ , __reduce__ , __reduce_ex__ ,
__repr__ , __reversed__ , __rmul__ , __setattr__ , __setitem__ ,
__setslice__ , __sizeof__ , __str__ , __subclasshook__ , append ,
count , extend , index , insert , pop , remove , reverse , sort'

With the help(python object) command, we can get detailed documentation for the given
Python object, and also give a few examples of how to use the Python object:

>>>help(lst.index)
Help on built-in function index:
index(...)

L.index(value, [start, [stop]]) -> integer -- return first index
of value.
This function raises a ValueError if the value is not present.

So help and dir can be used on any Python data type, and are a very nice way to learn about the
function and other details of that object. It also provides you with some basic examples to work with,
which I found useful in most cases.

Strings in Python are very similar to other languages, but the manipulation of strings is one of the main
features of Python. It's immensely easy to work with strings in Python. Even something very simple, like
splitting a string, takes effort in Java / C, while you will see how easy it is in Python.

Using the help function that we used previously, you can get help for any Python object and any
function. Let's have some more examples with the other most commonly used data type strings:

• Split: This is a method to split the string based on some delimiters. If no argument is provided it
assumes whitespace as delimiter.

>>> mystring="Monty Python ! And the holy Grail ! \n"
>>> print mystring.split()
['Monty', 'Python', '!', 'and', 'the', 'holy', 'Grail', '!']

• Strip: This is a method that can remove trailing whitespace, like '\n', '\n\r' from the string:

>>> print mystring.strip()
>>>Monty Python ! and the holy Grail !

If you notice the '\n' character is stripped off. There are also methods like rstrip() and
lstrip() to strip trailing whitespaces to the right and left of the string.

• Upper/Lower: We can change the case of the string using these methods:

>>> print (mystring.upper()
>>>MONTY PYTHON !AND THE HOLY GRAIL !

• Replace: This will help you substitute a substring from the string:

>>> print mystring.replace('!','''''')
>>> Monty Python and the holy Grail

There are tons of string functions. I have just talked about some of the most frequently used.

Note

Please look the following link for more functions and examples:

https://docs.python.org/2/library/string.html.

Regular expressions

One other important skill for an NLP enthusiast is working with regular expression. Regular expression
is effectively pattern matching on strings. We heavily use pattern extrication to get meaningful
information from large amounts of messy text data. The following are all the regular expressions you
need. I haven't used any regular expressions beyond these in my entire life:

• (a period): This expression matches any single character except newline \n.
• \w: This expression will match a character or a digit equivalent to [a-z A-Z 0-9]
• \W (upper case W) matches any non-word character.
• \s: This expression (lowercase s) matches a single whitespace character - space, newline,

return, tab, form [\n\r\t\f].
• \S: This expression matches any non-whitespace character.
• \t: This expression performs a tab operation.
• \n: This expression is used for a newline character.
• \r: This expression is used for a return character.
• \d: Decimal digit [0-9].
• ^: This expression is used at the start of the string.
• $: This expression is used at the end of the string.

https://docs.python.org/2/library/string.html

• \: This expression is used to nullify the specialness of the special character. For example, you
want to match the $ symbol, then add \ in front of it.

Let's search for something in the running example, where mystring is the same string object, and we
will try to look for some patterns in that. A substring search is one of the common use-cases of the re
module. Let's implement this:

>>># We have to import re module to use regular expression
>>>import re
>>>if re.search('Python',mystring):
>>> print "We found python "
>>>else:
>>> print "NO "

Once this is executed, we get the message as follows:

We found python

We can do more pattern finding using regular expressions. One of the common functions that is used in
finding all the patterns in a string is findall. It will look for the given patterns in the string, and will
give you a list of all the matched objects:

>>>import re
>>>print re.findall('!',mystring)
['!', '!']

As we can see there were two instances of the "!" in the mystring and findall return both object
as a list.

Dictionaries

The other most commonly used data structure is dictionaries, also known as associative
arrays/memories in other programming languages. Dictionaries are data structures that are indexed by
keys, which can be any immutable type; such as strings and numbers can always be keys.

Dictionaries are handy data structure that used widely across programming languages to implement
many algorithms. Python dictionaries are one of the most elegant implementations of hash tables in any
programming language. It's so easy to work around dictionary, and the great thing is that with few
nuggets of code you can build a very complex data structure, while the same task can take so much time
and coding effort in other languages. This gives the programmer more time to focus on algorithms rather
than the data structure itself.

I am using one of the very common use cases of dictionaries to get the frequency distribution of words
in a given text. With just few lines of the following code, you can get the frequency of words. Just try
the same task in any other language and you will understand how amazing Python is:

>>># declare a dictionary
>>>word_freq={}
>>>for tok in string.split():
>>> if tok in word_freq:
>>> word_freq [tok]+=1
>>> else:
>>> word_freq [tok]=1
>>>print word_freq
{'!': 2, 'and': 1, 'holy': 1, 'Python': 1, 'Grail': 1, 'the': 1,
'Monty': 1}

Writing functions

As any other programming langauge Python also has its way of writing functions. Function in Python
start with keyword def followed by the function name and parentheses (). Similar to any other
programming language any arguments and the type of the argument should be placed within these
parentheses. The actual code starts with (:) colon symbol. The initial lines of the code are
typically doc string (comments), then we have code body and function ends with a return statement. For
example in the given example the function wordfreq start with def keyword, there is no argument to
this function and the function ends with a return statement.

>>>import sys
>>>def wordfreq (mystring):
>>> '''
>>> Function to generated the frequency distribution of the
given text
>>> '''
>>> print mystring
>>> word_freq={} 
>>> for tok in mystring.split():
>>> if tok in word_freq:
>>> word_freq [tok]+=1
>>> else:
>>> word_freq [tok]=1
>>> print word_freq
>>>def main():
>>> str="This is my fist python program"
>>> wordfreq(str)
>>>if __name__ == '__main__':
>>> main()

This was the same code that we wrote in the previous section the idea of writing in a form of function is
to make the code re-usable and readable. The interpreter style of writing Python is also very common
but for writing big programes it will be a good practice to use function/classes and one of the
programming paradigm. We also wanted the user to write and run first Python program. You need to
follow these steps to achive this.

1. Open an empty python file mywordfreq.py in your prefered text editor.
2. Write/Copy the code above in the code snippet to the file.
3. Open the command prompt in your Operating system.
4. Run following command prompt:

$ python mywordfreq,py "This is my fist python program !!"

5. Output should be:

{'This': 1, 'is': 1, 'python': 1, 'fist': 1, 'program': 1,
'my': 1}

Now you have a very basic understanding about some common data-structures that python provides.
You can write a full Python program and able to run that. I think this is good enough I think with this
much of an introduction to Python you can manage for the initial chapters.

Note

Please have a look at some Python tutorials on the following website to learn more commands on
Python:

https://wiki.python.org/moin/BeginnersGuide

https://wiki.python.org/moin/BeginnersGuide

Diving into NLTK
Instead of going further into the theoretical aspects of natural language processing, let's start with a
quick dive into NLTK. I am going to start with some basic example use cases of NLTK. There is a good
chance that you have already done something similar. First, I will give a typical Python programmer
approach, and then move on to NLTK for a much more efficient, robust, and clean solution.

We will start analyzing with some example text content. For the current example, I have taken the
content from Python's home page.

>>>import urllib2
>>># urllib2 is use to download the html content of the web link
>>>response = urllib2.urlopen('http://python.org/')
>>># You can read the entire content of a file using read() method
>>>html = response.read()
>>>print len(html)
47020

We don't have any clue about the kind of topics that are discussed in this URL, so let's start with an
exploratory data analysis (EDA). Typically in a text domain, EDA can have many meanings, but will
go with a simple case of what kinds of terms dominate the document. What are the topics? How frequent
they are? The process will involve some level of preprocessing steps. We will try to do this first in a pure
Python way, and then we will do it using NLTK.

Let's start with cleaning the html tags. One ways to do this is to select just the tokens, including
numbers and character. Anybody who has worked with regular expression should be able to convert
html string into list of tokens:

>>># Regular expression based split the string
>>>tokens = [tok for tok in html.split()]
>>>print "Total no of tokens :"+ str(len(tokens))
>>># First 100 tokens
>>>print tokens[0:100]
Total no of tokens :2860
['<!doctype', 'html>', '<!--[if', 'lt', 'IE', '7]>', '<html',
'class="no-js', 'ie6', 'lt-ie7', 'lt-ie8', 'lt-ie9">',
'<![endif]-->', '<!--[if', 'IE', '7]>', '<html', 'class="no-js',
'ie7', 'lt-ie8', 'lt-ie9">', '<![endif]-->', ''type="text/css"',
'media="not', 'print,', 'braille,' ...]

As you can see, there is an excess of html tags and other unwanted characters when we use the
preceding method. A cleaner version of the same task will look something like this:

>>>import re
>>># using the split function
>>>#https://docs.python.org/2/library/re.html

>>>tokens = re.split('\W+',html)
>>>print len(tokens)
>>>print tokens[0:100]
5787
['', 'doctype', 'html', 'if', 'lt', 'IE', '7', 'html', 'class',
'no', 'js', 'ie6', 'lt', 'ie7', 'lt', 'ie8', 'lt', 'ie9', 'endif',
'if', 'IE', '7', 'html', 'class', 'no', 'js', 'ie7', 'lt', 'ie8',
'lt', 'ie9', 'endif', 'if', 'IE', '8', 'msapplication', 'tooltip',
'content', 'The', 'official', 'home', 'of', 'the', 'Python',
'Programming', 'Language', 'meta', 'name', 'apple' ...]

This looks much cleaner now. But still you can do more; I leave it to you to try to remove as much noise
as you can. You can clean some HTML tags that are still popping up, You probably also want to look for
word length as a criteria and remove words that have a length one—it will remove elements like 7, 8,
and so on, which are just noise in this case. Now instead writing some of these preprocessing steps from
scratch let's move to NLTK for the same task. There is a function called clean_html() that can do
all the cleaning that we were looking for:

>>>import nltk
>>># http://www.nltk.org/api/nltk.html#nltk.util.clean_html
>>>clean = nltk.clean_html(html)
>>># clean will have entire string removing all the html noise
>>>tokens = [tok for tok in clean.split()]
>>>print tokens[:100]
['Welcome', 'to', 'Python.org', 'Skip', 'to', 'content', '▼',
'Close', 'Python', 'PSF', 'Docs', 'PyPI', 'Jobs', 'Community',
'▲', 'The', 'Python', 'Network', '≡', 'Menu', 'Arts',
'Business' ...]

Cool, right? This definitely is much cleaner and easier to do.

Let's try to get the frequency distribution of these terms. First, let's do it the Pure Python way, then I will
tell you the NLTK recipe.

>>>import operator
>>>freq_dis={}
>>>for tok in tokens:
>>> if tok in freq_dis:
>>> freq_dis[tok]+=1
>>> else:
>>> freq_dis[tok]=1
>>># We want to sort this dictionary on values (freq in this case)
>>>sorted_freq_dist= sorted(freq_dis.items(),
key=operator.itemgetter(1), reverse=True)
>>> print sorted_freq_dist[:25]
[('Python', 55), ('>>>', 23), ('and', 21), ('to', 18), (',', 18),
('the', 14), ('of', 13), ('for', 12), ('a', 11), ('Events', 11),

('News', 11), ('is', 10), ('2014-', 10), ('More', 9), ('#', 9),
('3', 9), ('=', 8), ('in', 8), ('with', 8), ('Community', 7),
('The', 7), ('Docs', 6), ('Software', 6), (':', 6), ('3:', 5),
('that', 5), ('sum', 5)]

Naturally, as this is Python's home page, Python and the (>>>) interpreter symbol are the most
common terms, also giving a sense of the website.

A better and more efficient approach is to use NLTK's FreqDist() function. For this, we will take a
look at the same code we developed before:

>>>import nltk
>>>Freq_dist_nltk=nltk.FreqDist(tokens)
>>>print Freq_dist_nltk
>>>for k,v in Freq_dist_nltk.items():
>>> print str(k)+':'+str(v)
<FreqDist: 'Python': 55, '>>>': 23, 'and': 21, ',': 18, 'to': 18,
'the': 14, 'of': 13, 'for': 12, 'Events': 11, 'News': 11, ...>
Python:55
>>>:23
and:21
,:18
to:18
the:14
of:13
for:12
Events:11
News:11

Tip

Downloading the example code

You can download the example code files from your account at http://www.packtpub.com for all the
Packt Publishing books you have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.

Let's now do some more funky things. Let's plot this:

>>>Freq_dist_nltk.plot(50, cumulative=False)
>>># below is the plot for the frequency distributions

http://www.packtpub.com
http://www.packtpub.com/support

We can see that the cumulative frequency is growing, and at some point the curve is going into long tail.
Still, there is some noise, there are words like the, of, for, and =. These are useless words, and there
is a terminology for them. These words are stop words; words like the, a, an, and so on. Article
pronouns are generally present in most of the documents, hence they are not discriminative enough to be
informative. In most of the NLP and information retrieval tasks, people generally remove stop words.
Let's go back again to our running example:

>>>stopwords=[word.strip().lower() for word in open("PATH/
english.stop.txt")]
>>>clean_tokens=[tok for tok in tokens if len(tok.lower())>1 and
(tok.lower() not in stopwords)]
>>>Freq_dist_nltk=nltk.FreqDist(clean_tokens)
>>>Freq_dist_nltk.plot(50, cumulative=False)

Note

Please go to http://www.wordle.net/advanced for more word clouds.

Looks much cleaner now! After finishing this much, you can go to wordle and put the distribution in a
form of a CSV and you should be able to get something like this word cloud:

http://www.wordle.net/advanced

Your turn
• Please try the same exercise for different URLs.
• Try to reach the word cloud.

Summary
To summarize, this chapter was intended to give you a brief introduction to Natural Language
Processing. The book does assume some background in NLP and programming in Python, but we have
tried to give a very quick head start to Python and NLP. We have installed all the related packages that
are require for us to work with NLTK. We wanted to give you, with a few simple lines of code, an idea
of how to use NLTK. We were able to deliver an amazing word cloud, which is a great way of
visualizing the topics in a large amount of unstructured text, and is quite popular in the industry for text
analytics. I think the goal was to set up everything around NLTK, and to get Python working smoothly
on your system. You should also be able to write and run basic Python programs. I wanted the reader to
feel the power of the NLTK library, and build a small running example that will involve a basic
application around word cloud. If the reader is able to generate the word cloud, I think we were
successful.

In the next few chapters, we will learn more about Python as a language, and its features related to
process natural language. We will explore some of the basic NLP preprocessing steps and learn about
some of basic concepts related to NLP.

Chapter 2. Text Wrangling and Cleansing
The previous chapter was all about you getting a head start on Python as well as NLTK. We learned
about how we can start some meaningful EDA with any corpus of text. We did all the pre-processing
part in a very crude and simple manner. In this chapter, will go over preprocessing steps like
tokenization, stemming, lemmatization, and stop word removal in more detail. We will explore all the
tools in NLTK for text wrangling. We will talk about all the pre-processing steps used in modern NLP
applications, the different ways to achieve some of these tasks, as well as the general do's and don'ts.
The idea is to give you enough information about these tools so that you can decide what kind of pre-
processing tool you need for your application. By the end of this chapter, readers should know :

• About all the data wrangling, and to perform it using NLTK
• What is the importance of text cleansing and what are the common tasks that can be achieved

using NLTK

What is text wrangling?
It's really hard to define the term text/data wrangling. I will define it as all the pre-processing and all the
heavy lifting you do before you have a machine readable and formatted text from raw data. The process
involves data munging, text cleansing, specific preprocessing, tokenization, stemming or
lemmatization and stop word removal. Let's start with a basic example of parsing a csv file:

>>>import csv
>>>with open('example.csv','rb') as f:
>>> reader = csv.reader(f,delimiter=',',quotechar='"')
>>> for line in reader :
>>> print line[1] # assuming the second field is the raw
sting

Here we are trying to parse a csv, in above code line will be a list of all the column elements of the
csv. We can customize this to work on any delimiter and quoting character. Now once we have the raw
string, we can apply different kinds of text wrangling that we learned in the last chapter. The point here
is to equip you with enough detail to deal with any day to day csv files.

A clear process flow for some of the most commonly accepted document types is shown in the
following block diagram:

I have listed most common data sources in the first stack of the diagram. In most cases, the data will be
residing in one of these data formats. In the next step, I have listed the most commonly used Python
wrappers around those data formats. For example, in the case of a csv file, Python's csv module is the
most robust way of handling the csv file. It allows you to play with different splitters, different quote
characters, and so on.

The other most commonly used files are json.

For example, json looks like:

{
"array": [1,2,3,4],

"boolean": True,
"object": {

"a": "b"
},
"string": "Hello World"

}

Let's say we want to process the string. The parsing code will be:

>>>import json
>>>jsonfile = open('example.json')
>>>data = json.load(jsonfile)
>>>print data['string']
"Hello World"

We are just loading a json file using the json module. Python allows you to choose and process it to a
raw string form. Please have a look at the diagram to get more details about all the data sources, and
their parsing packages in Python. I have only given pointers here; please feel free to search the web for
more details about these packages.

So before you write your own parser to parse these different document formats, please have a look at the
second row for available parsers in Python. Once you reach a raw string, all the pre-processing steps can
be applied as a pipeline, or you might choose to ignore some of them. We will talk about tokenization,
stemmers, and lemmatizers in the next section in detail. We will also talk about the variants, and when to
use one case over the other.

Note

Now that you have an idea of what text wrangling is, try to connect to any one of the databases using
one of the Python modules described in the preceding image.

Text cleansing
Once we have parsed the text from a variety of data sources, the challenge is to make sense of this raw
data. Text cleansing is loosely used for most of the cleaning to be done on text, depending on the data
source, parsing performance, external noise and so on. In that sense, what we did in Chapter 1,
Introduction to Natural Language Processing for cleaning the html using html_clean, can be labeled
as text cleansing. In another case, where we are parsing a PDF, there could be unwanted noisy
characters, non ASCII characters to be removed, and so on. Before going on to next steps we want to
remove these to get a clean text to process further. With a data source like xml, we might only be
interested in some specific elements of the tree, with databases we may have to manipulate splitters, and
sometimes we are only interested in specific columns. In summary, any process that is done with the aim
to make the text cleaner and to remove all the noise surrounding the text can be termed as text cleansing.
There are no clear boundaries between the terms data munging, text cleansing, and data wrangling they
can be used interchangeably in a similar context. In the next few sections, we will talk about some of the
most common pre-processing steps while doing any NLP task.

Sentence splitter
Some of the NLP applications require splitting a large raw text into sentences to get more meaningful
information out. Intuitively, a sentence is an acceptable unit of conversation. When it comes to
computers, it is a harder task than it looks. A typical sentence splitter can be something as simple as
splitting the string on (.), to something as complex as a predictive classifier to identify sentence
boundaries:

>>>inputstring = ' This is an example sent. The sentence splitter
will split on sent markers. Ohh really !!'
>>>from nltk.tokenize import sent_tokenize
>>>all_sent = sent_tokenize(inputstring)
>>>print all_sent
[' This is an example sent', 'The sentence splitter will split on
markers.','Ohh really !!']

We are trying to split the raw text string into a list of sentences. The preceding function,
sent_tokenize, internally uses a sentence boundary detection algorithm that comes pre-built into
NLTK. If your application requires a custom sentence splitter, there are ways that we can train a
sentence splitter of our own:

>>>import nltk.tokenize.punkt
>>>tokenizer = nltk.tokenize.punkt.PunktSentenceTokenizer()

The preceding sentence splitter is available in all the 17 languages. You just need to specify the
respective pickle object. In my experience, this is good enough to deal with a variety of the text corpus,
and there is a lesser chance that you will have to build your own.

Tokenization
A word (Token) is the minimal unit that a machine can understand and process. So any text string cannot
be further processed without going through tokenization. Tokenization is the process of splitting the raw
string into meaningful tokens. The complexity of tokenization varies according to the need of the NLP
application, and the complexity of the language itself. For example, in English it can be as simple as
choosing only words and numbers through a regular expression. But for Chinese and Japanese, it will be
a very complex task.

>>>s = "Hi Everyone ! hola gr8" # simplest tokenizer
>>>print s.split()
['Hi', 'Everyone', '!', 'hola', 'gr8']
>>>from nltk.tokenize import word_tokenize
>>>word_tokenize(s)
['Hi', 'Everyone', '!', 'hola', 'gr8']
>>>from nltk.tokenize import regexp_tokenize, wordpunct_tokenize,
blankline_tokenize
>>>regexp_tokenize(s, pattern='\w+')
['Hi', 'Everyone', 'hola', 'gr8']
>>>regexp_tokenize(s, pattern='\d+')
['8']
>>>wordpunct_tokenize(s)
['Hi', ',', 'Everyone', '!!', 'hola', 'gr8']
>>>blankline_tokenize(s)
['Hi, Everyone !! hola gr8']

In the preceding code we have used various tokenizers. To start with we used the simplest: the
split() method of Python strings. This is the most basic tokenizer, that uses white space as delimiter.
But the split() method itself can be configured for some more complex tokenization. In the
preceding example, you will find hardly a difference between the s.split() and word_tokenize
methods.

The word_tokenize method is a generic and more robust method of tokenization for any kind of text
corpus. The word_tokenize method comes pre-built with NLTK. If you are not able to access it, you
made some mistakes in installing NLTK data. Please refer to Chapter 1, Introduction to Natural
Language Processing for installation.

There are two most commonly used tokenizers. The first is word_tokenize, which is the default one,
and will work in most cases. The other is regex_tokenize, which is more of a customized tokenizer
for the specific needs of the user. Most of the other tokenizers can be derived from regex tokenizers. You
can also build a very specific tokenizer using a different pattern. In line 8 of the preceding code, we split
the same string with the regex tokenizer. We use \w+ as a regular expression, which means we need all
the words and digits from the string, and other symbols can be used as a splitter, same as what we do in
line 10 where we specify \d+ as regex. The result will produce only digits from the string.

Can you build a regex tokenizer that will only select words that are either small, capitals, numbers, or
money symbols?

Hint: Just look for the regular expression for the preceding query and use a regex_tokenize.

Tip

You can also have a look at some of the demos available online: http://text-processing.com/demo.

http://text-processing.com/demo

Stemming
Stemming, in literal terms, is the process of cutting down the branches of a tree to its stem. So
effectively, with the use of some basic rules, any token can be cut down to its stem. Stemming is more of
a crude rule-based process by which we want to club together different variations of the token. For
example, the word eat will have variations like eating, eaten, eats, and so on. In some applications, as it
does not make sense to differentiate between eat and eaten, we typically use stemming to club both
grammatical variances to the root of the word. While stemming is used most of the time for its
simplicity, there are cases of complex language or complex NLP tasks where it's necessary to use
lemmatization instead. Lemmatization is a more robust and methodical way of combining grammatical
variations to the root of a word.

In the following snippet, we show a few stemmers:

>>>from nltk.stem import PorterStemmer # import Porter stemmer
>>>from nltk.stem.lancaster import LancasterStemmer
>>>from nltk.stem.Snowball import SnowballStemmer
>>>pst = PorterStemmer() # create obj of the PorterStemmer
>>>lst = LancasterStemmer() # create obj of LancasterStemmer
>>>lst.stem("eating")
eat
>>>pst.stem("shopping")
shop

A basic rule-based stemmer, like removing –s/es or -ing or -ed can give you a precision of more than 70
percent, while Porter stemmer also uses more rules and can achieve very good accuracies.

We are creating different stemmer objects, and applying a stem() method on the string. As you can
see, there is not much of a difference when you look at a simple example, however there are many
stemming algorithms around, and the precision and performance of them differ. You may want to have a
look at http://www.nltk.org/api/nltk.stem.html for more details. I have used Porter Stemmer most often,
and if you are working with English, it's good enough. There is a family of Snowball stemmers that can
be used for Dutch, English, French, German, Italian, Portuguese, Romanian, Russian, and so on. I also
came across a light weight stemmer for Hindi on http://research.variancia.com/hindi_stemmer.

Tip

I would suggest a study of all the stemmers for those who want to explore more about stemmers on
http://en.wikipedia.org/wiki/Stemming.

But most users can live with Porter and Snowball stemmer for a large number of use cases. In modern
NLP applications, sometimes people even ignore stemming as a pre-processing step, so it typically
depends on your domain and application. I would also like to tell you the fact that if you want to use
some NLP taggers, like Part of Speech tagger (POS), NER or dependency parser, you should avoid
stemming, because stemming will modify the token and this can result in a different result. We will go
into this further when we talk about taggers in general.

http://www.nltk.org/api/nltk.stem.html
http://research.variancia.com/hindi_stemmer
http://en.wikipedia.org/wiki/Stemming

Lemmatization
Lemmatization is a more methodical way of converting all the grammatical/inflected forms of the root
of the word. Lemmatization uses context and part of speech to determine the inflected form of the word
and applies different normalization rules for each part of speech to get the root word (lemma):

>>>from nltk.stem import WordNetLemmatizer
>>>wlem = WordNetLemmatizer()
>>>wlem.lemmatize("ate")
eat

Here, WordNetLemmatizer is using wordnet, which takes a word and searches wordnet, a
semantic dictionary. It also uses a morph analysis to cut to the root and search for the specific lemma
(variation of the word). Hence, in our example it is possible to get eat for the given variation ate, which
was never possible with stemming.

• Can you explain what the difference is between Stemming and lemmatization?
• Can you come up with a Porter stemmer (Rule-based) for your native language?
• Why would it be harder to implement a stemmer for languages like Chinese?

Stop word removal
Stop word removal is one of the most commonly used preprocessing steps across different NLP
applications. The idea is simply removing the words that occur commonly across all the documents in
the corpus. Typically, articles and pronouns are generally classified as stop words. These words have no
significance in some of the NLP tasks like information retrieval and classification, which means these
words are not very discriminative. On the contrary, in some NLP applications stop word removal will
have very little impact. Most of the time, the stop word list for the given language is a well hand-curated
list of words that occur most commonly across corpuses. While the stop word lists for most languages
are available online, these are also ways to automatically generate the stop word list for the given
corpus. A very simple way to build a stop word list is based on word's document frequency (Number of
documents the word presents), where the words present across the corpus can be treated as stop words.
Enough research has been done to get the optimum list of stop words for some specific corpus. NLTK
comes with a pre-built list of stop words for around 22 languages.

To implement the process of stop word removal, below is code that uses NLTK stop word. You can also
create a dictionary on a lookup based approach like we did in Chapter 1, Introduction to Natural
Language Processing.

>>>from nltk.corpus import stopwords
>>>stoplist = stopwords.words('english') # config the language name
NLTK supports 22 languages for removing the stop words
>>>text = "This is just a test"
>>>cleanwordlist = [word for word in text.split() if word not in
stoplist]
apart from just and test others are stopwords
['test']

In the preceding code snippet, we have deployed a cleaner version of the same stop word removal we
did in Chapter 1, Introduction to Natural Language Processing. Previously, we were using a lookup
based approach. Even in this case, NLTK internally did a very similar approach. I would recommend
using the NLTK list of stop words, because this is more of a standardized list, and this is robust when
compared to any other implementation. We also have a way to use similar methods for other languages
by just passing the language name as a parameter to the stop words constructor.

• What's the math behind removing stop words?
• Can we perform other NLP operations after stop word removal?

Rare word removal
This is very intuitive, as some of the words that are very unique in nature like names, brands, product
names, and some of the noise characters, such as html leftouts, also need to be removed for different
NLP tasks. For example, it would be really bad to use names as a predictor for a text classification
problem, even if they come out as a significant predictor. We will talk about this further in subsequent
chapters. We definitely don't want all these noisy tokens to be present. We also use length of the words
as a criteria for removing words with very a short length or a very long length:

>>># tokens is a list of all tokens in corpus
>>>freq_dist = nltk.FreqDist(token)
>>>rarewords = freq_dist.keys()[-50:]
>>>after_rare_words = [word for word in token not in rarewords]

We are using the FreqDist() function to get the distribution of the terms in the corpus, selecting the
rarest one into a list, and then filtering our original corpus. We can also do it for individual documents,
as well.

Spell correction
It is not a necessary to use a spellchecker for all NLP applications, but some use cases require you to use
a basic spellcheck. We can create a very basic spellchecker by just using a dictionary lookup. There are
some enhanced string algorithms that have been developed for fuzzy string matching. One of the most
commonly used is edit-distance. NLTK also provides you with a variety of metrics module that
has edit_distance.

>>>from nltk.metrics import edit_distance
>>>edit_distance("rain","shine")
3

We will cover this module in more detail in advanced chapters. We also have one of the most elegant
codes for spellchecker from Peter Norvig, which is quite easy to understand and written in pure Python.

Tip

I would recommend that anyone who works with natural language processing visit the following link for
spellcheck: http://norvig.com/spell-correct.html

http://norvig.com/spell-correct.html

Your turn
Here are the answers to the open-ended questions:

• Try to connect any of the data base using pyodbc.

https://code.google.com/p/pyodbc/wiki/GettingStarted
• Can you build a regex tokenizer that will only select words that are either small, capitals,

numbers or money symbols?

[\w+] selects all the words and numbers [a-z A-Z 0-9] and [\$] will match money symbol.
• What's the difference between Stemming and lemmatization?

Stemming is more of a rule-based approach to get the root of the word's grammatical forms,
while lemmatization also considers context and the POS of the given word, then applies rules
specific to grammatical variants. Stemmers are easier to implement and the processing time is
faster than lemmatizer.

• Can you come up with a Porter stemmer (Rule-based) for your native language?

Hint: http://tartarus.org/martin/PorterStemmer/python.txt

http://Snowball.tartarus.org/algorithms/english/stemmer.html
• Can we perform other NLP operations after stop word removal?

No; never. All the typical NLP applications like POS tagging, chunking, and so on will need
context to generate the tags for the given text. Once we remove the stop word, we lose the
context.

• Why would it be harder to implement a stemmer for languages like Hindi or Chinese?

Indian languages are morphologically rich and it's hard to token the Chinese; there are
challenges with the normalization of the symbols, so it's even harder to implement steamer. We
will talk about these challenges in advanced chapters.

https://code.google.com/p/pyodbc/wiki/GettingStarted
http://tartarus.org/martin/PorterStemmer/python.txt
http://snowball.tartarus.org/algorithms/english/stemmer.html

Summary
In this chapter we talked about all the data wrangling/munging in the context of text. We went through
some of the most common data sources, and how to parse them with Python packages. We talked about
tokenization in depth, from a very basic string method to a custom regular expression based tokenizer.

We talked about stemming and lemmatization, and the various types of stemmers that can be used, as
well as the pros and cons of each of them. We also discussed the stop word removal process, why it's
important, when to remove stop words, and when it's not needed. We also briefly touched upon
removing rare words and why it's important in text cleansing—both stop word and rare word removal
are essentially removing outliers from the frequency distribution. We also referred to spell correction.
There is no limit to what you can do with text wrangling and text cleansing. Every text corpus has new
challenges, and a new kind of noise that needs to be removed. You will get to learn over time what kind
of pre-processing works best for your corpus, and what can be ignored.

In the next chapter will see some of the NLP related pre-processing, like POS tagging, chunking, and
NER. I am leaving answers or hints for some of the open questions that we asked in the chapter.

Chapter 3. Part of Speech Tagging
In previous chapters, we talked about all the preprocessing steps we need, in order to work with any text
corpus. You should now be comfortable about parsing any kind of text and should be able to clean it.
You should be able to perform all text preprocessing, such as Tokenization, Stemming, and Stop Word
removal on any text. You can perform and customize all the preprocessing tools to fit your needs. So far,
we have mainly discussed generic preprocessing to be done with text documents. Now let's move on to
more intense NLP preprocessing steps.

In this chapter, we will discuss what part of speech tagging is, and what the significance of POS is in the
context of NLP applications. We will also learn how to use NLTK to extract meaningful information
using tagging and various taggers used for NLP intense applications. Lastly, we will learn how NLTK
can be used to tag a named entity. We will discuss in detail the various NLP taggers and also give a
small snippet to help you get going. We will also see the best practices, and where to use what kind of
tagger. By the end of this chapter, readers will learn:

• What is Part of speech tagging and how important it is in context of NLP
• What are the different ways of doing POS tagging using NLTK
• How to build a custom POS tagger using NLTK

What is Part of speech tagging
In your childhood, you may have heard the term Part of Speech (POS). It can really take good amount
of time to get the hang of what adjectives and adverbs actually are. What exactly is the difference?
Think about building a system where we can encode all this knowledge. It may look very easy, but for
many decades, coding this knowledge into a machine learning model was a very hard NLP problem. I
think current state of the art POS tagging algorithms can predict the POS of the given word with a
higher degree of precision (that is approximately 97 percent). But still lots of research going on in the
area of POS tagging.

Languages like English have many tagged corpuses available in the news and other domains. This has
resulted in many state of the art algorithms. Some of these taggers are generic enough to be used across
different domains and varieties of text. But in specific use cases, the POS might not perform as
expected. For these use cases, we might need to build a POS tagger from scratch. To understand the
internals of a POS, we need to have a basic understanding of some of the machine learning techniques.
We will talk about some of these in Chapter 6, Text Classification, but we have to discuss the basics in
order to build a custom POS tagger to fit our needs.

First, we will learn some of the pertained POS taggers available, along with a set of tokens. You can get
the POS of individual words as a tuple. We will then move on to the internal workings of some of these
taggers, and we will also talk about building a custom tagger from scratch.

When we talk about POS, the most frequent POS notification used is Penn Treebank:

Tag Description

NNP Proper noun, singular

NNPS Proper noun, plural

PDT Pre determiner

POS Possessive ending

PRP Personal pronoun

PRP$ Possessive pronoun

RB Adverb

RBR Adverb, comparative

RBS Adverb, superlative

RP Particle

SYM Symbol (mathematical or scientific)

TO to

UH Interjection

VB Verb, base form

VBD Verb, past tense

VBG Verb, gerund/present participle

Tag Description

VBN Verb, past

WP Wh-pronoun

WP$ Possessive wh-pronoun

WRB Wh-adverb

Pound sign

$ Dollar sign

. Sentence-final punctuation

, Comma

: Colon, semi-colon

(Left bracket character

) Right bracket character

" Straight double quote

' Left open single quote

" Left open double quote

' Right close single quote

" Right open double quote

Looks pretty much like what we learned in primary school English class, right? Now once we have an
understanding about what these tags mean, we can run an experiment:

>>>import nltk
>>>from nltk import word_tokenize
>>>s = "I was watching TV"
>>>print nltk.pos_tag(word_tokenize(s))
[('I', 'PRP'), ('was', 'VBD'), ('watching', 'VBG'), ('TV', 'NN')]

If you just want to use POS for a corpus like news or something similar, you just need to know the
preceding three lines of code. In this code, we are tokenizing a piece of text and using NLTK's
pos_tag method to get a tuple of (word, pos-tag). This is one of the pre-trained POS taggers that
comes with NLTK.

Note

It's internally using the maxent classifier (will discuss these classifiers in advanced chapters) trained
model to predict to which class of tag a particular word belongs.

To get more details you can use the following link:

https://github.com/nltk/nltk/blob/develop/nltk/tag/__init__.py

NLTK has used python's powerful data structures efficiently, so we have a lot more flexibility in terms
of use of the results of NLTK outputs.

You must be wondering what could be a typical use of POS in a real application. In a typical
preprocessing, we might want to look for all the nouns. Now this code snippet will give us all the nouns
in the given sentence:

>>>tagged = nltk.pos_tag(word_tokenize(s))
>>>allnoun = [word for word,pos in tagged if pos in ['NN','NNP']]

Try to answer the following questions:

• Can we remove stop words before POS tagging?
• How can we get all the verbs in the sentence?

Stanford tagger

Another awesome feature of NLTK is that it also has many wrappers around other pre-trained taggers,
such as Stanford tools. A common example of a POS tagger is shown here:

>>>from nltk.tag.stanford import POSTagger
>>>import nltk
>>>stan_tagger = POSTagger('models/
english-bidirectional-distdim.tagger','standford-postagger.jar')
>>>tokens = nltk.word_tokenize(s)
>>>stan_tagger.tag(tokens)

https://github.com/nltk/nltk/blob/develop/nltk/tag/__init__.py

Tip

To use the above code, you need to download the Stanford tagger from http://nlp.stanford.edu/software/
stanford-postagger-full-2014-08-27.zip. Extract both the jar and model into a folder, and give an
absolute path in argument for the POSTagger.

Summarizing this, there are mainly two ways to achieve any tagging task in NLTK:

1. Using NLTK's or another lib's pre-trained tagger, and applying it on the test data. Both
preceding taggers should be sufficient to deal with any POS tagging task that deals with plain
English text, and the corpus is not very domain specific.

2. Building or Training a tagger to be used on test data. This is to deal with a very specific use case
and to develop a customized tagger.

Let's dig deeper into what goes on inside a typical POS tagger.

Diving deep into a tagger

A typical tagger uses a lot of trained data, with sentences tagged for each word that will be the POS tag
attached to it. Tagging is purely manual and looks like this:

Well/UH what/WP do/VBP you/PRP think/VB about/IN the/DT idea/NN of/
IN ,/, uh/UH ,/, kids/NNS having/VBG to/TO do/VB public/JJ service/
NN work/NN for/IN a/DT year/NN ?/.Do/VBP you/PRP think/VBP it/PRP 's/
BES a/DT ,/,

The preceding sample is taken from the Penn Treebank switchboard corpus. People have done lot of
manual work tagging large corpuses. There is a Linguistic Data Consortium (LDC) where people have
dedicated so much time to tagging for different languages, different kinds of text and different kinds of
tagging like POS, dependency parsing, and discourse (will talk about these later).

Note

You can get all these resources and more information about them at https://www.ldc.upenn.edu/. (LDC
provides a fraction of data for free but you can also purchase the entire tagged corpus. NLTK has
approximately 10 percent of the PTB.)

If we also want to train our own POS tagger, we have to do the tagging exercise for our specific domain.
This kind of tagging will require domain experts.

Typically, tagging problems like POS tagging are seen as sequence labeling problems or a classification
problem where people have tried generative and discriminative models to predict the right tag for the
given token.

Instead of jumping directly in to more sophisticated examples, let's start with some simple approaches
for tagging.

http://nlp.stanford.edu/software/stanford-postagger-full-2014-08-27.zip
http://nlp.stanford.edu/software/stanford-postagger-full-2014-08-27.zip
https://www.ldc.upenn.edu/

The following snippet gives us the frequency distribution of POS tags in the Brown corpus:

>>>from nltk.corpus import brown
>>>import nltk
>>>tags = [tag for (word, tag) in
brown.tagged_words(categories='news')]
>>>print nltk.FreqDist(tags)
<FreqDist: 'NN': 13162, 'IN': 10616, 'AT': 8893, 'NP': 6866, ',':
5133, 'NNS': 5066, '.': 4452, 'JJ': 4392 >

We can see NN comes as the most frequent tag, so let's start building a very naïve POS tagger, by
assigning NN as a tag to all the test words. NLTK has a DefaultTagger function that can be used for
this. DefaultTagger function is part of the Sequence tagger, which will be discussed next. There is a
function called evaluate() that gives the accuracy of the correctly predicted POS of the words. This
is used to benchmark the tagger against the brown corpus. In the default_tagger case, we are
getting approximately 13 percent of the predictions correct. We will use the same benchmark for all the
taggers moving forward.

>>>brown_tagged_sents = brown.tagged_sents(categories='news')
>>>default_tagger = nltk.DefaultTagger('NN')
>>>print default_tagger.evaluate(brown_tagged_sents)
0.130894842572

Sequential tagger

Not surprisingly, the above tagger performed poorly. The DefaultTagger is part of a base class
SequentialBackoffTagger that serves tags based on the Sequence. Tagger tries to model the tags
based on the context, and if it is not able to predict the tag correctly, it consults a BackoffTagger.
Typically, the DefaultTagger parameter could be used as a BackoffTagger.

Let's move on to more sophisticated sequential taggers.

N-gram tagger

N-gram tagger is a subclass of SequentialTagger, where the tagger takes previous n words in the
context, to predict the POS tag for the given token. There are variations of these taggers where people
have tried it with UnigramsTagger, BigramsTagger, and TrigramTagger:

>>>from nltk.tag import UnigramTagger
>>>from nltk.tag import DefaultTagger
>>>from nltk.tag import BigramTagger
>>>from nltk.tag import TrigramTagger
we are dividing the data into a test and train to evaluate our
taggers.
>>>train_data = brown_tagged_sents[:int(len(brown_tagged_sents) *
0.9)]
>>>test_data = brown_tagged_sents[int(len(brown_tagged_sents) *

0.9):]
>>>unigram_tagger = UnigramTagger(train_data,backoff=default_tagger)
>>>print unigram_tagger.evaluate(test_data)
0.826195866853
>>>bigram_tagger = BigramTagger(train_data, backoff=unigram_tagger)
>>>print bigram_tagger.evaluate(test_data)
0.835300351655
>>>trigram_tagger = TrigramTagger(train_data,backoff=bigram_tagger)
>>>print trigram_tagger.evaluate(test_data)
0.83327713281

Unigram just considers the conditional frequency of tags and predicts the most frequent tag for the every
given token. The bigram_tagger parameter will consider the tags of the given word and the
previous word, and tag as tuple to get the given tag for the test word. The TrigramTagger parameter
looks for the previous two words with a similar process.

It's very evident that coverage of the TrigramTagger parameter will be less and the accuracy of that
instance will be high. On the other hand, UnigramTagger will have better coverage. To deal with this
tradeoff between precision/recall, we combine the three taggers in the preceding snippet. First it will
look for the trigram of the given word sequence for predicting the tag; if not found it Backoff to
BigramTagger parameter and to a UnigramTagger parameter and in end to a NN tag.

Regex tagger

There is one more class of sequential tagger that is a regular expression based taggers. Here, instead of
looking for the exact word, we can define a regular expression, and at the same time we can define the
corresponding tag for the given expressions. For example, in the following code we have provided some
of the most common regex patterns to get the different parts of speech. We know some of the patterns
related to each POS category, for example we know the articles in English and we know that anything
that ends with ness will be an adjective. Instead, we will write a bunch of regex and a pure python code,
and the NLTK RegexpTagger parameter will provide an elegant way of building a pattern based
POS. This can also be used to induce domain related POS patterns.

>>>from nltk.tag.sequential import RegexpTagger
>>>regexp_tagger = RegexpTagger(

[(r'^-?[0-9]+(.[0-9]+)?$', 'CD'), # cardinal numbers
(r'(The|the|A|a|An|an)$', 'AT'), # articles
(r'.*able$', 'JJ'), # adjectives
(r'.*ness$', 'NN'), # nouns formed from adj
(r'.*ly$', 'RB'), # adverbs
(r'.*s$', 'NNS'), # plural nouns
(r'.*ing$', 'VBG'), # gerunds
(r'.*ed$', 'VBD'), # past tense verbs
(r'.*', 'NN') # nouns (default)
])

>>>print regexp_tagger.evaluate(test_data)
0.303627342358

We can see that by just using some of the obvious patterns for POS we are able to reach approximately
30 percent in terms of accuracy. If we combine regex taggers, such as the BackoffTagger, we might
improve the performance. The other use case for regex tagger is in the preprocessing step, where instead
of using a raw Python function string.sub(), we can use this tagger to tag date patterns, money
patterns, location patterns and so on.

• Can you modify the code of a hybrid tagger in the N-gram tagger section to work with Regex
tagger? Does that improve performance?

• Can you write a tagger that tags Date and Money expressions?

Brill tagger

Brill tagger is a transformation based tagger, where the idea is to start with a guess for the given tag and,
in next iteration, go back and fix the errors based on the next set of rules the tagger learned. It's also a
supervised way of tagging, but unlike N-gram tagging where we count the N-gram patterns in training
data, we look for transformation rules.

If the tagger starts with a Unigram / Bigram tagger with an acceptable accuracy, then brill tagger,
instead looking for a trigram tuple, will be looking for rules based on tags, position and the word itself.

An example rule could be:

Replace NN with VB when the previous word is TO.

After we already have some tags based on UnigramTagger, we can refine if with just one simple
rule. This is an interactive process. With a few iterations and some more optimized rules, the brill tagger
can outperform some of the N-gram taggers. The only piece of advice is to look out for over-fitting of
the tagger for the training set.

Note

You can also look at the work here for more example rules.

http://stp.lingfil.uu.se/~bea/publ/megyesi-BrillsPoSTagger.pdf

• Can you try to write more rules based on your observation?
• Try to combine brill tagger with UnigramTagger.

Machine learning based tagger

Until now we have just used some of the pre-trained taggers from NLTK or Stanford. While we have
used them in the examples in previous section, the internals of the taggers are still a black box to us. For
example, pos_tag internally uses a Maximum Entropy Classifier (MEC). While
StanfordTagger also uses a modified version of Maximum Entropy. These are discriminatory
models. While there are many Hidden Markov Model (HMM) and Conditional Random Field (CRF)
based taggers, these are generative models.

Covering all of these topics is beyond the scope of the book. I would highly recommend the NLP class
for a great understanding of these concepts. We will cover some of the classification techniques in

http://stp.lingfil.uu.se/~bea/publ/megyesi-BrillsPoSTagger.pdf

Chapter 6, Text Classification, but some of these are very advanced topics in NLP, and will need more
attention.

If I have to explain in short, the way to categorize POS tagging problem is either as a classification
problem where given a word and the features like previous word, context, morphological variation, and
so on. We classify the given word into a POS category, while the others try to model it as a generative
model using the similar features. It's for the reader's reference to go over some of these topics using links
in the tips.

Note

NLP CLASS: https://www.coursera.org/course/nlp

HMM: http://mlg.eng.cam.ac.uk/zoubin/papers/ijprai.pdf

MEC: https://web.stanford.edu/class/cs124/lec/Maximum_Entropy_Classifiers.pdf

http://nlp.stanford.edu/software/tagger.shtml

https://www.coursera.org/course/nlp
http://mlg.eng.cam.ac.uk/zoubin/papers/ijprai.pdf
https://web.stanford.edu/class/cs124/lec/Maximum_Entropy_Classifiers.pdf
http://nlp.stanford.edu/software/tagger.shtml

Named Entity Recognition (NER)
Aside from POS, one of the most common labeling problems is finding entities in the text. Typically
NER constitutes name, location, and organizations. There are NER systems that tag more entities than
just three of these. The problem can be seen as a sequence, labeling the Named entities using the context
and other features. There is a lot more research going on in this area of NLP where people are trying to
tag Biomedical entities, product entities in retail, and so on. Again, there are two ways of tagging the
NER using NLTK. One is by using the pre-trained NER model that just scores the test data, the other is
to build a Machine learning based model. NLTK provides the ne_chunk() method and a wrapper
around Stanford NER tagger for Named Entity Recognition.

NER tagger

NLTK provides a method for Named Entity Extraction: ne_chunk. We have shown a small snippet to
demonstrate how to use it for tagging any sentence. This method will require you to preprocess the text
to tokenize for sentences, tokens, and POS tags in the same order to be able to tag for Named entities.
NLTK used ne_chunking, where chunking is nothing but tagging multiple tokens to a call it a
meaningful entity.

NE chunking is loosely used in the same way as Named entity:

>>>import nltk
>>>from nltk import ne_chunk
>>>Sent = "Mark is studying at Stanford University in California"
>>>print(ne_chunk(nltk.pos_tag(word_tokenize(sent)), binary=False))
(S

(PERSON Mark/NNP)
is/VBZ
studying/VBG
at/IN
(ORGANIZATION Stanford/NNP University/NNP)
in/IN
NY(GPE California/NNP)))

The ne_chunking method recognizes people (names), places (location), and organizations. If binary
is set to True then it provides the output for the entire sentence tree and tags everything. Setting it to
False will give us detailed person, location and organizations information, as with the preceding
example using the Stanford NER Tagger.

Similar to the POS tagger, NLTK also has a wrapper around Stanford NER. This NER tagger has better
accuracy. The code following snippet will let you use the tagger. You can see in the given example that
we are able to tag all the entities with just three lines of code:

>>>from nltk.tag.stanford import NERTagger
>>>st = NERTagger('<PATH>/stanford-ner/classifiers/
all.3class.distsim.crf.ser.gz',...

'<PATH>/stanford-ner/stanford-ner.jar')
>>>st.tag('Rami Eid is studying at Stony Brook University in
NY'.split()) [('Rami', 'PERSON'), ('Eid', 'PERSON'), ('is', 'O'),
('studying', 'O'), ('at', 'O'), ('Stony', 'ORGANIZATION'), ('Brook',
'ORGANIZATION'), ('University', 'ORGANIZATION'), ('in', 'O'), ('NY',
'LOCATION')]

If you observe closely, even with a very small test sentence, we can say Stanford Tagger outperformed
the NLTK ne_chunk tagger.

Now, these kinds of NER taggers are a nice solution for a generic kind of entity tagging, but we have to
train our own tagger, when it comes, to tag domain specific entities like biomedical and product names,
so we have to build our own NER system. I would also recommend an NER Calais. It has ways of
tagging not just typical NER, but also some more entities. The performance of this tagger is also very
good:

https://code.google.com/p/python-calais/

https://code.google.com/p/python-calais/

Your Turn
Here are the answers to the questions posed in the above sections:

• Can we remove stop words before POS tagging?

No; If we remove the stop words, we will lose the context, and some of the POS taggers (Pre-
Trained model) use word context as features to give the POS of the given word.

• How can we get all the verbs in the sentence?

We can get all the verbs in the sentence by using pos_tag

>>>tagged = nltk.pos_tag(word_tokenize(s))
>>>allverbs = [word for word,pos in tagged if pos in
['VB','VBD','VBG']]

• Can you modify the code of the hybrid tagger in the N-gram tagger section to work with Regex
tagger? Does that improve performance?

Yes. We can modify the code of the hybrid tagger in the N-gram tagger section to work with the
Regex tagger:

>>>print unigram_tagger.evaluate(test_data,backoff=
regexp_tagger)
>>>bigram_tagger = BigramTagger(train_data,
backoff=unigram_tagger)
>>>print bigram_tagger.evaluate(test_data)
>>>trigram_tagger=TrigramTagger(train_data,backoff=bigram_tagger
)
>>>print trigram_tagger.evaluate(test_data)
0.857122212053
0.866708415627
0.863914446746

The performance improves as we add some basic pattern-based rules, instead of predicting the
most frequent tag.

• Can you write a tagger that tags Date and Money expressions?

Yes, we can write a tagger that tags Date and Money expressions. Following is the code:

>>>date_regex =
RegexpTagger([(r'(\d{2})[/.-](\d{2})[/.-](\d{4})$','DATE'),(r'\$
','MONEY')])
>>>test_tokens = "I will be flying on sat 10-02-2014 with
around 10M $ ".split()
>>>print date_regex.tag(test_tokens)

Note

The last two questions haven't been answered.

There can be many rules according to the reader's observation, so there is no Right / Wrong answer here.

Can you try a similar word cloud to what we did in Chapter 1, Introduction to Natural Language
Processing with only nouns and verbs now?

References:

https://github.com/japerk/nltk-trainer

http://en.wikipedia.org/wiki/Part-of-speech_tagging

http://en.wikipedia.org/wiki/Named-entity_recognition

http://www.inf.ed.ac.uk/teaching/courses/icl/nltk/tagging.pdf

http://www.nltk.org/api/nltk.tag.html

https://github.com/japerk/nltk-trainer
http://en.wikipedia.org/wiki/Part-of-speech_tagging
http://en.wikipedia.org/wiki/Named-entity_recognition
http://www.inf.ed.ac.uk/teaching/courses/icl/nltk/tagging.pdf
http://www.nltk.org/api/nltk.tag.html

Summary
This chapter was intended to expose the reader to some of the most useful NLP pre-processing steps of
tagging. We have talked about the Part of Speech problem in general, including the significance of POS
in the context of NLP. We also discussed the different ways we can use a pre-trained POS tagger in
NLTK, how simple it is to use, and how to create wonderful applications. We then talked about all the
available POS tagging options, like N-gram tagging, Regex based tagging, etc. We have developed a
mix of these taggers that can be built for domain specific corpuses. We briefly talked about how a
typical pre-trained tagger is built. We discussed the possible approaches to address tagging problems.
We also talked about NER taggers, and how it works with NLTK. I think if, by the end of this chapter,
the user understands the importance of POS and NER in general in the context of NLP, as well as how to
run the snippet of codes using NLTK, I will consider this chapter successful. But the journey does not
end here. We know some of the shallow NLP preprocessing steps now, and in most of the practical
application POS, the NER predominantly used. In more complex NLP applications such as the Q/A
system, Summarization, and Speech we need deeper NLP techniques like Chunking, Parsing, Semantics.
We will talk about these in the next chapter.

Chapter 4. Parsing Structure in Text
This chapter involves a better understanding of deep structure in text and also how to deep parse text and
use it in various NLP applications. Now, we are equipped with various NLP preprocessing steps. Let's
move to some deeper aspect of the text. The structure of language is so complex that we can describe it
by various layers of structural processing. In this chapter we will touch upon all these structures in text,
differentiate between them, and provide you with enough details about the usage of one of these. We
will talk about context-free grammar (CFG) and how it can be implemented with NLTK. We will also
look at the various parsers and how we can use some of the existing parsing methods in NLTK. We will
write a shallow parser in NLTK and will again talk about NER in the context of chunking. We will also
provide details about some options that exist in NLTK to do deep structural analysis. We will also try to
give you some real-world use cases of information extraction and how it can be achieved by using some
of the topics that you will learn in this chapter. We want you to have an understanding of these topics by
the end of this chapter.

In this chapter:

• We will also see what parsing is and what is the relevance of parsing in NLP.
• We will then explore different parsers and see how we can use NLTK for parsing.
• Finally, we will see how parsing can be used for information extraction.

Shallow versus deep parsing
In deep or full parsing, typically, grammar concepts such as CFG, and probabilistic context-free
grammar (PCFG), and a search strategy is used to give a complete syntactic structure to a sentence.
Shallow parsing is the task of parsing a limited part of the syntactic information from the given text.
While deep parsing is required for more complex NLP applications, such as dialogue systems and
summarization, shallow parsing is more suited for information extraction and text mining varieties of
applications. I will talk about these in the next few sections with more details about their pros and cons
and how we can use them for our NLP application.

The two approaches in parsing
There are mainly two views/approaches used to deal with parsing, which are as follows:

The rule-based approach The probabilistic approach

This approach is based on rules/grammar In this approach, you learn rules/grammar by
using probabilistic models

Manual grammatical rules are coded down in CFG,
and so on, in this approach

This uses observed probabilities of linguistic
features

This has a top-down approach This has a bottom-up approach

This approach includes CFG and Regex- based parser This approach includes PCFG and the Stanford
parser

Why we need parsing
I again want to take you guys back to school, where we learned grammar. Now tell me why you learnt
grammar Do you really need to learn grammar? The answer is definitely yes! When we grow, we learn
our native languages. Now, when we typically learn languages, we learn a small set of vocabulary. We
learn to combine small chunks of phrases and then small sentences. By learning each example sentence,
we learn the structure of the language. Your mom might have corrected you many times when you
uttered an incorrect sentence. We apply a similar process when we try to understand the sentence, but the
process is so common that we never actually pay attention to it or think about it in detail. Maybe the
next time you correct someone's grammar, you will understand.

When it comes to writing a parser, we try to replicate the same process here. If we come up with a set of
rules that can be used as a template to write the sentences in a proper order. We also need the words that
can fit into these categories. We already talked about this process. Remember POS tagging, where we
knew the category of the given word?

Now, if you've understood this, you have learned the rules of the game and what moves are valid and
can be taken for a specific step. We essentially follow a very natural phenomenon of the human brain
and try to emulate it. One of the simplest grammar concepts to start with is CFG, where we just need a
set of rules and a set of terminal tokens.

Let's write our first grammar with very limited vocabulary and very generic rules:

toy CFG
>>>from nltk import CFG
>>>toy_grammar =
nltk.CFG.fromstring(
"""

S -> NP VP # S indicate the entire sentence
VP -> V NP # VP is verb phrase the
V -> "eats" | "drinks" # V is verb
NP -> Det N # NP is noun phrase (chunk that has noun in it)
Det -> "a" | "an" | "the" # Det is determiner used in the

sentences
N -> "president" |"Obama" |"apple"| "coke" # N some example nouns

""")
>>>toy_grammar.productions()

Now, this grammar concept can generate a finite amount of sentences. Think of a situation where you
just know how to combine a noun with a verb and the only verbs and nouns you knew were the ones we
used in the preceding code. Some of the example sentences we can form from these are:

• President eats apple
• Obama drinks coke

Now, understand what's happening here. Our mind has created a grammar concept to parse based on the
preceding rules and substitutes whatever vocabulary we have. If we are able to parse correctly, we
understand the meaning.

So, effectively, the grammar we learnt at school constituted the useful rules of English. We still use those
and also keep enhancing them and these are the same rules we use to understand all English sentences.
However, today's rules do not apply to William Shakespeare's body of work.

On the other hand, the same grammar can construct meaningless sentences such as:

• Apple eats coke
• President drinks Obama

When it comes to a syntactic parser, there is a chance that a syntactically formed sentence could be
meaningless. To get to the semantics, we need a deeper understanding of semantics structure of the
sentence. I encourage you to look for a semantic parser in case you are interested in these aspects of
language.

Different types of parsers
A parser processes an input string by using a set of grammatical rules and builds one or more rules that
construct a grammar concept. Grammar is a declarative specification of a well-formed sentence. A
parser is a procedural interpretation of grammar. It searches through the space of a variety of trees and
finds an optimal tree for the given sentence. We will go through some of the parsers available and briefly
touch upon their workings in detail for awareness, as well as for practical purposes.

A recursive descent parser

One of the most straightforward forms of parsing is recursive descent parsing. This is a top-down
process in which the parser attempts to verify that the syntax of the input stream is correct, as it is read
from left to right. A basic operation necessary for this involves reading characters from the input stream
and matching them with the terminals from the grammar that describes the syntax of the input. Our
recursive descent parser will look ahead one character and advance the input stream reading pointer
when it gets a proper match.

A shift-reduce parser

The shift-reduce parser is a simple kind of bottom-up parser. As is common with all bottom-up parsers, a
shift-reduce parser tries to find a sequence of words and phrases that correspond to the right-hand side of
a grammar production and replaces them with the left-hand side of the production, until the whole
sentence is reduced.

A chart parser

We will apply the algorithm design technique of dynamic programming to the parsing problem.
Dynamic programming stores intermediate results and reuses them when appropriate, achieving
significant efficiency gains. This technique can be applied to syntactic parsing. This allows us to store
partial solutions to the parsing task and then allows us to look them up when necessary in order to
efficiently arrive at a complete solution. This approach to parsing is known as chart parsing.

Note

For a better understanding of the parsers, you can go through an example at

http://www.nltk.org/howto/parse.html.

A regex parser

A regex parser uses a regular expression defined in the form of grammar on top of a POS-tagged string.
The parser will use these regular expressions to parse the given sentences and generate a parse tree out
of this. A working example of the regex parser is given here:

Regex parser
>>>chunk_rules=ChunkRule("<.*>+","chunk everything")
>>>import nltk

http://www.nltk.org/howto/parse.html

>>>from nltk.chunk.regexp import *
>>>reg_parser = RegexpParser('''

NP: {<DT>? <JJ>* <NN>*} # NP
P: {<IN>} # Preposition
V: {<V.*>} # Verb

PP: {<P> <NP>} # PP -> P NP
VP: {<V> <NP|PP>*} # VP -> V (NP|PP)*

''')
>>>test_sent="Mr. Obama played a big role in the Health insurance
bill"
>>>test_sent_pos=nltk.pos_tag(nltk.word_tokenize(test_sent))
>>>paresed_out=reg_parser.parse(test_sent_pos)
>>> print paresed_out
Tree('S', [('Mr.', 'NNP'), ('Obama', 'NNP'), Tree('VP', [Tree('V',
[('played', 'VBD')]), Tree('NP', [('a', 'DT'), ('big', 'JJ'),
('role', 'NN')])]), Tree('P', [('in', 'IN')]), ('Health', 'NNP'),
Tree('NP', [('insurance', 'NN'), ('bill', 'NN')])])

The following is a graphical representation of the tree for the preceding code:

In the current example, we define the kind of patterns (a regular expression of the POS) we think will
make a phrase, for example, anything that {<DT>? <JJ>* <NN>*} has a starting determiner
followed by an adjective and then a noun is mostly a noun phrase. Now, this is more of a linguistic rule
that we have defined to get the rule-based parse tree.

Dependency parsing
Dependency parsing (DP) is a modern parsing mechanism. The main concept of DP is that each
linguistic unit (words) is connected with each other by a directed link. These links are called
dependencies in linguistics. There is a lot of work going on in the current parsing community. While
phrase structure parsing is still widely used for free word order languages (Czech and Turkish),
dependency parsing has turned out to be more efficient.

A very clear distinction can be made by looking at the parse tree generated by phrase structure grammar
and dependency grammar for a given example, as the sentence "The big dog chased the cat". The parse
tree for the preceding sentence is:

If we look at both parse trees, the phrase structures try to capture the relationship between words and
phrases and then eventually between phrases. While a dependency tree just looks for a dependency
between words, for example, big is totally dependent on dog.

NLTK provides a couple of ways to do dependency parsing. One of them is to use a probabilistic,
projective dependency parser, but it has the restriction of training with a limited set of training data.
One of the state of the art dependency parsers is a Stanford parser. Fortunately, NLTK has a wrapper
around it and in the following example, I will talk about how to use a Stanford parser with NLTK:

Stanford Parser [Very useful]
>>>from nltk.parse.stanford import StanfordParser
>>>english_parser = StanfordParser('stanford-parser.jar',
'stanford-parser-3.4-models.jar')
>>>english_parser.raw_parse_sents(("this is the english parser test")
Parse
(ROOT

(S
(NP (DT this))
(VP (VBZ is)

(NP (DT the) (JJ english) (NN parser) (NN test)))))
Universal dependencies
nsubj(test-6, this-1)

cop(test-6, is-2)
det(test-6, the-3)
amod(test-6, english-4)
compound(test-6, parser-5)
root(ROOT-0, test-6)
Universal dependencies, enhanced
nsubj(test-6, this-1)
cop(test-6, is-2)
det(test-6, the-3)
amod(test-6, english-4)
compound(test-6, parser-5)
root(ROOT-0, test-6)

The output looks quite complex but, in reality, it's not. The output is a list of three major outcomes,
where the first is just the POS tags and the parsed tree of the given sentences. The same is plotted in a
more elegant way in the following figure. The second is the dependency and positions of the given
words. The third is the enhanced version of dependency:

Tip

For a better understanding of how to use a Stanford parser, refer to

http://nlpviz.bpodgursky.com/home and

http://nlp.stanford.edu:8080/parser/index.jsp.

http://nlpviz.bpodgursky.com/home
http://nlp.stanford.edu:8080/parser/index.jsp

Chunking
Chunking is shallow parsing where instead of reaching out to the deep structure of the sentence, we try
to club some chunks of the sentences that constitute some meaning.

A chunk can be defined as the minimal unit that can be processed. So, for example, the sentence "the
President speaks about the health care reforms" can be broken into two chunks, one is "the President",
which is noun dominated, and hence is called a noun phrase (NP). The remaining part of the sentence is
dominated by a verb, hence it is called a verb phrase (VP). If you see, there is one more sub-chunk in
the part "speaks about the health care reforms". Here, one more NP exists that can be broken down again
in "speaks about" and "health care reforms", as shown in the following figure:

This is how we broke the sentence into parts and that's what we call chunking. Formally, chunking can
also be described as a processing interface to identify non-overlapping groups in unrestricted text.

Now, we understand the difference between shallow and deep parsing. When we reach the syntactic
structure of the sentences with the help of CFG and understand the syntactic structure of the sentence.
Some cases we need to go for semantic parsing to understand the meaning of the sentence. On the other
hand, there are cases where, we don't need analysis this deep. Let's say, from a large portion of
unstructured text, we just want to extract the key phrases, named entities, or specific patterns of the
entities. For this, we will go for shallow parsing instead of deep parsing because deep parsing involves
processing the sentence against all the grammar rules and also the generation of a variety of syntactic
tree till the parser generates the best tree by using the process of backtracking and reiterating. This entire
process is time consuming and cumbersome and, even after all the processing, you might not get the
right parse tree. Shallow parsing guarantees the shallow parse structure in terms of chunks which is
relatively faster.

So, let's write some code snippets to do some basic chunking:

Chunking
>>>from nltk.chunk.regexp import *
>>>test_sent="The prime minister announced he had asked the chief
government whip, Philip Ruddock, to call a special party room
meeting for 9am on Monday to consider the spill motion."
>>>test_sent_pos=nltk.pos_tag(nltk.word_tokenize(test_sent))
>>>rule_vp = ChunkRule(r'(<VB.*>)?(<VB.*>)+(<PRP>)?', 'Chunk VPs')

>>>parser_vp = RegexpChunkParser([rule_vp],chunk_label='VP')
>>>print parser_vp.parse(test_sent_pos)
>>>rule_np =
ChunkRule(r'(<DT>?<RB>?)?<JJ|CD>*(<JJ|CD><,>)*(<NN.*>)+', 'Chunk
NPs')
>>>parser_np = RegexpChunkParser([rule_np],chunk_label="NP")
>>>print parser_np.parse(test_sent_pos)
(S

The/DT
prime/JJ
minister/NN
(VP announced/VBD he/PRP)
(VP had/VBD asked/VBN)
the/DT
chief/NN
government/NN

whip/NN
….
….
….
(VP consider/VB)

the/DT
spill/NN
motion/NN
./.)

(S
(NP The/DT prime/JJ minister/NN) # 1st noun

phrase
announced/VBD
he/PRP
had/VBD
asked/VBN
(NP the/DT chief/NN government/NN whip/NN) # 2nd

noun phrase
,/,
(NP Philip/NNP Ruddock/NNP)
,/,
to/TO
call/VB
(NP a/DT special/JJ party/NN room/NN meeting/NN) # 3rd noun

phrase
for/IN
9am/CD
on/IN
(NP Monday/NNP) # 4th noun phrase
to/TO

consider/VB
(NP the/DT spill/NN motion/NN) # 5th noun

phrase
./.)

The preceding code is good enough to do some basic chunking of verb and noun phrases. A
conventional pipeline in chunking is to tokenize the POS tag and the input string before they are ed to
any chunker. Here, we use a regular chunker, as rule NP / VP defines different POS patterns that can be
called a verb/noun phrase. For example, the NP rule defines anything that starts with the determiner and
then there is a combination of an adverb, adjective, or cardinals that can be chunked in to a noun phrase.
Regular expression-based chunkers rely on chunk rules defined manually to chunk the string. So, if we
are able to write a universal rule that can incorporate most of the noun phrase patterns, we can use regex
chunkers. Unfortunately, it's hard to come up with those kind of generic rules; the other approach is to
use a machine learning way of doing chunking. We briefly touched upon ne_chunk() and the
Stanford NER tagger that both use a pre-trained model to tag noun phrases.

Information extraction
We learnt about taggers and parsers that we can use to build a basic information extraction engine. Let's
jump directly to a very basic IE engine and how a typical IE engine can be developed using NLTK.

Any sort of meaningful information can be drawn only if the given input stream goes to each of the
following NLP steps. We already have enough understanding of sentence tokenization, word
tokenization, and POS tagging. Let's discuss NER and relation extraction as well.

A typical information extraction pipeline looks very similar to that shown in the following figure:

Note

Some of the other preprocessing steps, such as stop word removal and stemming, are generally ignored
and do not add any value to an IE engine.

Named-entity recognition (NER)

We already briefly discussed NER generally in the last chapter. Essentially, NER is a way of extracting
some of the most common entities, such as names, organizations, and locations. However, some of the
modified NER can be used to extract entities such as product names, biomedical entities, author names,
brand names, and so on.

Let's start with a very generic example where we are given a text file of the content and we need to
extract some of the most insightful named entities from it:

NP chunking (NER)
>>>f=open(# absolute path for the file of text for which we want NER)
>>>text=f.read()
>>>sentences = nltk.sent_tokenize(text)
>>>tokenized_sentences = [nltk.word_tokenize(sentence) for sentence
in sentences]
>>>tagged_sentences = [nltk.pos_tag(sentence) for sentence in
tokenized_sentences]
>>>for sent in tagged_sentences:
>>>print nltk.ne_chunk(sent)

In the preceding code, we just followed the same pipeline provided in the preceding figure. We took all
the preprocessing steps, such as sentence tokenization, tokenization, POS tagging, and NLTK. NER
(pre-trained models) can be used to extract all NERs.

Relation extraction

Relation extraction is another commonly used information extraction operation. Relation extraction as it
sound is the process of extracting the different relationships between different entities. There are variety
of the relationship that exist between the entities. We have seen relationship like inheritance/
synonymous/analogous. The definition of the relation can be dependent on the Information need. For
example in the case where we want to look from unstructured text data who is the writer of which book
then authorship could be a relation between the author name and book name. With NLTK the idea is to
use the same IE pipeline that we used till NER and extend it with a relation pattern based on the NER
tags.

So, in the following code, we used an inbuilt corpus of ieer, where the sentences are tagged till NER
and the only thing we need to specify is the relation pattern we want and the kind of NER we want the
relation to define. In the following code, a relationship between an organization and a location has been
defined and we want to extract all the combinations of these patterns. This can be applied in various
ways, for example, in a large corpus of unstructured text, we will be able to identify some of the
organizations of our interest with their corresponding location:

>>>import re
>>>IN = re.compile(r'.*\bin\b(?!\b.+ing)')
>>>for doc in nltk.corpus.ieer.parsed_docs('NYT_19980315'):
>>> for rel in nltk.sem.extract_rels('ORG', 'LOC', doc,
corpus='ieer', pattern = IN):
>>>print(nltk.sem.rtuple(rel))
[ORG: u'WHYY'] u'in' [LOC: u'Philadelphia']
[ORG: u'McGlashan & Sarrail'] u'firm in' [LOC: u'San Mateo']
[ORG: u'Freedom Forum'] u'in' [LOC: u'Arlington']
[ORG: u'Brookings Institution'] u', the research group in' [LOC:
u'Washington']
[ORG: u'Idealab'] u', a self-described business incubator
based in' [LOC: u'Los Angeles']

..

Summary
We moved beyond the basic preprocessing steps in this chapter. We looked deeper at NLP techniques,
such as parsing and information extraction. We discussed parsing in detail, which parsers are available,
and how to use NLTK to do any NLP parsing. You understood the concept of CFG and PCFG and how
to learn from a tree bank and build a parser. We talked about shallow and deep parsing and what the
difference is between them.

We also talked about some of the information extraction essentials, such as entity extraction and relation
extraction. We talked about a typical information extraction engine pipeline. We saw a very small and
simple IE engine that can be built in less than 100 lines of code. Think about this kind of system running
on an entire Wikipedia dump or an entire web content related to an organization. Cool, isn't it?

We will use some of the topics we've learnt in this chapter in further chapters to build some useful NLP
applications.

Chapter 5. NLP Applications
This chapter discusses NLP applications. Here, we will put all the learning from the previous chapters
into action and will see what kind of application can be developed using the concepts we have learned.
This will be a complete hands-on chapter. In the last few chapters we have learned most of the
preprocessing steps that are required for any NLP application. We know how to use tokenizer, POS tag,
and NER and how to perform parsing. This chapter will give you an idea how we can developed some of
the complex NLP application using the concepts we have learned.

There are so many applications of NLP in the real world. Some of the most exciting and common
examples you can observe are Google Search, Siri, machine translation, Google News, Jeopardy, and
spell check. Some of these took many years for researchers to reach this level and bring these
applications to their current state. NLP is complicated too; we have seen in the previous chapters that
most of the processing steps, such as POS and NER, are still research problems. But with the use of
NLTK, we have solved many of these problems with reasonable accuracy. We will not cover the more
sophisticated applications such as machine translation or speech recognition in this book. But at this
point in time, you should have enough background knowledge to understand some of the basic blocks of
these applications. As a NLP enthusiast we should have a basic understanding of these NLP
applications. I urge you to try and look for some of these NLP applications on the web and try to
understand them.

By the end of this chapter :

• We will introduce reader to few common NLP applications.
• We will develop a NLP application (News summarizer) using what we have learnt so far.
• The importance of different NLP applications and essential details about each of them.

Building your first NLP application
Let's start with one of the very complex NLP applications, which is summarization. The concept of
summarization is quite simple. We are given an article/passage/story and you will have to generate a
summary of the content automatically. Summarization actually requires deep knowledge of NLP
because we need to understand not just the structure of the sentence but also the structure of the entire
text. We also need to know about genre of the text and the theme of the content.

Since it all looks very complex to us, let's try a very intuitive approach. We will assume that
summarization is nothing but ranking of the sentences based on their importance and significance to
you. We will create a few rules based on the understanding and the preprocessing tools we have learned
so far and will try to come up with an acceptable summary of the news article.

I have scraped an article from the New York Times in a text file nyt.txt, in the following example.
The idea here is to summarize this news article for us. Let's build a version of Google News for our
personal use.

To start off, we need to keep in mind that, typically, a sentence that has more entities and nouns has
greater importance than other sentences. We will try to normalize the same logic while calculating an

importance score, using the following code. To get the top-n sentence, we can choose a threshold for
the importance score.

Let's read the content of the news article. You can choose any news article with only contents of the
news dumped into a text file. The content will look like this:

>>>import sys
>>>f=open('nyt.txt','r')
>>>news_content=f.read()
""" President Obama on Monday will ban the federal provision of some
types of military-style equipment to local police departments and
sharply restrict the availability of others, administration
officials said.

The ban is part of Mr. Obama's push to ease tensions between law
enforcement and minority communities in reaction to the crises in
Baltimore; Ferguson, Mo.; and other cities.
- - -
blic." It contains dozens of recommendations for agencies throughout
the country."""

Once we parse the contents of the news we will need to split the entire news article into a list of
sentences. We will go back to our old sentence tokenizer to break the entire news snippet into sentences.
Let's also provide some form of sentence number so that we can identify and rank a sentence. Once we
have the sentence, we will pass it through a word tokenizer and eventually through the NER tagger and
POS tagger.

>>>import nltk
>>>results=[]
>>>for sent_no,sentence in
enumerate(nltk.sent_tokenize(news_content)):
>>> no_of_tokens=len(nltk.word_tokenize(sentence))
>>> #print no_of_toekns
>>> # Let's do POS tagging
>>> tagged=nltk.pos_tag(nltk.word_tokenize(sentence))
>>> # Count the no of Nouns in the sentence
>>> no_of_nouns=len([word for word,pos in tagged if pos in
["NN","NNP"]])
>>> #Use NER to tag the named entities.
>>>
ners=nltk.ne_chunk(nltk.pos_tag(nltk.word_tokenize(sentence)),
binary=False)
>>> no_of_ners= len([chunk for chunk in ners if hasattr(chunk,
'node')])
>>> score=(no_of_ners+no_of_nouns)/float(no_of_toekns)
>>>

>>> results.append((sent_no,no_of_tokens,no_of_ners,\
no_of_nouns,score,sentence))

In the preceding code, we are iterating over a list of sentences calculating a score based on a formula
that is nothing but the fraction of tokens being entities as compared to a normal token. We are creating a
tuple of all these as the results.

Now, the result is a tuple with all the scores, such as the number of nouns, entities, and so on. We can
sort it based on the score in descending order, as shown in the following example:

>>>for sent in sorted(results,key=lambda x: x[4],reverse=True):
>>> print sent[5]

Now, the result of this will be sorted by the rank of the sentence. You will be amazed by the kind of
results we get for the news article.

Once we have a list of no_of_nouns and no_of_ners scores, we can actually create some more
complex rules around this. For example, a typical news article will start with very important details
about the topic, and the last sentence will be a conclusion to the story.

Can we modify the same snippet to incorporate this logic?

The other theory of this kind of summarization is that the important sentences generally contain
important words and that most of the the discriminatory words across the corpus will be important. The
sentences that has very discriminatory words are important. A very simple measure of that is to calculate
the TF-IDF (term frequency–inverse document frequency) score of each and every word and then
look for an average score normalized by the words that are important; this can then be used as the
criteria to choose sentences for our summary.

For explaining the concepts instead of the entire article, just take the first three sentences of the article.
Let's see how you can implement something this complex using very few lines of code:

Note

This code require installing scikit. If you have installed anaconda or canopy you should be fine
otherwise install scikit using this link.

http://scikit-learn.org/stable/install.html

>>>import nltk
>>>from sklearn.feature_extraction.text import TfidfVectorizer
>>>results=[]
>>>news_content="Mr. Obama planned to promote the effort on Monday
during a visit to Camden, N.J. The ban is part of Mr. Obama's push
to ease tensions between law enforcement and minority \communities
in reaction to the crises in Baltimore; Ferguson, Mo. We are,
without a doubt, sitting at a defining moment in American policing,
Ronald L. Davis, the director of the Office of Community Oriented

http://scikit-learn.org/stable/install.html

Policing Services at the Department of Justice, told reporters in a
conference call organized by the White House"

>>>sentences=nltk.sent_tokenize(news_content)

>>>vectorizer = TfidfVectorizer(norm='l2',min_df=0, use_idf=True,
smooth_idf=False, sublinear_tf=True)

>>>sklearn_binary=vectorizer.fit_transform(sentences)
>>>print countvectorizer.get_feature_names()
>>>print sklearn_binary.toarray()
>>>for i in sklearn_binary.toarray():
>>> results.append(i.sum()/float(len(i.nonzero()[0]))

In the preceding code, I am using some unknown methods, such as TfidfVectorizer, which is a
scoring method that will calculate a vector of TF-IDF scores for each sentence in a given list of
sentences. Don't worry, we will talk about this in more detail. For this chapter, consider it as a black-box
function that, for a given list of sentences/documents, will give you the score corresponding to each
sentence and will also provide the ability to build a term-doc matrix that will look just like our output.

We got a dictionary of all the words present across all the sentences and then we have a list of lists
where each element assigns each word its individual TF-IDF score. If you got that right, then you can
see some of the stop words will get a near-zero score while some discriminatory words like ban and
Obama will get a very high score. Now once we have this in the code, I will look for the average TF-
IDF score by using only non-zero TF-IDF words. This will give us a similar kind of score as we got in
our first approach.

You will be amazed by the kind of results a simple algorithm can give. I think now you are all set to
write your own news summarizer that summarizes any given news article with the two preceding
algorithms and the summary will look quite decent. While this kind of approach will give you a decent
summarization, it's actually very poor when you compare it with the current state of summarization
research. I would recommend looking for some literature relating to summarization. I would also like
you to try and combine both the approaches for summarization.

Other NLP applications
Some of the other NLP applications are text classification, machine translation, speech recognition,
information retrieval, information extraction, topic segmentation, and discourse analysis. Some of these
problems are actually very difficult NLP tasks and a lot of research is still going on in these areas. We
will discuss some of these in depth in the next chapter, but as NLP students, we should have a basic
understanding of these applications.

Machine translation

The easiest way to understand machine translation is to know how we translate from one language to
other. Our mind parses the sentence structure and tries to understand the sentence. Once we understand
the sentence, we will try to substitute the words from the original language with those from the target
language. While substituting, we use the grammar rules of the target sentence and finally achieve the
correct translation.

Loosely, the process can be translated to something like the pyramid in the preceding figure. If we start
from the source language text, we have to tokenize the sentences that we will parse the tree (for
syntactic structure in easy words) to make sure the sentences are correctly formulated. Semantic
structure holds the meaning of the sentences, and at the next level, we reach the state of Interlingua,
which is an abstract state that is independent from any language. There are multiple ways in which
people have developed methods of translation. The more you go on towards the root of the pyramid, the
more intense is the NLP processing required. So, based on these levels of transfer, there are a variety of
methods that are available. I have listed two of them here:

• Direct translation: This will be more of a dictionary-based machine translation while you have
huge corpora of source and target language words. This kind of transfer is possible for
applications where we have a large corpus of languages available. It's popular because of its
simplicity.

• Syntactic transfer: Here you will try to build a parser of the source language. There are
varieties of ways in which people have approached the problem of parsing. There are deep
parsers that actually take care of some parts of semantics too. Once you have a parser, target
word substitution happens and the target parser can generate the final sentence in the target
language.

Statistical machine translation

Statistical machine translation (SMT) is one of the latest approach of machine translation, where
people have come up with a variety of ways to apply statistical methods to almost all the aspects of
machine translation. The idea behind this kind of algorithm is that we have a huge volume of corpora,
parallel text, and language models that can help us predict the language translation in the target
language. Google Translate is a great example of SMT, where it learns from the corpora of different
language pairs and builds an SMT around it.

Information retrieval

Information retrieval (IR) is also one of the most popular and widely used applications. The best
exmple of IR is Google Search, where—given an input query from the user—the information retrieval
algorithm will try to retrieve the information which is relevant to the user's query.

In simple words, IR is the process of obtaining the most relevant information that is needed by the user.
There are a variety of ways in which the information needs can be addressed to the system, but the
system eventually retrieves the most relevant infromation.

The way a typical IR system works is that it generates an indexing mechanism, also known as inverted
index. This is very similar to the indexing schemes used in books, where you will have an index of the
words present throughout the book on the last pages of the book. Similarly, an IR system will create an
inverted index poslist. A typical posting list will look like this:

< Term , DocFreq, [DocId1,DocId2] >
{"the",2 --->[1,2] }
{"US",1 --->[2] }
{"president",2 --->[1,2] }

So if any word occurs in both document 1 and document 2, the posting list will be a list of documents
pointing to terms. Once you have this kind of data structure, there are different retrieval models that can
been introduced. There are different retrieval models that work on different types of data. A few are
listed in the following sections.

Boolean retrieval

In the Boolean model, we just need to run a Boolean operation on the poslist. For example, if we are
looking for a search query like "US president", the system should look for an intersection of the postlist
of "US" and "president".

{US}{president}=> [2]

Here, the second document turns out to be the relevant document.

Vector space model

The concept of vector space model (VSM) derives from geometry. The way to visualize the documents
in the high dimension space of vocabulary is to represent it as a vector. So each and every document is
represented as a vector in that space. We can represent the vector in various ways, but one of the most
useful and efficient ways is using TF-IDF.

Given a term and a corpus, we can calculate the term frequency (TF) and inverse document
frequency (IDF) using the following formula:

The TF is nothing but the frequency in the document. While the IDF is the inverse of document
frequency, which is the count of documents in the corpus where the term occurs:

There are various normalization variants of these, but we can incorporate both of these to create a more
robust scoring mechanism to get the scoring of each term in the document. To get to a TF-IDF score, we
need to multiply these two scores as follows:

In TF-IDF, we are scoring a term for how much it is present in the current document and how much it is
spread across the corpus. This gives us an idea of the terms that are not common across corpora and
where ever they are present have a high frequency. It becomes discriminatory to retrieve these

documents. We have also used TF-IDF in the previous section, where we describe our summarizer.The
same scoring can be used to represent the document as a vector. Once we have all the documents
represented in a vectorized form, the vector space model can be formulated.

In VSM, the search query of the user is also considered as a document and represented as a vector.
Intuitively, a dot product between these two vectors can be used to get the cosine similarity between the
document and the user query.

In the preceding diagram, we see that these same documents can be represented using each term as an
axis and the query Obama will have as much relevance to D1 as compared to D2. The scoring of the
query for relevant documents can be formulated as follows:

The probabilistic model

The probabilistic model tries to estimate the probability of the user's need for the document. This model
assumes that the probability of the relevance depends on the user query and document
representation.The main idea is that a document that is in the relevant set will not be present in the non-
relevant set. We denote dj as the document and q as user query; R represents the relevant set of
documents, while P represents the non-relevant set. The scoring can be done like this:

Note

For more topics on IR, I would recommend that you read from the following link:

http://nlp.stanford.edu/IR-book/html/htmledition/irbook.html

Speech recognition

Speech recognition is a very old NLP problem. People have been trying to address this since the era of
World War I, and it still is one of the hottest topics in the area of computing. The idea here is really
intuitive. Given the speech uttered by a human can we convert it to text? The problem with speech is
that we produce a sequence of sounds, called phonemes, that are hard to process, so speech
segmentation itself is a big problem. Once the speech is processable, the next step is to go through some
of the constraints (models) that are built using training data available. This involves heavy machine
learning. If you see the figure representing the modeling as one box of applying constraints, it's actually
one of the most complex components of the entire system. While acoustic modeling involves building
modes based on phonemes, lexical models will try to address the modeling on smaller segments of
sentences, associating a meaning to each segment. Separately language models are built on unigrams
and bigrams of words.

Once we build these models, an utterence of the sentences is passed through the process. Once processed
for initial preprocessing, the sentence is passed through these acoustic, lexical, and language models for
generating the token as output.

http://nlp.stanford.edu/IR-book/html/htmledition/irbook.html

Text classification

Text classification is a very interesting and common application of NLP. In your daily work, you interact
with many text classifiers. We use a spam filter, a priority inbox, news aggregators, and so on. All of
these are in fact applications built using text classification.

Text classification is a well-defined and somewhat solved problem, and it has been applied across many
domains. Typically, any text classification is the process of classifying text documents using words and
the combination of words. While it's a typical machine learning problem, many of the preprocessing
steps used in text classification are from NLP.

An abstract diagram of text classification is shown here:

Here we have a bunch of documents for a set of classes. For simplicity, we will use just binary 1/0 as
the class. Now let's assume it's a spam detection problem where 1 represents spam and 0 represents
normal text which is not to be considered as spam.

The process involves some of the preprocessing steps we learned in previous chapters. While some of
these are essential, it depends on the kind of text classification problem we are trying to solve. So in few
cases, it's more a case of feature engineering while we drop some of the preprocessing steps. The final
goal of feature engineering is to generate a Term doc matrix (TDM), which holds the vocabulary of the
entire corpus: columns and rows are the documents, while the matrix represents a scoring mechanism to
show the Bag of word (BOW) representation. The weighting scheme can be varied to TF, TF-IDF,
Bernoulli, and other variations of term frequency.

There are also ways to induce features such as the POS of a given feature, contextual POS, and others, to
make our feature space more NLP intense. Once the TDM is generated, the text classification problem
becomes a typical supervised/unsupervised classification problem, where given a set of samples, we
need to predict what sample belongs to what class. The next chapter is dedicated entirely to this topic.
This is definitely a splendid application of NLP/ML and is used quite often for commercial purposes.

Some of the most common use cases in day-to-day scenarios are sentiment analysis, spam classification,
e-mail categorization, news categorization, patent classification, and so on. We will talk about text
classification in more detail in the next chapter.

Information extraction

Information extraction (IE) is a process of extracting meaningful information from unstructured text.
IE is yet another widely popular and highly important application. In general, an information extraction
engine harnesses huge numbers of unstructured documents and generates some sort of structured/semi-
structured knowledge base (KB) that can be deployed to build an application around it. A simple
example is that of generating a very good ontology using a huge set of unstructured text documents. A
similar project in this line is DBpedia, where all the Wikipedia articles are used to generate the ontology
of artifacts that are interrelated or have some other relationship.

There are mainly two ways of extracting information:

• Rule-based extraction: This method is where one uses a template filling mechanism. The idea
is to look for some kind predefined use cases for expected outcomes and try to mine the
unstructured text for that specific template. For example, building a knowledge base of football
will involve getting information on all the players and their profiles, the statistics, some personal
information, and so on. All that can be well defined and extracted using either pattern-based
rules or POS tags, NERs and relation extraction.

• Machine learning based: The other approach involves deeper NLP-based methods such as
building a parser specific to the need of our knowledge base. Some of the KBs will require
mining the entities that can't be extracted using a pre-trained NER, so we have to build a custom
NER. We might want to develop a relation extraction algorithm specific to the KB we are trying
to build. This is a more NLP-intensive approach, where we are developing a NLP-based parser
or tagger to use for heavy machine learning.

Question answering systems

Question answering (QA) systems are intelligent systems that can address any question based on their
knowledge base. One of the major examples of this is IBM Watson, which took part in the TV show
Jeopardy and won over human opponents. A QA system can be broken down to building components
from speech recognition for querying the knowledge base while the knowledge base is generated using
information retrieval and extraction.

Once you have a question for the system, one big problem is to classify/categorize the question in
different ways. The other aspect is to search the knowledge base effectively and retrieve the most precise
document. Even after that, we have to generate the answer in a natural way using some of the other
applications, such as summarization and parsing.

Dialog systems

Dialog systems are considered the dream application, where given a speech in source language, the
system will perform speech recognition and transcribe it to text. This text will then go to a machine
translation system that can translate the speech into the target language and then a text-to-speech system
will convert it into speech in the target language. This is one of the most desirable applications of NLP,
where we can talk to a computer in any language and the computer will reply in the same language. This
kind of application can actually destroy the language barrier that exists in the world.

Apple Siri and Google Voice are examples of some of the commercial applications in the line of dialog
systems intelligent enough to understand our information needs, try to address them in a set of actions or
information, and respond in a human-like manner.

Word sense disambiguation

Word sense disambiguation (WSD) is also one of the difficult challenges not solved even after years of
research and one of the major causes of application problems, such as question answering,
summarization, search, and so on. A simple way to understand the concept is that many words have
different meanings when used in different contexts. For example, "cold" in the following example:

• The ice-cream is really cold
• That was cold blooded!

Here the word "cold "has two different senses, and it's really hard for computers to understand this
concept. Some of the other NLP processing options, such as POS tagging and NER, are used to resolve
some of these problems.

Topic modeling

Topic modeling, in the context of a large amount of unstructured text content, is really an amazing
application, where the primary task is to identify the emerging topics in the corpus and then categorize
the documents in the corpus as per these topics. We will discuss this briefly in the next chapter.

Topic modeling uses the same NLP preprocessing, for example, sentence split, tokenization, stemming,
and so on. The beauty of the algorithms is that we have an unsupervised way of categorizing the
document; also, topics are generated without explicitly mentioning anything prior to the process. I
encourage you to look at topic modeling in more detail. Try reading about latent dirichlet allocation
(LDA) and latent semantics indexing (LSI) for more detail.

Language detection

Given a snippet of text, the detection of language is also a problem. The application of language
detection is very important for some of the other NLP applications, such as search, machine translation,
speech, and so on. The main concept is learning from the text as features what the language is. A variety
of machine learning and NLP techniques are used for feature engineering in the process.

Optical character recognition

Optical character recognition (OCR) is an application of NLP and computer vision, where given a
handwritten document/ non-digital document, the system can recognize the text and extract it into digital
format. This has also been widely researched in the area of machine learning for many years. Some of
the big OCR projects are Google Books, where they use OCR to convert non-digital books into a
centralized library.

Summary
In conclusion, there are many NLP applications around us that we interact with in our day-to-day
routines. NLP is difficult and complex, and some of these problems are still unsolved or do not yet have
perfect solutions. So anybody who is looking for problems in NLP, try exploring the literature around
that. It's a great time to be an NLP researcher. In the era of Big Data, NLP applications are very popular.
Many research labs and organizations are currently working on NLP applications such as speech
recognition, search, and text classification.

I believe we have learned a lot up until this chapter. For the next couple of chapters, we will delve
deeply into some of the applications described here. We have reached a point where we know enough
NLP related preprocessing tools and also have a basic understanding about some of the most popular
NLP applications. I hope you leverage some of this learning to build a version of an NLP application.

In the next chapter, we will start with some of the important NLP applications, such as text
classification, text clustering, and topic modeling. We will move slightly away from the pure NLTK
applications on to how NLTK can be used in conjunction with other libraries.

Chapter 6. Text Classification
We were talking about some of the most common NLP tools and preprocessing steps in the last chapter.
This is the chapter where we will get to use most of the stuff we learnt in the previous chapters, and
build one of the most sophisticated NLP applications. We will give you a generic approach about text
classification and how you can build a text classifier from scratch with very few lines of code. We will
give you a cheat sheet of all the classification algorithms in the context of text classification.

While we will talk about some of the most common text classification algorithms, this is just a brief
introduction and to get to a detailed understanding and mathematical background, there are many online
resources and books available that you can refer to. We will try to give you all you need to know to get
you started with some working code snippets. Text classification is a great use case of NLP, but in this
chapter, instead of using NLTK, we will use scikit-learn that has a wider range of classification
algorithms and its library is much more memory efficient for text mining.

By the end of this chapter:

• You will learn and understand all text classification algorithms
• You will learn end-to-end pipeline to build a text classifier and how to implement it with scikit-

learn and NLTK

The following is the scikit-learn cheat sheet for machine learning:

credit : scikit-learn

Now, as you travel along the process shown in the cheat sheet. We have a clear guideline about what
kind of algorithm is required for which problem? When we should move from one classifier to another

depending on the size of the tagged sample? It's a good place to start following this for building practical
application, and in most cases this will work. We will focus mostly on text data while the scikit-learn
can work with other types of data as well. We will explore text classification, text clustering, and topic
detection in text (dimensionality reduction) with examples in this chapter and build some cool NLP
applications. I will not go in to more detail about the concepts of machine learning, classification, and
clustering in this chapter, as there are enough resources available on the Web for you. We will provide
you with more details of all these concepts in the context of a text corpus. Still, let me give you a
refresher.

Machine learning
There are two types of machine learning techniques—supervised learning and Unsupervised learning:

• Supervised learning: Based on some historic prelabeled samples, machines learn how to
predict the future test sample, based on the following categories:

◦ Classification: This is used when we need to predict whether a test sample belongs to
one of the classes. If there are only two classes, it's a binary classification problem;
otherwise, it's a multiclass classification.

◦ Regression: This is used when we need to predict a continuous variable, such as a
house price and stock index.

• Unsupervised learning: When we don't have any labeled data and we still need to predict the
class label, this kind of learning is called unsupervised learning. When we need to group items
based on similarity between items, this is called a clustering problem. While if we need to
represent high-dimensional data in lower dimensions, this is more of a dimensionality reduction
problem.

• Semi-supervised learning: This is a class of supervised learning tasks and techniques that also
make use of unlabeled data for training. As the name suggests, it's more of a middle ground for
supervised and unsupervised learning, where we use small amount of labeled data and large
amount of unlabeled data to build a predictive machine learning model.

• Reinforcement learning: This is a form of machine learning where an agent can be
programmed by a reward and punishment, without specifying how the task is to be achieved.

If you understood the different machine learning algorithms, I want you to guess what kind of machine
learning problems the following are:

• You need to predict the values of weather for the next month
• Detection of a fraud in millions of transactions
• Google's priority inbox
• Amazon's recommendations
• Google news
• Self-driving cars

Text classification
The simplest definition of text classification is that it is a classification of text based on the content of
that text. Now, in general, all the machine learning methods and algorithms are written for numeric
features/variables. One of the most important problems with text corpus is how to represent text as
numeric features. There are different transformations prescribed in the literature. Let's start with one of
the simplest and most widely used transformations.

Now, to understand the processes of text classification, let's take a real word problem of spams. In the
world of WhatsApp and SMS, you get many spam messages. Let's start by solving this real problem of
spam detection with the help of text classification. We will be using this running example across the
chapter.

Here are a few real examples of SMS's that we asked people to manually tag for us:

SMS001 ['spam', 'Had your mobile 11 months or more? U R entitled to
Update to the latest colour mobiles with camera for Free! Call The
Mobile Update Co FREE on 08002986030']
SMS002 ['ham', "I'm gonna be home soon and i don't want to talk
about this stuff anymore tonight, k? I've cried enough today."]

Note

A similar tagged dataset can be downloaded from link here. Make sure you create a CSV like the one
show in the example. 'SMSSpamCollection' in the following code which will correspond to this file.

https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection

The first thing you want to do here is what we learnt in the last few chapters about data cleaning,
tokenization, and stemming to get much cleaner content out of the SMS. I wrote a basic function to
clean the text. Let's go over the following code:

>>>import nltk
>>>from nltk.corpus import stopwords
>>>from nltk.stem import WordNetLemmatizer
>>>import csv
>>>def preprocessing(text):
>>> text = text.decode("utf8")
>>> # tokenize into words
>>> tokens = [word for sent in nltk.sent_tokenize(text) for word
in nltk.word_tokenize(sent)]

>>> # remove stopwords
>>> stop = stopwords.words('english')
>>> tokens = [token for token in tokens if token not in stop]

>>> # remove words less than three letters

https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection

>>> tokens = [word for word in tokens if len(word) >= 3]

>>> # lower capitalization
>>> tokens = [word.lower() for word in tokens]
>>> # lemmatize
>>> lmtzr = WordNetLemmatizer()
>>> tokens = [lmtzr.lemmatize(word) for word in tokens]
>>> preprocessed_text= ' '.join(tokens)
>>> return preprocessed_text

We have talked about tokenization, lemmatization, and stop words in Chapter 3, Part of Speech Tagging.
In the following code, I am just parsing the SMS file and cleaning the content to get cleaner text of the
SMS. In the next few lines, I created two lists to get all the cleaned content of the SMS and class label.
In ML (Machine learning) terms all the X and Y:

>>>smsdata = open('SMSSpamCollection') # check the structure of this
file!
>>>smsdata_data = []
>>>sms_labels = []
>>>csv_reader = csv.reader(sms,delimiter='\t')
>>>for line in csv_reader:
>>> # adding the sms_id
>>> sms_labels.append(line[0])
>>> # adding the cleaned text We are calling preprocessing method
>>> sms_data.append(preprocessing(line[1]))
>>>sms.close()

Before moving any further we need to make sure we have scikit-learn installed on the system.

>>>import sklearn

Note

If there is an error you made some error installing scikit. Please go to below link and install scikit:

http://scikit-learn.org/stable/install.html

http://scikit-learn.org/stable/install.html

Sampling
Once we have the entire corpus in the form of lists, we need to perform some form of sampling.
Typically, the way to sample the entire corpus in development train sets, dev-test sets, and test sets is
similar to the sampling shown in the following figure.

The idea behind the whole exercise is to avoid overfitting. If we feed all the data points to the model,
then the algorithm will learn from the entire corpus, but the real test of these algorithms is to perform on
unseen data. In very simplistic terms, if we are using the entire data in the model learning process the
classifier will perform very good on this data, but it will not be robust. The reason being, we have to
tune it to perform the best on the given data, but it doesn't learn how to deal with unknown data.

To solve this kind of a problem, the best way is to divide the entire corpus into two major sets. The
development set and test set are kept away for the modeling exercise. We just use the dev set to build
and tune the model. Once we are done with the entire modeling exercise, the results are projected based
on the test set that we put aside. Now, if the model performs well on this set, we are sure that it's
accurate and robust for any new data sample.

Sampling itself is a very complicated and well-researched stream in the machine learning community,
and it's a remedy for many data skewness and overfitting issues. For simplicity, will use the basic
sampling, where we just divide the corpus into a split of 70:30:

>>>trainset_size = int(round(len(sms_data)*0.70))
>>># i chose this threshold for 70:30 train and test split.
>>>print 'The training set size for this classifier is ' +
str(trainset_size) + '\n'
>>>x_train = np.array([''.join(el) for el in
sms_data[0:trainset_size]])
>>>y_train = np.array([el for el in sms_labels[0:trainset_size]])

>>>x_test = np.array([''.join(el) for el in
sms_data[trainset_size+1:len(sms_data)]])
>>>y_test = np.array([el for el in
sms_labels[trainset_size+1:len(sms_labels)]])or el in
sms_labels[trainset_size+1:len(sms_labels)]])
>>>print x_train
>>>print y_train

• So what do you think will happen if we use the entire data as training data?
• What will happen when we have a very unbalanced sample?

Note

To understand more about the available sampling techniques, go through

http://scikit-learn.org/stable/modules/classes.html#module-sklearn.cross_validation.

Let's jump to one of the most important things, where we transform the entire text into a vector form.
The form is referred to as the term-document matrix. If we have to create a term-document matrix for
the given example, it will look somewhat like this:

TDM anymore call camera color cried enough entitled free gon had latest mobile

SMS1 0 1 1 1 0 0 1 2 0 1 0 3

SMS2 1 0 0 0 1 1 0 0 1 0 0 0

The representation here of the text document is also known as the BOW (Bag of Word) representation.
This is one of the most commonly used representation in text mining and other applications. Essentially,
we are not considering any context between the words to generate this kind of representation.

To generate a similar term-document matrix in Python, we use scikit vectorizers:

>>>from sklearn.feature_extraction.text import CountVectorizer
>>>sms_exp=[]
>>>for line in sms_list:
>>> sms_exp.append(preprocessing(line[1]))
>>>vectorizer = CountVectorizer(min_df=1)
>>>X_exp = vectorizer.fit_transform(sms_exp)
>>>print "||".join(vectorizer.get_feature_names())
>>>print X_exp.toarray()
array([[1, 0, 1, 1, 1, 0, 0, 1, 2,
0, 1, 0, 1, 3, 1, 0, 0, 0, 1, 0,
0, 2, 0, 0], [0, 1, 0, 0, 0, 1, 1,
0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1,
0, 1, 1, 0, 1, 1,]])

http://scikit-learn.org/stable/modules/classes.html#module-sklearn.cross_validation

The count vectorizer is a good start, but there is an issue that you will face while using it: longer
documents will have higher average count values than shorter documents, even though they might talk
about the same topics.

Tip

To avoid these potential discrepancies, it suffices to divide the number of occurrences of each word in a
document by the total number of words in the document. This new feature is called tf (Term
frequencies).

Another refinement on top of tf is to downscale weights for words that occur in many documents in the
corpus, and are therefore less informative than those that occur only in a smaller portion of the corpus.

This downscaling is called tf–idf (term frequency–inverse document frequency). Fortunately, scikit
also provides a way to achieve the following:

>>>from sklearn.feature_extraction.text import TfidfVectorizer
>>>vectorizer = TfidfVectorizer(min_df=2, ngram_range=(1, 2), stop_
words='english', strip_accents='unicode', norm='l2')
>>>X_train = vectorizer.fit_transform(x_train)
>>>X_test = vectorizer.transform(x_test)

We now have the text in a matrix format the same as we have in any machine learning exercise. Now,
X_train and X_test can be used for classification using any machine learning algorithm. Let's talk
about some of the most commonly used machine learning algorithms in context of text classification.

Naive Bayes

Let's build your first text classifier. Let's start with a Naive Bayes classifier. Naive Bayes relies on the
Bayes algorithm and essentially, is a model of assigning a class label to the sample based on the
conditional probability class given by features/attributes. Here we deal with frequencies/bernoulli to
estimate prior and posterior probabilities.

The naive assumption here is that all features are independent of each other, which looks counter
intuitive in the case of text. However, surprisingly, Naive Bayes performs quite well in most of the real-
world use cases.

Another great thing about NB is that it's too simple and very easy to implement and score. We need to
store the frequencies and calculate the probabilities. It's really fast in case of training as well as test
(scoring). For all these reasons, in most of the cases of text classification, it serves as a benchmark.

Let's write some code to achieve this classifier:

>>>from sklearn.naive_bayes import MultinomialNB
>>>clf = MultinomialNB().fit(X_train, y_train)
>>>y_nb_predicted = clf.predict(X_test)
>>>print y_nb_predicted
>>>print ' \n confusion_matrix \n '
>>>cm = confusion_matrix(y_test, y_pred)
>>>print cm
>>>print '\n Here is the classification report:'
>>>print classification_report(y_test, y_nb_predicted)
confusion_matrix [[1205 5]

[26 156]]

The way to read the confusion matrix is that from all the 1,392 samples in the test set, there were 1205
true positives and 156 true negative cases. However, we also predicted 5 false negatives and 26 false
positives. There are different ways of measuring a typical binary classification.

We have given definitions of some of the most common measures used in classification measures:

Here is the classification report:

Precision recall f1-score support
ham 0.97 1.00 0.98 1210
spam 1.00 0.77 0.87 182
avg / total 0.97 0.97 0.97 1392

With the preceding definition, we can now understand the results clearly. So, effectively, all the
preceding metrics look good, which means that our classifier is performing accurately, and is robust. I
would highly recommend that you look into the module metrics for more options to analyze the results
of the classifier. The most important and balanced metric is the f1 measure (which is nothing but the
harmonic mean of precision and recall), which is used widely because it gives a better picture of the
coverage and the quality of the classification algorithms. Accuracy intuitively tells us how many true
samples have been covered from all the samples. Precision and recall both have significance, while
precision talks about how many true positives it got and what else got covered, hand recall gives us
details about how accurate we are from the pool of true positives and false negatives.

Note

For more information on various scikit classes visit the following link:

http://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics

The other more important process we follow to understand our model is to really look deep into the
model by looking at the actual features that contribute to the positive and negative classes. I just wrote a
very small snippet to generate the top n features and print them. Let's have a look at them:

>>>feature_names = vectorizer.get_feature_names()
>>>coefs = clf.coef_
>>>intercept = clf.intercept_
>>>coefs_with_fns = sorted(zip(clf.coef_[0], feature_names))
>>>n = 10
>>>top = zip(coefs_with_fns[:n], coefs_with_fns[:-(n + 1):-1])

http://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics

>>>for (coef_1, fn_1), (coef_2, fn_2) in top:
>>> print('\t%.4f\t%-15s\t\t%.4f\t%-15s' % (coef_1, fn_1, coef_2,
fn_2))
-9.1602 10 den -6.0396 free
-9.1602 15 -6.3487 txt
-9.1602 1hr -6.5067 text
-9.1602 1st ur -6.5393 claim
-9.1602 2go -6.5681 reply
-9.1602 2marrow -6.5808 mobile
-9.1602 2morrow -6.5858 stop
-9.1602 2mrw -6.6124 ur
-9.1602 2nd innings -6.6245 prize
-9.1602 2nd ur -6.7856 www

In the preceding code, I just read all the feature names from the vectorizer, got the coefficients related to
the given feature, and then printed the first-10 features. If you want more features, just modify the value
of n. If we look closely just at the features, we get a lot of information about the model as well as more
suggestions about our feature selection and other parameters, such as preprocessing, unigrams/bigrams,
stemming, tokenizations, and so on. For example, if you look at the top features of ham you can see that
2morrow, 2nd innings, and some of the digits are coming very significantly. We can see on the
positive class (spam) term "free" comes out a very significant term which is intuitive while many spam
messages will be about some free offers and deal. Some of the other terms to note are prize, www, claim.

Note

For more details, refer to http://scikitlearn.org/stable/modules/naive_bayes.html.

Decision trees

Decision trees are one of the oldest predictive modeling techniques, where for the given features and
target, the algorithm tries to build a logic tree. There are multiple algorithms that exist for decision trees.
One of the most famous and widely used algorithm is CART.

CART constructs binary trees using this feature, and constructs a threshold that yields the large amount
of information from each node. Let's write the code to get a CART classifier:

>>>from sklearn import tree
>>>clf = tree.DecisionTreeClassifier().fit(X_train.toarray(),
y_train)
>>>y_tree_predicted = clf.predict(X_test.toarray())
>>>print y_tree_predicted
>>>print ' \n Here is the classification report:'
>>>print classification_report(y_test, y_tree_predicted)

The only difference is in the input format of the training set. We need to modify the sparse matrix format
to a NumPy array because the scikit tree module takes only a NumPy array.

http://scikitlearn.org/stable/modules/naive_bayes.html

Generally, trees are good when the number of features are very less. So, although our results look good
here, people hardly use trees in text classification. On the other hand, trees have some really positive
sides to them. It is still one the most intuitive algorithms and is very easy to explain and implement.
There are many implementations of tree-based algorithms, such as ID3, C4.5, and C5. scikit-learn uses
an optimized version of the CART algorithm.

Stochastic gradient descent

Stochastic gradient descent (SGD) is a simple, yet very efficient approach that fits linear models. It is
particularly useful when the number of samples (and the number of features) is very large. If you follow
the cheat sheet, you will find SGD to be the one-stop solution for many text classification problems.
Since it also takes care of regularization and provides different losses, it turns out to be a great choice
when experimenting with linear models.

SGD, also known as Maximum entropy (MaxEnt), provides functionality to fit linear models for
classification and regression using different (convex) loss functions and penalties. For example, with
loss = log, fits a logistic regression model, while with loss = hinge, it fits a linear support vector machine
(SVM).

An example of SGD is as follows:

>>>from sklearn.linear_model import SGDClassifier
>>>from sklearn.metrics import confusion_matrix
>>>clf = SGDClassifier(alpha=.0001, n_iter=50).fit(X_train, y_train)
>>>y_pred = clf.predict(X_test)
>>>print '\n Here is the classification report:'
>>>print classification_report(y_test, y_pred)
>>>print ' \n confusion_matrix \n '
>>>cm = confusion_matrix(y_test, y_pred)
>>>print cm

Here is the classification report:

precision recall f1-score support
ham 0.99 1.00 0.99 1210
spam 0.96 0.91 0.93 182
avg / total 0.98 0.98 0.98 1392

Most informative features:

-1.0002 sir 2.3815 ringtoneking
-0.5239 bed 2.0481 filthy
-0.4763 said 1.8576 service
-0.4763 happy 1.7623 story
-0.4763 might 1.6671 txt
-0.4287 added 1.5242 new
-0.4287 list 1.4765 ringtone
-0.4287 morning 1.3813 reply

-0.4287 always 1.3337 message
-0.4287 and 1.2860 call
-0.4287 plz 1.2384 chat
-0.3810 people 1.1908 text
-0.3810 actually 1.1908 real
-0.3810 urgnt 1.1431 video

Logistic regression

Logistic regression is a linear model for classification. It's also known in the literature as logit
regression, maximum-entropy classification (MaxEnt), or the log-linear classifier. In this model, the
probabilities describing the possible outcomes of a single trial are modeled using a logit function.

As an optimization problem, the L2 binary class' penalized logistic regression minimizes the following
cost function:

Similarly, L1 the binary class' regularized logistic regression solves the following optimization problem:

Support vector machines

Support vector machines (SVM) is currently the-state-of-art algorithm in the field of machine learning.

SVM is a non-probabilistic classifier. SVM constructs a set of hyperplanes in an infinite-dimensional
space, which can be used for classification, regression, or other tasks. Intuitively, a good separation is
achieved by a hyperplane that has the largest distance to the nearest training data point of any class (the
so-called functional margin), since in general, the larger the margin, the lower the size of classifier.

Let's build one of the most sophisticated supervised learning algorithms with scikit:

>>>from sklearn.svm import LinearSVC
>>>svm_classifier = LinearSVC().fit(X_train, y_train)
>>>y_svm_predicted = svm_classifier.predict(X_test)
>>>print '\n Here is the classification report:'
>>>print classification_report(y_test, y_svm_predicted)

>>>cm = confusion_matrix(y_test, y_pred)
>>>print cm

Here is the classification report for the same:

precision recall f1-score support
ham 0.99 1.00 0.99 1210

spam 0.97 0.90 0.93 182
avg / total 0.98 0.98 0.98 1392

confusion_matrix [[1204 6] [17 165]]

The most informative features:

-0.9657 road 2.3724 txt
-0.7493 mail 2.0720 claim
-0.6701 morning 2.0451 service
-0.6691 home 2.0008 uk
-0.6191 executive 1.7909 150p
-0.5984 said 1.7374 www
-0.5978 lol 1.6997 mobile
-0.5876 kate 1.6736 50
-0.5754 got 1.5882 ringtone
-0.5642 darlin 1.5629 video
-0.5613 fullonsms 1.4816 tone
-0.5613 fullonsms com 1.4237 prize

These are definitely the best results so far from all the supervised algorithms we have tried. Now with
this, I will stop with supervised classifiers. There are millions of books available related to the different
machine learning algorithms; even for individual algorithms, there are many books that are available for
you. I would highly recommend you to have a deep understanding of any of the preceding algorithms
before you use them for any of the real-world applications.

The Random forest algorithm
A random forest is an ensemble classifier that estimates based on the combination of different decision
trees. Effectively, it fits a number of decision tree classifiers on various subsamples of the dataset. Also,
each tree in the forest built on a random best subset of features. Finally, the act of enabling these trees
gives us the best subset of features among all the random subsets of features. Random forest is currently
one of best performing algorithms for many classification problems.

An example of Random forest is as follows:

>>>from sklearn.ensemble import RandomForestClassifier
>>>RF_clf = RandomForestClassifier(n_estimators=10)
>>>predicted = RF_clf.predict(X_test)
>>>print '\n Here is the classification report:'
>>>print classification_report(y_test, predicted)
>>>cm = confusion_matrix(y_test, y_pred)
>>>print cm

Note

People who still want to work with NLTK for text classification. Please go through the following link:

http://www.nltk.org/howto/classify.html

http://www.nltk.org/howto/classify.html

Text clustering
The other family of problems that can come with text is unsupervised classification. One of the most
common problem statements you can get is "I have these millions of documents (unstructured data). Is
there a way I can group them into some meaningful categories?". Now, once you have some samples of
tagged data, we could build a supervised algorithm that we talked about, but here, we need to use an
unsupervised way of grouping text documents.

Text clustering is one of the most common ways of unsupervised grouping, also known as, clustering.
There are a variety of algorithms available using clustering. I mostly used k-means or hierarchical
clustering. I will talk about both of them and how to use them with a text corpus.

K-means

Very intuitively, as the name suggest, we are trying to find k groups around the mean of the data points.
So, the algorithm starts with picking up some random data points as the centroid of all the data points.
Then, the algorithm assigns all the data points to it's nearest centroid. Once this iteration is done,
recalculation of the centroid happens and these iterations continue until we reach a state where the
centroids don't change (algorithm saturate).

There is a variant of the algorithm that uses mini batches to reduce the computation time, while still
attempting to optimize the same objective function.

Tip

Mini batches are subsets of the input data randomly sampled in each training iteration. These options
should always be tried once your dataset is really huge and you want less training time.

An example of K-means is as follows:

>>>from sklearn.cluster import KMeans, MiniBatchKMeans
>>>true_k=5
>>>km = KMeans(n_clusters=true_k, init='k-means++', max_iter=100,
n_init=1)
>>>kmini = MiniBatchKMeans(n_clusters=true_k, init='k-means++',
n_init=1, init_size=1000, batch_size=1000, verbose=opts.verbose)
>>># we are using the same test,train data in TFIDF form as we did
in text classification
>>>km_model=km.fit(X_train)
>>>kmini_model=kmini.fit(X_train)
>>>print "For K-mean clustering "
>>>clustering = collections.defaultdict(list)
>>>for idx, label in enumerate(km_model.labels_):
>>> clustering[label].append(idx)
>>>print "For K-mean Mini batch clustering "
>>>clustering = collections.defaultdict(list)

>>>for idx, label in enumerate(kmini_model.labels_):
>>> clustering[label].append(idx)

In the preceding code, we just imported scikit-learn's kmeans / minibatchkmeans and fitted the
same training data that we were using in the running examples. We can also print a cluster for each
sample using the last three lines of the code.

Topic modeling in text
The other famous problem in the context of the text corpus is finding the topics of the given document.
The concept of topic modeling can be addressed in many different ways. We typically use LDA (Latent
Dirichlet allocation) and LSI (Latent semantic indexing) to apply topic modeling text documents.

Typically, in most of the industries, we have huge volumes of unlabeled text documents. In case of an
unlabeled corpus to get the initial insights of the corpus, a topic model is a great option, as it not only
gives us topics of relevance, but also categorizes the entire corpus into number of topics given to the
algorithm.

We will use a new Python library "gensim" that implements these algorithms for us. So, let's jump to the
implementation of LDA and LSI for the same running SMS dataset. Now, the only change to the
problem is that we want to model different topics in the SMS data and also want to know which
document belongs to which topic. A better and more realistic use case could be to run topic modeling on
the entire Wikipedia dump to find different kinds of topics that have been discussed there, or to run topic
modeling on billions of reviews/complaints from customers to get an insight of the topics that people
discuss.

Installing gensim

One of the easiest ways to install gensim is using a package manager:

>>>easy_install -U gensim

Otherwise, you can install it using:

>>>pip install gensim

Once you're done with the installation, run the following command:

>>>import gensim

Note

If there is any error, go to

https://radimrehurek.com/gensim/install.html.

Now, let's look at the following code:

>>>from gensim import corpora, models, similarities
>>>from itertools import chain
>>>import nltk
>>>from nltk.corpus import stopwords
>>>from operator import itemgetter
>>>import re

https://radimrehurek.com/gensim/install.html

>>>documents = [document for document in sms_data]
>>>stoplist = stopwords.words('english')
>>>texts = [[word for word in document.lower().split() if word not
in stoplist] \ for document in documents]

We are just reading the document in our SMS data and removing the stop words. We could use the same
method that we did in the previous chapters to do this. Here, we are using a library-specific way of
doing things.

Note

Gensim has all the typical NLP features as well provides some great way to create different corpus
formats, such as TFIDF, libsvm, market matrix. It also provides conversion of one to another.

In the following code, we are converting the list of documents to a BOW model and then, to a typical
TF-IDF corpus:

>>>dictionary = corpora.Dictionary(texts)
>>>corpus = [dictionary.doc2bow(text) for text in texts]
>>>tfidf = models.TfidfModel(corpus)
>>>corpus_tfidf = tfidf[corpus]

Once you have a corpus in the required format, we have the following two methods, where given the
number of topics, the model tries to take all the documents from the corpus to build a LDA/LSI model:

>>>si = models.LsiModel(corpus_tfidf, id2word=dictionary,
num_topics=100)
>>>#lsi.print_topics(20)
>>>n_topics = 5
>>>lda = models.LdaModel(corpus_tfidf, id2word=dictionary,
num_topics=n_topics)

Once the model is built, we need to understand the different topics, what kind of terms represent that
topic, and we need to print some top terms related to that topic:

>>>for i in range(0, n_topics):
>>> temp = lda.show_topic(i, 10)
>>> terms = []
>>> for term in temp:
>>> terms.append(term[1])
>>> print "Top 10 terms for topic #" + str(i) + ": "+ ",
".join(terms)
Top 10 terms for topic #0: week, coming, get, great, call, good,
day, txt, like, wish
Top 10 terms for topic #1: call, ..., later, sorry, 'll, lor, home,
min, free, meeting
Top 10 terms for topic #2: ..., n't, time, got, come, want, get,
wat, need, anything

Top 10 terms for topic #3: get, tomorrow, way, call, pls, 're, send,
pick, ..., text
Top 10 terms for topic #4: ..., good, going, day, know, love, call,
yup, get, make

Now, if you look at the output, we have five different topics with clearly different intent. Think about the
same exercise for Wikipedia or a huge corpus of web pages, and you will get some meaningful topics
that represent the corpus.

References
• http://scikit-learn.org/
• https://radimrehurek.com/gensim/
• https://en.wikipedia.org/wiki/Document_classification

http://scikit-learn.org/
https://radimrehurek.com/gensim/
https://en.wikipedia.org/wiki/Document_classification

Summary
The idea behind this chapter was to introduce you to the world of text mining. We want to give you a
basic introduction to some of the most common algorithms available with text classification and
clustering .We know how some of these concept will help you to build really great NLP applications,
such as spam filters, domain centric news feeds, web page taxonomy, and so on. Though we have not
used NLTK to classify the module in our code snippets, we used NLTK for all the preprocessing steps.
We highly recommend you to use scikit-learn over NLTK for any classification problem. In this chapter,
we started with machine learning and the types of problems that it can address. We discussed some of
the specifics of ML problems in the context of text. We talked about some of the most common
classification algorithms that are used for text classification, clustering, and topic modeling. We also
give you enough implementation details to get the job done. I still think you need to read a lot about
each and every algorithm separately to understand the theory and to gain in-depth understanding of
them.

We also provided you an entire pipeline of the process that you need to follow in case of any text mining
problem. We covered most of the practical aspects of machine learning, such as sampling,
preprocessing, model building, and model evaluation.

The next chapter will also not be directly related to NLTK/NLP, but it will be a great tool for a data
scientist/NLP enthusiast. In most of NLP problems, we deal with unstructured text data, and the Web is
one of the richest and biggest data sources available for this. Let's learn how to gather data from the Web
and how to efficiently use it to build some amazing NLP applications.

Chapter 7. Web Crawling
The largest repository of unstructured text is the Web, and if you know how to crawl it, then you have all
the data you need readily available for your experiments. Hence, web crawling is something worth
learning for people who are interested in NLTK. This chapter is all about gathering data from the Web.

In this chapter we will use an amazing Python library called Scrapy to write our web crawlers. We will
provide you all the details to configure different settings that are required. We will write some of the
most common spider strategies and many use cases. Scrapy also requires some understanding about
XPath, crawling, scraping, and some concepts related to the Web in general. We will touch upon these
topics and make sure you understand their practical aspects, before really getting in to their
implementation. By the end of this chapter, you will have a better understand of web crawler.

• How we can write our own crawler using Scrapy
• Understanding about all the major Scrapy functionality

Web crawlers
One of the biggest web crawler is Google that crawls the entire World Wide Web (WWW). Google has
to traverse every page that exists on the Web and scrape/crawl the entire content.

A web crawler is a computer program that systematically browses the web page by page and also
scrapes/crawls the content of the pages. A web crawler can also parse the next set of URLs to be visited
from the crawled content. So, if these processes run indefinitely over the entire Web, we can crawl
through all the web pages. Web crawlers are interchangeably also called spiders, bots, and scrapers.
They all mean the same.

There are a few main points we need to think about before writing our first crawler. Now, every time a
web crawler traverses a page, we must decide what kind of content we want to select and what content
we want to ignore. For applications such as a search engine, we should ignore all the images, js files, css
files, and other files and should concentrate only on HTML content that can be indexed and exposed to
the search. In some information extraction engines, we select specific tags or parts of a web page. We
also need to extract the URLs if we want to do the crawling recursively. This brings us to the topic of
crawling strategy. Here, we need to decide whether we want to go recursively in depth first manner or
breadth first manner. We want to follow all the URLs on the next page and then go in depth first manner
till we get the URLs, or we should go to all the URLs in the next page and do this recursively.

We also need to make sure that we are not going in the self loop stage because essentially, we traverse a
graph in most of the cases. We need to make sure we have a clear revisit strategy for a page. One of the
most talked about crawled policies is focused crawling, where we know what kind of domains/topics we
are looking for, and the ones that need to be crawled. Some of these issues will be discussed in more
detail in the spider section.

Note

Take a look at the video on Udacity at https://www.youtube.com/watch?v=CDXOcvUNBaA.

https://www.youtube.com/watch?v=CDXOcvUNBaA

Writing your first crawler
Let's start with a very basic crawler that will crawl the entire content of a web page. To write the
crawlers, we will use Scrapy. Scrapy is a one of the best crawling solutions using Python. We will
explore all the different features of Scrapy in this chapter. First, we need to install Scrapy for this
exercise.

To do this, type in the following command:

$ pip install scrapy

This is the easiest way of installing Scrapy using a package manager. Let's now test whether we got
everything right or not. (Ideally, Scrapy should now be part of sys.path):

>>>
import scrapy

Tip

If there is any error, then take a look at http://doc.scrapy.org/en/latest/intro/install.html.

At this point, we have Scrapy working for you. Let's start with an example spider app with Scrapy:

$ scrapy startproject tutorial

Once you write the preceding command, the directory structure should look like the following:

tutorial/
scrapy.cfg #the project configuration file
tutorial/ #the project's python module, you'll later

import your code from here.
__init__.py
items.py #the project's items file.
pipelines.py #the project's pipelines file.
settings.py # the project's settings file.
spiders/ #a directory where you'll later put your spiders.

__init__.py

The top folder will be given the name of the example tutorial in this case. Then, there is the project
configuration file (scrapy.cfg) that will define the kind of setting file that should be used for the
project. It also provides the deploy URLs for the project.

Another important part of tutorial setting.py is where we can decide what kind of item pipeline and
spider will be used. The item.py and pipline.py are the files that define the data and kind of
preprocessing we need to do on the parsed item. The spider folder will contain the different spiders you
wrote for the specific URLs.

http://doc.scrapy.org/en/latest/intro/install.html

For our first test spider, we will dump the contents of a news in a local file. We need to create a file
named NewsSpider.py, and put it in the path /tutorial/spiders. Let's write the first spider:

>>>from scrapy.spider import BaseSpider
>>>class NewsSpider(BaseSpider):
>>> name = "news"
>>> allowed_domains = ["nytimes.com"]
>>> start_URLss = [
>>> 'http://www.nytimes.com/'
>>>]
>>>def parse(self, response):
>>> filename = response.URLs.split("/")[-2]
>>> open(filename, 'wb').write(response.body)

Once we have this spider ready, we can start crawling using the following command:

$ scrapy crawl news

After you enter the preceding command, you should see some logs like this:

[scrapy] INFO: Scrapy 0.24.5 started (bot: tutorial)
[scrapy] INFO: Optional features available: ssl, http11, boto
[scrapy] INFO: Overridden settings: {'NEWSPIDER_MODULE':
'tutorial.spiders', 'SPIDER_MODULES': ['tutorial.spiders'],
'BOT_NAME': 'tutorial'}
[scrapy] INFO: Enabled extensions: LogStats, TelnetConsole,
CloseSpider, WebService, CoreStats, SpiderState

If you don't see logs like the ones shown in the preceding snippet, you have missed something. Check
the location of the spider and other Scrapy-related settings, such as the name of the spider matching to
the crawl command, and whether setting.py is configured for the same spider and item pipeline or
not.

Now, if you are successful, there should be a file in your local folder with the name
www.nytimes.com that has the entire web content of the www.nytimes.com page.

Let's see some of the terms that we used in the spider code in more detail:

• name: This is the name of the spider that works as an identifier for Scrapy to look for the
spider class. So, the crawl command argument and this name should always match. Also
make sure that it's unique and case sensitive.

• start_urls: This is a list of URLs where the spider will begin to crawl. The crawler with
start from a seed URL and using the parse() method, it will parse and look for the next URL
to crawl. Instead of just a single seed URL, we can provide a list of URLs that can start the
crawl.

• parse(): This method is called to parse the data from start URLs. The logic of what kind of
element is to be selected for specific attributes of item. This could be as simple as dumping the

http://www.nytimes.com

entire content of HTML to as complex as many parse methods callable from parse, and different
selectors for individual item attributes.

So, the code does nothing but starts with the given URLs (in this case, www.nytimes.com) and crawls
the entire content of the page. Typically, a crawler is more complex and will do much more than this;
now, let's take a step back and understand what happened behind the scenes. For this, take a look at the
following figure:

credit :Scrapy

http://www.nytimes.com

Data flow in Scrapy
The data flow in Scrapy is controlled by the execution engine and goes like this:

1. The process starts with locating the chosen spider and opening the first URL from the list of
start_urls.

2. The first URL is then scheduled as a request in a scheduler. This is more of an internal to
Scrapy.

3. The Scrapy engine then looks for the next set of URLs to crawl.
4. The scheduler then sends the next URLs to the engine and the engine then forwards it to the

downloader using the downloaded middleware. These middlewares are where we place different
proxies and user-agent settings.

5. The downloader downloads the response from the page and passes it to the spider, where the
parse method selects specific elements from the response.

6. Then, the spider sends the processed item to the engine.
7. The engine sends the processed response to the item pipeline, where we can add some post

processing.
8. The same process continues for each URL until there are no remaining requests.

The Scrapy shell

The best way to understand Scrapy is to use it through a shell and to get your hands dirty with some of
the initial commands and tools provided by Scrapy. It allows you to experiment and develop your XPath
expressions that you can put into your spider code.

Tip

To experiment with the Scrapy shell, I would recommend you to install one of the developer tools
(Chrome) and Firebug (Mozilla Firefox) as a plugin. This tool will help us dig down to the very
specific part that we want from the web page.

Now, let's start with a very interesting use case where we want to capture the trending topics from
Google news (https://news.google.com/).

The steps to follow here are:

1. Open https://news.google.com/ in your favorite browser.
2. Go to the trending topic section on Google news. Then, right-click on and select Inspect

Element for the first topic, as shown in the following screenshot:

https://news.google.com/
https://news.google.com/

3. The moment you open this, there will be a side window that will pop up and you will get a view.
4. Search and select the div tag. For this example, we are interested in <div

class="topic">.
5. Once this is done, you will come to know that we have actually parsed the specific part of the

web page, as shown in the following screenshot:

Now, what we actually did manually in the preceding steps can be done in an automated way. Scrapy
uses an XML path language called XPath. XPath can be used to achieve this kind of functionality. So,
let's see how we can implement the same example using Scrapy.

To use Scrapy, put the following command in you cmd:

$scrapy shell https://news.google.com/

The moment you hit enter, the response of the Google news page is loaded in the Scrapy shell. Now, let's
move to the most important aspect of Scrapy where we want to understand how to look for a specific
HTML element of the page. Let's start and run the example of getting topics from Google news that are
shown in the preceding image:

In [1]: sel.xpath('//div[@class="topic"]').extract()

The output to this will be as follows:

Out[1]:
[<Selector xpath='//div[@class="topic"]' data=u'<div
class="topic">,
<Selector xpath='//div[@class="topic"]' data=u'<div class="topic">,
<Selector xpath='//div[@class="topic"]' data=u'<div class="topic">]

Now, we need to understand some of the functions that Scrapy and XPath provide to experiment with
the shell and then, we need to update our spider to do more sophisticated stuff. Scrapy selectors are built
with the help of the lxml library, which means that they're very similar in terms of speed and parsing
accuracy.

Let's have a look at some of the most frequently used methods provided for selectors:

• xpath(): This returns a list of selectors, where each of the selectors represents the nodes
selected by the XPath expression given as an argument.

• css(): This returns a list of selectors. Here, each of the selectors represent the nodes selected
by the CSS expression given as an argument.

• extract():This returns content as a string with the selected data.
• re(): This returns a list of unicode strings extracted by applying the regular expression given

as an argument.

I am giving you a cheat sheet of these top 10 selector patterns that can cover most of your work for you.
For a more complex selector, if you search the Web, there should be an easy solution that you can use.
Let's start with extracting the title of the web page that is very generic for all web pages:

In [2] :sel.xpath('//title/text()')
Out[2]: [<Selector xpath='//title/text()' data=u' Google News'>]

Now, once you have selected any element, you also want to extract for more processing. Let's extract the
selected content. This is a generic method that works with any selector:

In [3]: sel.xpath('//title/text()').extract()
Out[3]: [u' Google News']

The other very generic requirement is to look for all the elements in the given page. Let's achieve this
with this selector:

In [4]: sel.xpath('//ul/li')
Out [4] : list of elements (divs and all)

We can extract all the titles in the page with this selector:

In [5]: sel.xpath('//ul/li/a/text()').extract()
Out [5]: [u'India',
u'World',
u'Business',
u'Technology',
u'Entertainment',
u'More Top Stories']

With this selector, you can extract all the hyperlinks in the web page:

In [6]:sel.xpath('//ul/li/a/@href').extract()
Out [6] : List of urls

Let's select all the <td> and div elements:

In [7]:sel.xpath('td'')
In [8]:divs=sel.xpath("//div")

This will select all the divs elements and then, you can loop it:

In [9]: for d in divs:
printd.extract()

This will print the entire content of each div in the entire page. So, in case you are not able to get the
exact div name, you can also look at the regex-based search.

Now, let's select all div elements that contain the attribute class="topic":

In [10]:sel.xpath('/div[@class="topic"]').extract()
In [11]: sel.xpath("//h1").extract() # this includes the h1
tag

This will select all the <p> elements in the page and get the class of those elements:

In [12] for node in sel.xpath("//p"):
print node.xpath("@class").extract()
Out[12] print all the <p>

In [13]: sel.xpath("//li[contains(@class, 'topic')]")
Out[13]:
[<Selector xpath="//li[contains(@class, 'topic')]" data=u'<li
class="nav-item nv-FRONTPAGE selecte'>,
<Selector xpath="//li[contains(@class, 'topic')]" data=u'<li
class="nav-item nv-FRONTPAGE selecte'>]

Let's write some selector nuggets to get the data from a css file. If we just want to extract the title from
the css file, typically, everything works the same, except you need to modify the syntax:

In [14] :sel.css('title::text').extract()
Out[14]: [u'Google News']

Use the following command to list the names of all the images used in the page:

In[15]: sel.xpath('//a[contains(@href, "image")]/img/@src').extract()
Out [15] : Will list all the images if the web developer has put the
images in /img/src

Let's see a regex-based selector:

In [16]sel.xpath('//title').re('(\w+)')
Out[16]: [u'title', u'Google', u'News', u'title']

In some cases, removing the namespaces can help us get the right pattern. A selector has an inbuilt
remove_namespaces() function to make sure that the entire document is scanned and all the
namespaces are removed. Make sure before using it whether we want some of these namespaces to be
part of the pattern or not. The following is example of remove_namespaces() function:

In [17] sel.remove_namespaces()
sel.xpath("//link")

Now that we have more understanding about the selectors, let's modify the same old news spider that we
built previously:

>>>from scrapy.spider import BaseSpider
>>>class NewsSpider(BaseSpider):
>>> name = "news"
>>> allowed_domains = ["nytimes.com"]
>>> start_URLss = [
>>> 'http://www.nytimes.com/'
>>>]
>>>def parse(self, response):
>>> sel = Selector(response)

>>> sites = sel.xpath('//ul/li')
>>> for site in sites:
>>> title = site.xpath('a/text()').extract()
>>> link = site.xpath('a/@href').extract()
>>> desc = site.xpath('text()').extract()
>>> print title, link, desc

Here, we mainly modified the parse method, which is one of the core of our spider. This spider can now
crawl through the entire page, but we do a more structured parsing of the title, description, and URLs.

Now, let's write a more robust crawler using all the capabilities of Scrapy.

Items

Until now, we were just printing the crawled content on stdout or dumping it in a file. A better way to
do this is to define items.py every time we write a crawler. The advantage of doing this is that we can
consume these items in our parse method, and this can also give us output in any data format, such as
XML, JSON, or CSV. So, if you go back to your old crawler, the items class will have a function like
this:

>>>fromscrapy.item import Item, Field
>>>class NewsItem(scrapy.Item):
>>> # define the fields for your item here like:
>>> # name = scrapy.Field()
>>> pass

Now, let's make it like the following by adding different fields:

>>>from scrapy.item import Item, Field
>>>class NewsItem(Item):
>>> title = Field()
>>> link = Field()
>>> desc = Field()

Here, we added field() to title, link, and desc. Once we have a field in place, our spider parse
method can be modified to parse_news_item, where instead dumping the parsed fields to a file now
it can be consumed by an item object.

A Rule method is a way of specifying what kind of URL needs to be crawled after the current one. A
Rule method provides SgmlLinkExtractor, which is a way of defining the URL pattern that needs
to be extracted from the crawled page. A Rule method also provides a callback method, which is
typically a pointer for a spider to look for the parsing method, which in this case is
parse_news_item. In case we have a different way to parse, then we can have multiple rules and
parse methods. A Rule method also has a Boolean parameter to follow, which specifies whether links
should be followed by each response extracted with this rule. If the callback is None, follow defaults to
True: otherwise, it default to False.

One important point to note is that the Rule method does not use parse. This is because the name of the
default callback method is parse() and if we use it, we are actually overriding it, and that can stop the
functionality of the crawl spider. Now, let's jump on to the following code to understand the preceding
methods and parameters:

>>>from scrapy.contrib.spiders import CrawlSpider, Rule
>>>from scrapy.contrib.linkextractors.sgml import SgmlLinkExtractor
>>>from scrapy.selector import Selector
>>>from scrapy.item import NewsItem
>>>class NewsSpider(CrawlSpider):
>>> name = 'news'
>>> allowed_domains = ['news.google.com']
>>> start_urls = ['https://news.google.com']
>>> rules = (
>>> # Extract links matching cnn.com
>>> Rule(SgmlLinkExtractor(allow=('cnn.com',),
deny=(http://edition.cnn.com/',))),
>>> # Extract links matching 'news.google.com'
>>> Rule(SgmlLinkExtractor(allow=('news.google.com',)),
callback='parse_news_item'),
>>>)
>>> def parse_news_item(self, response):
>>> sel = Selector(response)
>>> item = NewsItem()
>>> item['title'] = sel.xpath('//title/text()').extract()
>>> item[topic] = sel.xpath('/div[@class="topic"]').extract()
>>> item['desc'] = sel.xpath('//td//text()').extract()
>>> return item

The Sitemap spider
If the site provides sitemap.xml, then a better way to crawl the site is to use SiteMapSpider
instead.

Here, given sitemap.xml, the spider parses the URLs provided by the site itself. This is a more polite
way of crawling and good practice:

>>>from scrapy.contrib.spiders import SitemapSpider
>>>class MySpider(SitemapSpider):
>>> sitemap_URLss = ['http://www.example.com/sitemap.xml']
>>> sitemap_rules = [('/electronics/', 'parse_electronics'),
('/apparel/', 'parse_apparel'),]
>>> def 'parse_electronics'(self, response):
>>> # you need to create an item for electronics,
>>> return
>>> def 'parse_apparel'(self, response):
>>> #you need to create an item for apparel
>>> return

In the preceding code, we wrote one parse method for each product category. It's a great use case if you
want to build a price aggregator/comparator. You might want to parse different attributes for different
products, for example, for electronics, you might want to scrape the tech specification, accessory, and
price; while for apparels, you are more concerned about the size and color of the item. Try your hand at
using one of the retailer sites and use shell to get the patterns to scrape the size, color, and price of
different items. If you do this, you should be in a good shape to write your first industry standard spider.

In some cases, you want to crawl a website that needs you to log in before you can enter some parts of
the website. Now, Scrapy has a workaround that too. They implemented FormRequest, which is more
of a POST call to the HTTP server and gets the response. Let's have a deeper look into the following
spider code:

>>>class LoginSpider(BaseSpider):
>>> name = 'example.com'
>>> start_URLss = ['http://www.example.com/users/login.php']
>>> def parse(self, response):
>>> return [FormRequest.from_response(response,
formdata={'username': 'john', 'password': 'secret'},
callback=self.after_login)]
>>> def after_login(self, response):
>>> # check login succeed before going on
>>> if "authentication failed" in response.body:
>>> self.log("Login failed", level=log.ERROR)
>>> return

For a website that requires just the username and password without any captcha, the preceding code
should work just by adding the specific login details. This is the part of the parse method since you need
to log in the first page in the most of the cases. Once you log in, you can write your own
after_login callback method with items and other details.

The item pipeline
Let's talk about some more item postprocessing. Scrapy provides a way to define a pipeline for items as
well, where you can define the kind of post processing an item has to go through. This is a very
methodical and good program design.

We need to build our own item pipeline if we want to post process scraped items, such as removing
noise and case conversion, and in other cases, where we want to derive some values from the object, for
example, to calculate the age from DOB or to calculate the discount price from the original price. In the
end, we might want to dump the item separately into a file.

The way to achieve this will be as follows:

1. We need to define an item pipeline in setting.py:

ITEM_PIPELINES = {
'myproject.pipeline.CleanPipeline': 300,
'myproject.pipeline.AgePipeline': 500,
'myproject.pipeline.DuplicatesPipeline: 700,
'myproject.pipeline.JsonWriterPipeline': 800,

}

2. Let's write a class to clean the items:

>>>from scrapy.exceptions import Item
>>>import datetime
>>>import datetime
>>>class AgePipeline(object):
>>> def process_item(self, item, spider):
>>> if item['DOB']:
>>> item['Age'] =
(datetime.datetime.strptime(item['DOB'],
'%d-%m-%y').date()-datetime.datetime.strptime('currentdate,
'%d-%m-%y').date()).days/365
>>> return item

3. We need to derive the age from DOB. We used Python's date functions to achieve this:

>>>from scrapy import signals
>>>from scrapy.exceptions import Item
>>>class DuplicatesPipeline(object):
>>> def __init__(self):
>>> self.ids_seen = set()
>>> def process_item(self, item, spider):
>>> if item['id'] in self.ids_seen:
>>> raise DropItem("Duplicate item found: %s" % item)
>>> else:

>>> self.ids_seen.add(item['id'])
>>> return item

4. We also need to remove the duplicates. Python has the set() data structure that only contains
unique values, we can create a pipline DuplicatesPipeline.py like below using Scrapy :

>>>from scrapy import signals
>>>from scrapy.exceptions import Item
>>>class DuplicatesPipeline(object):
>>> def __init__(self):
>>> self.ids_seen = set()
>>> def process_item(self, item, spider):
>>> if item['id'] in self.ids_seen:
>>> raise DropItem("Duplicate item found: %s" % item)
>>> else:
>>> self.ids_seen.add(item['id'])
>>> return item

5. Let's finally write the item in the JSON file using JsonWriterPipeline.py pipeline:

>>>import json
>>>class JsonWriterPipeline(object):
>>> def __init__(self):
>>> self.file = open('items.txt', 'wb')
>>> def process_item(self, item, spider):
>>> line = json.dumps(dict(item)) + "\n"
>>> self.file.write(line)
>>> return item

External references
I encourage you to follow some simple spiders and try building some cool applications using these
spiders. I would also like you to look at the following links for reference:

• http://doc.scrapy.org/en/latest/intro/tutorial.html
• http://doc.scrapy.org/en/latest/intro/overview.html

http://doc.scrapy.org/en/latest/intro/tutorial.html
http://doc.scrapy.org/en/latest/intro/overview.html

Summary
In this chapter, you learned about another great Python library and now, you don't need help from
anybody for your data needs. You learned how you can write a very sophisticated crawling system, and
now you know how to write a focused spider. In this chapter, we saw how to abstract the item logic from
the main system and how to write some specific spider for the most common use cases. We know some
of the most common settings that need to be taken care of in order to implement our own spider and we
wrote some complex parse methods that can be reused. We understand selectors very well and know a
hands-on way of figuring out what kind of elements we want for specific item attributes, and we also
went through Firebug to get more of a practical understanding of selectors. Last but not least, very
importantly, make sure that you follow the security guidelines of the websites you crawl.

In the next chapter, we will explore some essential Python libraries that can be used for natural language
processing and machine learning.

Chapter 8. Using NLTK with Other Python
Libraries
In this chapter, we will explore some of the backbone libraries of Python for machine learning and
natural language processing. Until now, we have used NLTK, Scikit, and genism, which had very
abstract functions, and were very specific to the task in hand. Most of statistical NLP is heavily based on
the vector space model, which in turn depends on basic linear algebra covered by NumPy. Also many
NLP tasks, such as POS or NER tagging, are really classifiers in disguise. Some of the libraries we will
discuss are heavily used in all these tasks.

The idea behind this chapter is to give you a quick overview of some the most fundamental Python
libraries. This will help us understand more than just the data structure, design, and math behind some of
the coolest libraries, such as NLTK and Scikit, which we have discussed in the previous chapters.

We will look at the following four libraries. I have tried to keep it short, but I highly encourage you to
read in more detail about these libraries if you want Python to be a one-stop solution to most of your
data science needs.

• NumPy (Numeric Python)
• SciPy (Scientific Python)
• Pandas (Data manipulation)
• Matplotlib (Visualization)

NumPy
NumPy is a Python library for dealing with numerical operations, and it's really fast. NumPy provides
some of the highly optimized data structures, such as ndarrays. NumPy has many functions specially
designed and optimized to perform some of the most common numeric operations. This is one of the
reasons NLTK, scikit-learn, pandas, and other libraries use NumPy as a base to implement some of the
algorithms. This section will give you a brief summary with running examples of NumPy. This will not
just help us understand the fundamental data structures beneath NLTK and other libraries, but also give
us the ability to customize some of these functionalities to our needs.

Let's start with discussion on ndarrays, how they can be used as matrices, and how easy and efficient it
is to deal with matrices in NumPy.

ndarray

An ndarray is an array object that represents a multidimensional, homogeneous array of fixed-size items.

We will start with building an ndarray using an ordinary Python list:

>>>x=[1,2,5,7,3,11,14,25]
>>>import numpy as np
>>>np_arr=np.array(x)
>>>np_arr

As you can see, this is a linear 1D array. The real power of Numpy comes with 2D arrays. Let's move to
2D arrays. We will create one using a Python list of lists.

>>>arr=[[1,2],[13,4],[33,78]]
>>>np_2darr= np.array(arr)
>>>type(np_2darr)
numpy.ndarray

Indexing

The ndarray is indexed more like Python containers. NumPy provides a slicing method to get different
views of the ndarray.

>>>np_2darr.tolist()
[[1, 2], [13, 4], [33, 78]]
>>>np_2darr[:]
array([[1, 2], [13, 4], [33, 78]])
>>>np_2darr[:2]
array([[1, 2], [13, 4]])
>>>np_2darr[:1]
array([[1, 2]])
>>>np_2darr[2]
array([33, 78])
>>> np_2darr[2][0]
>>>33
>>> np_2darr[:-1]
array([[1, 2], [13, 4]])

Basic operations

NumPy also has some other operations that can be used in various numeric processing. In this example,
we want to get an array with values ranging from 0 to 10 with a step size of 0.1. This is typically
required for any optimization routine. Some of the most common libraries, such as Scikit and NLTK,
actually use these NumPy functions.

>>>>import numpy as np
>>>>np.arange(0.0, 1.0, 0.1)
array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
1]

We can do something like this, and generate a array with all ones and all zeros:

>>>np.ones([2, 4])
array([[1., 1., 1., 1.], [1., 1., 1., 1.]])
>>>np.zeros([3,4])
array([[0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 0.]])

Wow!

If you have done higher school math, you know that we need all these matrixes to perform many
algebraic operations. And guess what, most of the Python machine learning libraries also do that!

>>>np.linspace(0, 2, 10)
array([0., 0.22222222, 0.44444444, 0.66666667,
0.88888889, 1.11111111, 1.33333333, 1.55555556,
1.77777778, 2,])

The linespace function returns number samples which are evenly spaced, calculated over the interval
from the start and end values. In the given example we were trying to get 10 sample in the range of 0 to
2.

Similarly, we can do this at the log scale. The function here is:

>>>np.logspace(0,1)
array([1., 1.04811313, 1.09854114, 1.1513954,
7.90604321, 8.28642773, 8.68511374, 9.10298178,
9.54095476, 10.,])

You can still execute Python's help function to get more details about the parameter and the return
values.

>>>help(np.logspace)
Help on function logspace in module NumPy.core.function_base:

logspace(start, stop, num=50, endpoint=True, base=10.0)
Return numbers spaced evenly on a log scale.

In linear space, the sequence starts at ``base ** start``
(`base` to the power of `start`) and ends with ``base ** stop``
(see `endpoint` below).

Parameters

start : float

So we have to provide the start and end and the number of samples we want on the scale; in this case,
we also have to provide a base.

Extracting data from an array

We can do all sorts of manipulation and filtering on the ndarrays. Let's start with a new Ndarray, A:

>>>A = array([[0, 0, 0], [0, 1, 2], [0, 2, 4], [0, 3, 6]])

>>>B = np.array([n for n in range n for n in range(4)])

>>>B
array([0, 1, 2, 3])

We can do this kind of conditional operation, and it's very elegant. We can observe this in the following
example:

>>>less_than_3 = B<3 # we are filtering the items that are less than
3.
>>>less_than_3
array([True, True, True, False], dtype=bool)
>>>B[less_than_3]
array([0, 1, 2])

We can also assign a value to all these values, as follows:

>>>B[less_than_3] = 0
>>>: B
array([0, 0, 0, 3])

There is a way to get the diagonal of the given matrix. Let's get the diagonal for our matrix A:

>>>np.diag(A)
array([0, 1, 4])

Complex matrix operations

One of the common matrix operations is element-wise multiplication, where we will multiply one
element of a matrix by an element of another matrix. The shape of the resultant matrix will be same as
the input matrix, for example:

>>>A = np.array([[1,2],[3,4]])
>>>A * A
array([[1, 4], [9, 16]])

Note

However, we can't perform the following operation, which will throw an error when executed:

>>>A * B

ValueError Traceback (most recent call last)
<ipython-input-53-e2f71f566704> in <module>()
----> 1 A*B

ValueError: Operands could not be broadcast together with shapes (2,2) (4,).

Simply, the numbers of columns of the first operand have to match the number of rows in the second
operand for matrix multiplication to work.

Let's do the dot product, which is the backbone of many optimization and algebraic operations. I still
feel doing this in a traditional environment was not very efficient. Let's see how easy it is in NumPy, and
how super-efficient it is in terms of memory.

>>>np.dot(A, A)
array([[7, 10], [15, 22]])

We can do operations like add, subtract, and transpose, as shown in the following example:

>>>A - A
array([[0, 0], [0, 0]])
>>>A + A
array([[2, 4], [6, 8]])
>>>np.transpose(A)
array([[1, 3], [2, 4]])
>>>>A
array([[1, 2], [2, 3]])

The same transpose operations can be performed using an alternative operation, such as this:

>>>A.T
array([[1, 3], [2, 4]])

We can also cast these ndarrays into a matrix and perform matrix operations, as shown in the following
example:

>>>M = np.matrix(A)
>>>M
matrix([[1, 2], [3, 4]])
>>> np.conjugate(M)
matrix([[1, 2], [3, 4]])
>>> np.invert(M)
matrix([[-2, -3], [-4, -5]])

We can perform all sorts of complex matrix operations with NumPy, and they are pretty simple to use
too! Please have a look at documentation for more information on NumPy.

Let's switch back to some of the common mathematics operations, such as min, max, mean, and
standard deviation, for the given array elements. We have generated the normal distributed random
numbers. Let's see how these things can be applied there:

>>>N = np.random.randn(1,10)
>>>N
array([[0.59238571, -0.22224549, 0.6753678,
0.48092087, -0.37402105, -0.54067842, 0.11445297,

-0.02483442, -0.83847935, 0.03480181,]])
>>>N.mean()
-0.010232957191371551
>>>N.std()
0.47295594072935421

This was an example demonstrating how NumPy can be used to perform simple mathematic and
algebraic operations of finding out the mean and standard deviation of a set of numbers.

Reshaping and stacking

In case of some of the numeric, algebraic operations we do need to change the shape of resultant matrix
based on the input matrices. NumPy has some of the easiest ways of reshaping and stacking the matrix
in whichever way you want.

>>>A
array([[1, 2], [3, 4]])

If we want a flat matrix, we just need to reshape it using NumPy's reshape() function:

>>>>(r, c) = A.shape # r is rows and c is columns
>>>>r,c
(2L, 2L)
>>>>A.reshape((1, r * c))
array([[1, 2, 3, 4]])

This kind of reshaping is required in many algebraic operations. To flatten the ndarray, we can use the
flatten() function:

>>>A.flatten()
array([1, 2, 3, 4])

There is a function to repeat the same elements of the given array. We need to just specify the number of
times we want the element to repeat. To repeat the ndarray, we can use the repeat() function:

>>>np.repeat(A, 2)
array([1, 1, 2, 2, 3, 3, 4, 4])
>>>>A
array([[1, 2],[3, 4]])

In the preceding example, each element is repeated twice in sequence. A similar function known as
tile() is used for for repeating the matrix, and is shown here:

>>>np.tile(A, 4)
array([[1, 2, 1, 2, 1, 2, 1, 2], [3, 4, 3, 4, 3, 4, 3, 4]])

There are also ways to add a row or a column to the matrix. If we want to add a row, we use the
concatenate() function shown here:

>>>B = np.array([[5, 6]])
>>>np.concatenate((A, B), axis=0)
array([[1, 2], [3, 4], [5, 6]])

This can also be achieved using the Vstack() function shown here:

>>>np.vstack((A, B))
array([[1, 2], [3, 4], [5, 6]])

Also, if you want to add a column, you can use the concatenate() function in the following
manner:

>>>np.concatenate((A, B.T), axis=1)
array([[1, 2, 5], [3, 4, 6]])

Tip

Alternatively, the hstack() function can be used to add columns. This is used very similarly to the
vstack() function in the example shown above.

Random numbers

Random number generation is also used across many tasks involving NLP and machine learning tasks.
Let's see how easy it is to get a random sample:

>>>from numpy import random
>>>#uniform random number from [0,1]
>>>random.rand(2, 5)
array([[0.82787406, 0.21619509, 0.24551583, 0.91357419,
0.39644969], [0.91684427, 0.34859763, 0.87096617, 0.31916835,
0.09999382]])

There is one more function called random.randn(), which generates normally distributed random
numbers in the given range. So, in the following example, we want random numbers between 2 and 5.

>>>>random.randn(2, 5)
array([[-0.59998393, -0.98022613, -0.52050449, 0.73075943,
-0.62518516], [1.00288355, -0.89613323, 0.59240039, -0.89803825,
0.11106479]])

This is achieved by using the function random.randn(2,5).

SciPy
Scientific Python or SciPy is a framework built on top of NumPy and ndarray and was essentially
developed for advanced scientific operations such as optimization, integration, algebraic operations, and
Fourier transforms.

The concept was to efficiently use ndarrays to provide some of these common scientific algorithms in a
memory-efficient manner. Because of NumPy and SciPy, we are in a state where we can focus on
writing libraries such as scikit-learn and NLTK, which focus on domain-specific problems, while
NumPy / SciPy do the heavy lifting for us. We will give you a brief overview of the data structures and
common operations provided in SciPy. We get the details of some of the black-box libraries, such as
scikit-learn and understand what goes on behind the scenes.

>>>import scipy as sp

This is how you import SciPy. I am using sp as an alias but you can import everything.

Let's start with something we are more familiar with. Let's see how integration can be achieved here,
using the quad() function.

>>>from scipy.integrate import quad, dblquad, tplquad
>>>def f(x):
>>> return x
>>>x_lower == 0 # the lower limit of x
>>>x_upper == 1 # the upper limit of x
>>>val, abserr = = quad(f, x_lower, x_upper)
>>>print val,abserr
>>> 0.5 , 5.55111512313e-15

If we integrate the x, it will be x2/2, which is 0.5. There are other scientific functions, such as these:

• Interpolation (scipy.interpolate)
• Fourier transforms (scipy.fftpack)
• Signal processing (scipy.signal)

But we will focus on only linear algebra and optimization because these are more relevant in the context
of machine learning and NLP.

Linear algebra

The linear algebra module contains a lot of matrix-related functions. Probably the best contribution of
SciPy is sparse matrix (CSR matrix), which is used heavily in other packages for manipulation of
matrices.

SciPy provides one of the best ways of storing sparse matrices and doing data manipulation on them. It
also provides some of the common operations, such as linear equation solving. It has a great way of
solving eigenvalues and eigenvectors, matrix functions (for example, matrix exponentiation), and more

complex operations such as decompositions (SVD). Some of these are the behind-the-scenes
optimization in our ML routines. For example, SVD is the simplest form of LDA (topic modeling) that
we used in Chapter 6, Text Classification.

The following is an example showing how the linear algebra module can be used:

>>>A = = sp.rand(2, 2)
>>>B = = sp.rand(2, 2)
>>>import Scipy
>>>X = = solve(A, B)
>>>from Scipy import linalg as LA
>>>X = = LA.solve(A, B)
>>>LA.dot(A, B)

Note

Detailed documentation is available at http://docs.scipy.org/doc/scipy/reference/linalg.html.

eigenvalues and eigenvectors

In some of the NLP and machine learning applications, we represent the documents as term document
matrices. Eigenvalues and eigenvectors are typically calculated for many different mathematical
formulations. Say A is our matrix, and there exists a vector v such that Av=λv.

In this case, λ will be our eigenvalue and v will be our eigenvector. One of the most commonly used
operation, the singular value decomposition (SVD)will require some calculus functionality. It's quite
simple to achieve this in SciPy.

>>>evals = LA.eigvals(A)
>>>evals
array([-0.32153198+0.j, 1.40510412+0.j])

And eigen vectors are as follows:

>>>evals, evect = LA.eig(A)

We can perform other matrix operations, such as inverse, transpose, and determinant:

>>>LA.inv(A)
array([[-1.24454719, 1.97474827], [1.84807676, -1.15387236]])
>>>LA.det(A)
-0.4517859060209965

The sparse matrix

In a real-world scenario, when we use a typical matrix, most of the elements of this matrix are zeroes. It
is highly inefficient to go over all these non-zero elements for any matrix operation. As a solution to this

http://docs.scipy.org/doc/scipy/reference/linalg.html

kind of problem, a sparse matrix format has been introduced, with the simple idea of storing only non-
zero items.

A matrix in which most of the elements are non-zeroes is called a dense matrix, and the matrix in which
most of the elements are zeroes is called a sparse matrix.

A matrix is typically a 2D array with an index of row and column will provide the value of the element.
Now there are different ways in which we can store sparse matrices:

• DOK (Dictionary of keys): Here, we store the dictionary with keys in the format (row, col) and
the values are stored as dictionary values.

• LOL (list of list): Here, we provide one list per row, with only an index of the non-zero
elements.

• COL (Coordinate list): Here, a list (row, col, value) is stored as a list.
• CRS/CSR (Compressed row Storage): A CSR matrix reads values first by column; a row

index is stored for each value, and column pointers are stored (val, row_ind, col_ptr). Here, val
is an array of the non-zero values of the matrix, row_ind represents the row indices
corresponding to the values, and col_ptr is the list of val indexes where each column starts. The
name is based on the fact that column index information is compressed relative to the COO
format. This format is efficient for arithmetic operations, column slicing, and matrix-vector
products.

Note

See http://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.sparse.csr_matrix.html for
more information.

• CSC (sparse column): This is similar to CSR, except that the values are read first by column; a
row index is stored for each value, and column pointers are stored. In otherwords, CSC is (val,
row_ind, col_ptr).

Note

Have a look at the documentation at:

http://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.sparse.csc_matrix.html

Let's have some hands-on experience with CSR matrix manipulation. We have a sparse matrix A:

>>>from scipy import sparse as s
>>>A = array([[1,0,0],[0,2,0],[0,0,3]])
>>>A
array([[1, 0, 0], [0, 2, 0], [0, 0, 3]])
>>>from scipy import sparse as sp
>>>C = = sp.csr_matrix(A);
>>>C
<3x3 sparse matrix of type '<type 'NumPy.int32'>'

with 3 stored elements in Compressed Sparse Row format>

http://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.sparse.csr_matrix.html
http://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.sparse.csc_matrix.html

If you read very carefully, the CSR matrix stored just three elements. Let's see what it stored:

>>>C.toarray()
array([[1, 0, 0], [0, 2, 0], [0, 0, 3]])
>>>C * C.todense()
matrix([[1, 0, 0], [0, 4, 0], [0, 0, 9]])

This is exactly what we are looking for. Without going over all the zeroes, we still got the same results
with the CSR matrix.

>>>dot(C, C).todense()

Optimization

I hope you understand that every time we have built a classifier or a tagger in the background, all these
are some sort of optimization routine. Let's have some basic understanding about the function provided
in SciPy. We will start with getting a minima of the given polynomial. Let's jump to one of the example
snippets of the optimization routine provided by SciPy.

>>>def f(x):
>>> returnx return x**2-4
>>>optimize.fmin_bfgs(f,0)
Optimization terminated successfully.

Current function value: -4.000000
Iterations: 0
Function evaluations: 3
Gradient evaluations: 1

array([0])

Here, the first argument is the function you want the minima of, and the second is the initial guess for
the minima. In this example, we already knew that zero will be the minima. To get more details, use the
function help(), as shown here:

>>>help(optimize.fmin_bfgs)
Help on function fmin_bfgs in module Scipy.optimize.optimize:

fmin_bfgs(f, x0, fprime=None, args=(), gtol=1e-05, norm=inf,
epsilon=1.4901161193847656e-08, maxiter=None, full_output=0, disp=1,
retall=0, callback=None)

Minimize a function using the BFGS algorithm.

Parameters

f : callable f(x,*args)

Objective function to be minimized.
x0 : ndarray

Initial guess.

>>>from scipy import optimize
optimize.fsolve(f, 0.2)

array([0.46943096])

>>>def f1 def f1(x,y):
>>> return x ** 2+ y ** 2 - 4
>>>optimize.fsolve(f1, 0, 0)
array([0.])

To summarize, we now have enough knowledge about SciPy's most basic data structures, and some of
the most common optimization techniques. The intention was to motivate you to not just run black-box
machine learning or natural language processing, but to go beyond that and get the mathematical context
about the ML algorithms you are using and also have a look at the source code and try to understand it.

Implementing this will not just help your understanding about the algorithm, but also allow you to
optimize/customize the implementation to your need.

pandas
Let's talk about pandas, which is one of the most exciting Python libraries, especially for people who
love R and want to play around with the data in a more vectorized manner. We will devote this part of
the chapter only to pandas; we will discuss some basic data manipulation and handling in pandas frames.

Reading data

Let's start with one of the most important tasks in any data analysis to parse the data from a CSV/other
file.

Tip

I am using https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data

https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.names

Feel free to use any other CSV file.

To begin, please download the data to your local storage from the preceding links, and load it into a
pandas data-frame, as shown here:

>>>import pandas as pd
>>># Please provide the absolute path of the input file
>>>data = pd.read_csv("PATH\\iris.data.txt",header=0")
>>>data.head()

4.9 3.0 1.4 0.2 Iris-setosa

0 4.7 3.2 1.3 0.2 Iris-setosa

1 4.6 3.1 1.5 0.2 Iris-setosa

2 5.0 3.6 1.4 0.2 Iris-setosa

This will read a CSV file and store it in a DataFrame. Now, there are many options you have while
reading a CSV file. One of the problems is that we read the first line of the data in this DataFrame as a
header; to use the actual header, we need to set the option header to None, and pass a list of names as
column names. If we already have the header in perfect form in the CSV, we don't need to worry about
the header as pandas, by default, assumes the first line to be the header. The header 0 in the preceding
code is actually the row number that will be treated as the header.

So let's use the same data, and add the header into the frame:

https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data
https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.names

>>>data = pd.read_csv("PATH\\iris.data.txt", names=["sepal length",
"sepal width", "petal length", "petal width", "Cat"], header=None)
>>>data.head()

sepal length sepal width petal length petal width Cat

0 4.9 3.0 1.4 0.2 Iris-setosa

1 4.7 3.2 1.3 0.2 Iris-setosa

2 4.6 3.1 1.5 0.2 Iris-setosa

This has created temporary column names for the frame so that, in case you have headers in the file as a
first row, you can drop the header option, and pandas will detect the first row of the file as the header.
The other common options are Sep/Delimiter, where you want to specify the delimiter used to separate
the columns. There are at least 20 different options available, which can be used to optimize the way we
read and cleanse our data, for example removing Na's, removing blank lines, and indexing based on the
specific column. Please have a look at the different type of files:

• read_csv: reading a CSV file.
• read_excel: reading a XLS file.
• read_hdf: reading a HDFS file.
• read_sql: reading a SQL file.
• read_json: reading a JSON file.

These can be the substitutes for all the different parsing methods we discussed in Chapter 2, Text
Wrangling and Cleansing. The same numbers of options are available to write files too.

Now let's see the power of pandas frames. If you are an R programmer, you would love to see the
summary and header option we have in R.

>>>data.describe()

The describe() function will give you a brief summary of each column and the unique values.

>>>sepal_len_cnt=data['sepal length'].value_counts()
>>>sepal_len_cnt

5.0 10
6.3 9
6.7 8
5.7 8
5.1 8
dtype: int64

>>>data['Iris-setosa'].value_counts()
Iris-versicolor 50
Iris-virginica 50
Iris-setosa 48
dtype: int64

Again for R lovers, we are now dealing with vectors, so that we can look for each value of the column
by using something like this:

>>>data['Iris-setosa'] == 'Iris-setosa'
0 True
1 True

147 False
148 False
Name: Iris-setosa, Length: 149, dtype: bool

Now we can filter the DataFrame in place. Here the setosa will have only entries related to Iris-
setosa.

>>>sntsosa=data[data['Cat'] == 'Iris-setosa']
>>>sntsosa[:5]

This is our typical SQL Group By function. We have all kinds of aggregate functions as well.

Note

You can browse through the following link to look at Dow Jones data:

https://archive.ics.uci.edu/ml/machine-learning-databases/00312/

Series data

Pandas also have a neat way of indexing by date, and then using the frame for all sorts of time series
kind of analysis. The best part is that once we have indexed the data by date some of the most painful
operations on the dates will be a command away from us. Let's take a look at series data, such as stock
price data for a few stocks, and how the values of the opening and closing stock change weekly.

>>>import pandas as pd
>>>stockdata =
pd.read_csv("dow_jones_index.data",parse_dates=['date'],
index_col=['date'], nrows=100)
>>>>stockdata.head()

https://archive.ics.uci.edu/ml/machine-learning-databases/00312/

date quarter stock open high low close volume percent_change_price

01/07/2011 1 AA $15.82 $16.72 $15.78 $16.42 239655616 3.79267

01/14/2011 1 AA $16.71 $16.71 $15.64 $15.97 242963398 -4.42849

01/21/2011 1 AA $16.19 $16.38 $15.60 $15.79 138428495 -2.47066

>>>max(stockdata['volume'])
1453438639

>>>max(stockdata['percent_change_price'])
7.6217399999999991

>>>stockdata.index
<class 'pandas.tseries.index.DatetimeIndex'>
[2011-01-07, ..., 2011-01-28]
Length: 100, Freq: None, Timezone: None
>>>stockdata.index.day
array([7, 14, 21, 28, 4, 11, 18, 25, 4, 11, 18, 25, 7, 14, 21, 28,
4,11, 18, 25, 4, 11, 18, 25, 7, 14, 21, 28, 4])

The preceding command gives the day of the week for each date.

>>>stockdata.index.month

The preceding command lists different values by month.

>>>stockdata.index.year

The preceding command lists different values by year.

You can aggregate the data using a resample with whatever aggregation you want. It could be sum,
mean, median, min, or max.

>>>import numpy as np
>>>stockdata.resample('M', how=np.sum)

Column transformation

Say we want to filter out columns or to add a column. We can achieve this by just by providing a list of
columns as an argument to axis 1. We can drop the columns from a data frame like this:

>>>stockdata.drop(["percent_change_volume_over_last_wk"],axis=1)

Let's filter out some of the unwanted columns, and work with a limited set of columns. We can create a
new DataFrame like this:

>>>stockdata_new = pd.DataFrame(stockdata,
columns=["stock","open","high","low","close","volume"])
>>>stockdata_new.head()

We can also run R-like operations on the columns. Say I want to rename the columns. I can do
something like this:

>>>stockdata["previous_weeks_volume"] = 0

This will change all the values in the column to 0. We can do it conditionally and create derived
variables in place.

Noisy data

A typical day in the life of a data scientist starts with data cleaning. Removing noise, cleaning unwanted
files, making sure that date formats are correct, ignoring noisy records, and dealing with missing values.
Typically, the biggest chunk of time is spent on data cleansing rather than on any other activity.

In a real-world scenario, the data is messy in most cases, and we have to deal with missing values, null
values, Na's, and other formatting issues. So one of the major features of any data library is to deal with
all these problems and address them in an efficient way. pandas provide some amazing features to deal
with some of these problems.

>>>stockdata.head()
>>>stockdata.dropna().head(2)

Using the preceding command we get rid of all the Na's from our data.

date quarter Stock open high low close volume percent_change_price

01/14/2011 1 AA $16.71 $16.71 $15.64 $15.97 242963398 -4.42849

01/21/2011 1 AA $16.19 $16.38 $15.60 $15.79 138428495 -2.47066

01/28/2011 1 AA $15.87 $16.63 $15.82 $16.13 151379173 1.63831

You also noticed that we have a $ symbol in front of the value, which makes the numeric operation hard.
Let's get rid of that, as it will give us noisy results otherwise (for example. $43.86 is not among the top
values here).

>>>import numpy
>>>stockdata_new.open.describe()
count 100
unique 99
top $43.86
freq 2
Name: open, dtype: object

We can perform some operations on two columns, and derive a new variable out of this:

>>>stockdata_new.open = stockdata_new.open.str.replace('$',
'').convert_objects(convert_numeric=True)
>>>stockdata_new.close = stockdata_new.close.str.replace('$',
'').convert_objects(convert_numeric=True)
>>>(stockdata_new.close -
stockdata_new.open).convert_objects(convert_numeric=True)
>>>stockdata_new.open.describe()
count 100.000000
mean 51.286800
std 32.154889
min 13.710000
25% 17.705000
50% 46.040000
75% 72.527500
max 106.900000
Name: open, dtype: float64

We can also perform some arithmetic operations, and create new variables out of it.

>>>stockdata_new['newopen'] = stockdata_new.open.apply(lambda x: 0.8
* x)
>>>stockdata_new.newopen.head(5)

We can filter the data on the value of a column in this way too. For example, let's filter out a dataset for
one of the companies among all those that we have the stock values for.

>>>stockAA = stockdata_new.query('stock=="AA"')
>>>stockAA.head()

To summarize, we have seen some useful functions related to data reading, cleaning, manipulation, and
aggregation in this section of pandas. In the next section, will try to use some of these data frames to
generate visualization out of this data.

matplotlib
matplotlib is a very popular visualization library written in Python. We will cover some of the most
commonly used visualizations. Let's start by importing the library:

>>>import matplotlib
>>>import matplotlib.pyplot as plt
>>>import numpy

We will use the same running data set from the Dow Jones index for some of the visualizations now. We
already have stock data for company "AA". Let's make one more frame for a new company CSCO, and
plot some of these:

>>>stockCSCO = stockdata_new.query('stock=="CSCO"')
>>>stockCSCO.head()
>>>from matplotlib import figure
>>>plt.figure()
>>>plt.scatter(stockdata_new.index.date,stockdata_new.volume)
>>>plt.xlabel('day') # added the name of the x axis
>>>plt.ylabel('stock close value') # add label to y-axis
>>>plt.title('title') # add the title to your graph
>>>plt.savefig("matplot1.jpg") # savefig in local

You can also save the figure as a JPEG/PNG file. This can be done using the savefig() function
shown here:

>>>plt.savefig("matplot1.jpg")

Subplot

Subplot is the best way to layout your plots. This works as a canvas, where we can add not just one plot
but multiple plots. In this example, we have tried to put four plots with the parameters numrow, numcol
which will define the canvas and the next argument in the plot number.

>>>plt.subplot(2, 2, 1)
>>>plt.plot(stockAA.index.weekofyear, stockAA.open, 'r--')
>>>plt.subplot(2, 2, 2)
>>>plt.plot(stockCSCO.index.weekofyear, stockCSCO.open, 'g-*')
>>>plt.subplot(2, 2, 3)
>>>plt.plot(stockAA.index.weekofyear, stockAA.open, 'g--')
>>>plt.subplot(2, 2, 4)
>>>plt.plot(stockCSCO.index.weekofyear, stockCSCO.open, 'r-*')
>>>plt.subplot(2, 2, 3)
>>>plt.plot(x, y, 'g--')
>>>plt.subplot(2, 2, 4)

>>>plt.plot(x, y, 'r-*')
>>>fig.savefig("matplot2.png")

We can do something more elegant for plotting many plots at one go!

>>>fig, axes = plt.subplots(nrows=1, ncols=2)
>>>for ax in axes:
>>> ax.plot(x, y, 'r')
>>> ax.set_xlabel('x')
>>> ax.set_ylabel('y')
>>> ax.set_title('title');

As you case see, there are ways to code a lot more like in typical Python to handle different aspects of
the plots you want to achieve.

Adding an axis

We can add an axis to the figure by using addaxis(). By adding an axis to the figure, we can define
our own drawing area. addaxis() takes the following arguments:

rect [*left*, *bottom*, *width*, *height*]
>>>fig = plt.figure()
>>>axes = fig.add_axes([0.1, 0.1, 0.8, 0.8]) # left, bottom, width,

height (range 0 to 1)
>>>axes.plot(x, y, 'r')

Let' plot some of the most commonly used type of plots. The great thing is that most of the parameters,
such as title and label, still work in the same way. Only the kind of plot will change.

If you want to add an x label, a y label, and a title with the axis; the commands are as follows:

>>>fig = plt.figure()
>>>ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
>>>ax.plot(stockAA.index.weekofyear,stockAA.open,label="AA")
>>>ax.plot(stockAA.index.weekofyear,stockCSCO.open,label="CSCO")
>>>ax.set_xlabel('weekofyear')
>>>ax.set_ylabel('stock value')
>>>ax.set_title('Weekly change in stock price')
>>>ax.legend(loc=2); # upper left corner
>>>plt.savefig("matplot3.jpg")

Try writing the preceding code and observe the output!

A scatter plot

One of the simplest forms of plotting is to plot the y-axis point for different x-axis values. In the
following example, we have tried to capture the variation of the stock price weekly in a scatter plot:

>>>import matplotlib.pyplot as plt
>>>plt.scatter(stockAA.index.weekofyear,stockAA.open)
>>>plt.savefig("matplot4.jpg")
>>>plt.close()

A bar plot

Intuitively, the distribution of the y axis is shown against the x axis in the following bar chart. In the
following example, we have used a bar plot to display data on a graph.

>>>n = 12
>>>X = np.arange(n)
>>>Y1 = np.random.uniform(0.5, 1.0, n)
>>>Y2 = np.random.uniform(0.5, 1.0, n)
>>>plt.bar(X, +Y1, facecolor='#9999ff', edgecolor='white')
>>>plt.bar(X, -Y2, facecolor='#ff9999', edgecolor='white')

3D plots

We can also build some spectacular 3D visualizations in matplotlib. The following example shows how
one can create a 3D plot using matplotlib:

>>>from mpl_toolkits.mplot3d import Axes3D
>>>fig = plt.figure()
>>>ax = Axes3D(fig)
>>>X = np.arange(-4, 4, 0.25)
>>>Y = np.arange(-4, 4, 0.25)
>>>X, Y = np.meshgrid(X, Y)
>>>R = np.sqrt(X**2+ + Y**2)
>>>Z = np.sin(R)
>>>ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='hot')

External references
I like to encourage readers to go over some of the following links for more details about the individual
libraries, and for more resources:

• http://www.NumPy.org/
• http://www.Scipy.org/
• http://pandas.pydata.org/
• http://matplotlib.org/

http://www.numpy.org/
http://www.scipy.org/
http://pandas.pydata.org/
http://matplotlib.org/

Summary
This chapter was a brief summary of some of the most fundamental libraries of Python that do a lot of
heavy lifting for us when we deal with text and other data. NumPy helps us in dealing with numeric
operations and the kind of data structure required for some of these. SciPy has many scientific
operations that are used in various Python libraries. We learned how to use these functions and data
structures.

We have also touched upon pandas, which is a very efficient library for data manipulation, and has been
getting a lot of mileage in recent times. Finally, we gave you a quick view of one of Python's most
commonly used visualization libraries, matplotlib.

In the next chapter, we will focus on social media. We will see how to capture data from some of the
common social networks and produce meaningful insights around social media.

Chapter 9. Social Media Mining in Python
This chapter is all about social media. Though it's not directly related to NLTK / NLP, social data is also
a very rich source of unstructured text data. So, as NLP enthusiasts, we should have the skill to play with
social data. We will try to explore how to gather relevant data from some of the most popular social
media platforms. We will cover how to gather data from Twitter, Facebook, and so on using Python
APIs. We will explore some of the most common use cases in the context of social media mining, such
as trending topics, sentiment analysis, and so on.

You already learned a lot of topics under the concepts of natural language processing and machine
learning in the last few chapters. We will try to build some of the applications around social data in this
chapter. We will also provide you with some of the best practices to deal with social data, and look at
social data from the context of graph visualization.

There is a graph that underlies social media and most of the graph-based problems can be formulated as
information flow problems and finding out the busiest node in the graph. Some of the problems such as
trending topics, influencer detection, and sentiment analysis are examples of these. Let's take some of
these use cases, and build some cool applications around these social networks.

By the end of this chapter,:

• You should be able to collect data from any social media using APIs.
• You will also learn to formulate the data in a structured format and how to build some amazing

applications.
• Lastly, we will be able to visualize and gain meaningful insight out of social media.

Data collection
The most important objective of this chapter is to gather data across some of the most common social
networks. We will look mainly at Twitter and Facebook and try to give you enough details about the API
and how to effectively use them to get relevant data. We will also talk about the data dictionary for
scrapped data, and how we can build some cool apps using some of the stuff we learned so far.

Twitter

We will start with one of the most popular and open social media that is completely public. This means
that practically, you can gather entire Twitter stream, which is payable, while you can capture one
percent of the stream for free. In the context of business, Twitter is a very rich resource of information
such as public sentiments and emerging topics.

Let's get directly to face the main challenge of getting the tweets relevant to your use case.

Note

The following is the repository of many Twitter libraries. These libraries are not verified by Twitter, but
run on the Twitter API.

https://dev.twitter.com/overview/api/twitter-libraries

There are more than 10 Python libraries there. So pick and choose the one you like. I generally use
Tweepy and we will use it to run the examples in this book. Most of the libraries are wrappers around
the Twitter API, and the parameters and signatures of all these are roughly the same.

The simplest way to install Tweepy is to install it using pip:

$ pip install tweepy

Note

The hard way is to build it from source. The GitHub link to Tweepy is:

https://github.com/tweepy/tweepy.

To get Tweepy to work, you have to create a developer account with Twitter and get the access tokens
for your application. Once you complete this, you will get your credentials and below these, the keys.
Go through https://apps.twitter.com/app/new for registration and access tokens. The following snapshot
shows the access tokens:

We will start with a very simple example to gather data using Twitter's streaming API. We are using
Tweepy to capture the Twitter stream to gather all the tweets related to the given keywords:

https://dev.twitter.com/overview/api/twitter-libraries
https://github.com/tweepy/tweepy
https://apps.twitter.com/app/new

tweetdump.py
>>>from tweepy.streaming import StreamListener
>>>from tweepy import OAuthHandler
>>>from tweepy import Stream
>>>import sys
>>>consumer_key = 'ABCD012XXXXXXXXx'
>>>consumer_secret = 'xyz123xxxxxxxxxxxxx'
>>>access_token = '000000-ABCDXXXXXXXXXXX'
>>>access_token_secret ='XXXXXXXXXgaw2KYz0VcqCO0F3U4'
>>>class StdOutListener(StreamListener):
>>> def on_data(self, data):
>>> with open(sys.argv[1],'a') as tf:
>>> tf.write(data)
>>> return
>>> def on_error(self, status):
>>> print(status)
>>>if __name__ == '__main__':
>>> l = StdOutListener()
>>> auth = OAuthHandler(consumer_key, consumer_secret)
>>> auth.set_access_token(access_token, access_token_secret)
>>> stream = Stream(auth, l)
>>> stream.filter(track=['Apple watch'])

In the preceding code, we used the same code given in the example of Tweepy, with a little modification.
This is an example where we use the streaming API of Twitter, where we track Apple Watch. Twitter's
streaming API provides you the facility of conducting a search on the actual Twitter stream and you can
consume a maximum of one percent of the stream using this API.

In the preceding code, the main parts that you need to understand are the first and last four lines. In the
initial lines, we are specifying the access tokens and other keys that we generated in the previous
section. In the last four lines, we create a listener to consume the stream. In the last line, we use
stream.filter to filter Twitter for keywords that we have put in the track. We can specify multiple
keywords here. This will result in all the tweets that contain the term Apple Watch for our running
example.

In the following example, we will load the tweets we have collected, and have a look at the tweet
structure and how to extract meaningful information from it. A typical tweet JSON structure looks
similar to:

{
"created_at":"Wed May 13 04:51:24 +0000 2015",
"id":598349803924369408,
"id_str":"598349803924369408",
"text":"Google launches its first Apple Watch app with News &
Weather http:\/\/t.co\/o1XMBmhnH2",
"source":"\u003ca href=\"http:\/\/ifttt.com\"
rel=\"nofollow\"\u003eIFTTT\u003c\/a\u003e",

"truncated":false,
"in_reply_to_status_id":null,
"user":{
"id":1461337266,
"id_str":"1461337266",
"name":"vestihitech \u0430\u0432\u0442\u043e\u043c\u0430\u0442",
"screen_name":"vestihitecha",
"location":"",
"followers_count":20,
"friends_count":1,
"listed_count":4,
""statuses_count":7442,
"created_at":"Mon May 27 05:51:27 +0000 2013",
"utc_offset":14400,
},
,
"geo":{ "latitude" : 51.4514285, "longitude"=-0.99
}
"place":"Reading, UK",
"contributors":null,
"retweet_count":0,
"favorite_count":0,
"entities":{
"hashtags":["apple watch", "google"
],
"trends":[
],
"urls":[
{
"url":"http:\/\/t.co\/o1XMBmhnH2",
"expanded_url":"http:\/\/ift.tt\/1HfqhCe",
"display_url":"ift.tt\/1HfqhCe",
"indices":[
66,
88
]
}
],
"user_mentions":[
],
"symbols":[
]
},
"favorited":false,
"retweeted":false,
"possibly_sensitive":false,
"filter_level":"low",

"lang":"en",
"timestamp_ms":"1431492684714"
}
]

Data extraction
Some of the most commonly used fields of interest in data extraction are:

• text: This is the content of the tweet provided by the user
• user: These are some of the main attributes about the user, such as username, location, and

photos
• Place: This is where the tweets are posted, and also the geo coordinates
• Entities: Effectively, these are the hashtags and topics that a user attaches to his / her tweets

Every attribute in the previous figure can be a good use case for some of the social mining exercises
done in practice. Let's jump onto the topic of how we can get to these attributes and convert them to a
more readable form, or how we can process some of these:

Source: tweetinfo.py

>>>import json
>>>import sys
>>>tweets = json.loads(open(sys.argv[1]).read())

>>>tweet_texts = [tweet['text']\
for tweet in tweets]

>>>tweet_source = [tweet ['source'] for tweet in tweets]
>>>tweet_geo = [tweet['geo'] for tweet in tweets]
>>>tweet_locations = [tweet['place'] for tweet in tweets]
>>>hashtags = [hashtag['text'] for tweet in tweets for hashtag in
tweet['entities']['hashtags']]
>>>print tweet_texts
>>>print tweet_locations
>>>print tweet_geo
>>>print hashtags

The output of the preceding code will give you, as expected, four lists in which all the tweet content is in
tweet_texts and the location of the tweets and hashtags.

Tip

In the code, we are just loading a JSON output generated using json.loads(). I would recommend
you to use an online tool such as Json Parser (http://json.parser.online.fr/) to get an idea of what your
JSON looks like and what are its attributes (key and value).

Next, if you look, there are different levels in the JSON, where some of the attributes such as text have a
direct value, while some of them have more nested information. This is the reason you see, where when
we are looking at hashtags, we have to iterate one more level, while in case of text, we just fetch the
values. Since our file actually has a list of tweets, we have to iterate that list to get all the tweets, while
each tweet object will look like the example tweet structure.

http://json.parser.online.fr/

Trending topics

Now, if we look for trending topics in this kind of a setup. One of the simplest ways to find them could
be to look for frequency distribution of words across tweets. We already have a list of tweet_text
that contains the tweets:

>>>import nltk
>>>from nltk import word_tokenize,sent_tokenize
>>>from nltk import FreqDist
>>>tweets_tokens = []

>>>for tweet in tweet_text:
>>> tweets_tokens.append(word_tokenize(tweet))

>>>Topic_distribution = nltk.FreqDist(tweets_tokens)
>>>Freq_dist_nltk.plot(50, cumulative=False)

One other more complex way of doing this could be the use of the part of speech tagger that you learned
in Chapter 3, Part of Speech Tagging. The theory is that most of the time, topics will be nouns or
entities. So, the same exercise can be done like this. In the preceding code, we read every tweet and
tokenize it, and then use POS as a filter to only select nouns as topics:

>>>import nltk
>>>Topics = []
>>>for tweet in tweet_text:
>>> tagged = nltk.pos_tag(word_tokenize(tweet))
>>> Topics_token = [word for word,pos in] in tagged if pos in
['NN','NNP']
>>> print Topics_token

If we want to see a much cooler example, we can gather tweets across time and then generate plots. This
will give us a very clear idea of the trending topics. For example, the data we are looking for is "Apple
Watch". This word should peak on the day when Apple launched Apple Watch and the day they started
selling it. However, it will be interesting to see what kind of topics emerged apart from those, and how
they trended over time.

Geovisualization
One of the other common application of social media is geo-based visualization. In the tweet structure,
we saw attributes named geo, longitude, and latitude. Once you have access to these values, it is very
easy to use some of the common visualization libraries, such as D3, to come up with something like this:

This is just an example of what we can achieve with these kind of visualizations; this was the
visualization of a tweet in the U.S. We can clearly see the areas of increased intensity in eastern places
such as New York. Now, a similar analysis done by a company on the customers can give a clear insight
about which are some of the most popular places liked by our customer base. We can text mine these
tweets for sentiment, and then we can infer insights about customers as to in which states they are not
happy with the company and so on.

Influencers detection

Detection of important nodes in the social graph that has a lot of importance is another great problem in
the context of social graphs. So, if we have millions of tweets streaming about our company, then one
important use case would be to gather the most influential customers in the social media, and then target
them for branding, marketing, or improving customer engagement.

In the case of Twitter, this goes back to the graph theory and concept of PageRank, where in a given
node, if the ratio of outdegree and indegree is high, then that node is an influencer. This is very intuitive
since people who have more followers than the number of people they follow are typically, influencers.
One company, KLOUT, (https://klout.com/) has been focusing on a similar problem. Let's write a very
basic and intuitive algorithm to calculate Klout's score:

https://klout.com/

>>>klout_scores = [(tweet['user']['followers_count]/
tweet['user']['friends_count'],tweet['user']) for tweet in tweets]

Some of the examples where we worked on Twitter will hold exactly the same modification of content
field. We can build a trending topic example with Facebook posts. We can also visualize Facebook users
and post on the geomap and influencer kind of use cases. In fact, in the next section, we will see a
variation of this in the context of Facebook.

Facebook

Facebook is a bit more personal, and somewhat private social network. Facebook does not allow you to
gather the feeds/posts of the user simply for security and privacy reasons. So, Facebook's graph API has
a limited way of accessing the feeds of the given page. I would recommend you to go to
https://developers.facebook.com/docs/graph-api/using-graph-api/v2.3 for better understanding.

The next question is how to access the Graph API using Python and how to get started with it. There are
many wrappers written over Facebook's API, and we will use one the most common Facebook SDK:

$ pip install facebook-sdk

Tip

You can also install it through:

https://github.com/Pythonforfacebook/facebook-sdk.

The next step is to get the access token for the application while Facebook treats every API call as an
application. Even for this data collection step, we will pretend to be an application.

Note

To get your token, go to:

https://developers.facebook.com/tools/explorer.

We are all set now! Let's start with one of the most widely used Facebook graph APIs. In this API,
Facebook provides a graph-based search for pages, users, events, places, and so on. So, the process of
getting to the post becomes a two-stage process, where we have to look for a specific pageid / userid
related to our topic of interest, and then we will be able to access the feeds of that page. One simple use
case for this kind of an exercise could be to use the official page of a company and look for customer
complaints. The way to go about this is:

>>>import facebook
>>>import json

>>>fo = open("fdump.txt",'w')
>>>ACCESS_TOKEN = 'XXXXXXXXXXX' # https://developers.facebook.com/
tools/explorer

https://developers.facebook.com/docs/graph-api/using-graph-api/v2.3
https://github.com/Pythonforfacebook/facebook-sdk
https://developers.facebook.com/tools/explorer

>>>fb = facebook.GraphAPI(ACCESS_TOKEN)
>>>company_page = "326249424068240"
>>>content = fb.get_object(company_page)
>>>fo.write(json.dumps(content))

The code will attach the token to the Facebook Graph API and then we will make a REST call to
Facebook. The problem with this is that we have to have the ID of the given page with us beforehand.
The code which will attach the token is as follows:

"website":"www.dimennachildrenshistorymuseum.org",
"can_post":true,
"category_list":[
{
"id":"244600818962350",
"name":"History Museum"
},
{
"id":"187751327923426",
"name":"Educational Organization"
}
],
"likes":1793,
},
"id":"326249424068240",
"category":"Museum/art gallery",
"has_added_app":false,
"talking_about_count":8,
"location":{
"city":"New York",
"zip":"10024",
"country":"United States",
"longitude":-73.974413,
"state":"NY",
"street":"170 Central Park W",
"latitude":40.779236
},
"is_community_page":false,
"username":"nyhistorykids",
"description":"The first-ever museum bringing American history to
life through the eyes of children, where kids plus history equals
serious fun! Kids of all ages can practice their History Detective
skills at the DiMenna Children's History Museum and:\n\n\u2022
discover the past through six historic figure pavilions\n\n\u2022!",
"hours":{
""thu_1_close":"18:00"
},
"phone":"(212) 873-3400",

"link":"https://www.facebook.com/nyhistorykids",
"price_range":"$ (0-10)",
"checkins":1011,
"about":"The DiMenna Children' History Museum is the first-ever
museum bringing American history to life through the eyes of
children. Visit it inside the New-York Historical Society!",
"name":"New-York Historical Society DiMenna Children's History
Museum",
"cover":{
"source":"https://scontent.xx.fbcdn.net/hphotos-xpf1/t31.0-8/
s720x720/1049166_672951706064675_339973295_o.jpg",
"cover_id":"672951706064675",
"offset_x":0,
"offset_y":54,
"id":"672951706064675"
},
"were_here_count":1011,
"is_published":true
},

Here, we showed a similar schema for the Facebook data as we did for Twitter, and now we can see
what kind of information is required for our use case. In most of the cases, the user post, category, name,
about, and likes are some of the important fields. In this example, we are showing a page of a museum,
but in a more business-driven use case, a company page has a long list of posts and other useful
information that can give some great insights about it.

Let's say I have a Facebook page for my organization xyz.org and I want to know about the users who
complained about me on the page; this is good for a use case such as complaint classification. The way
to achieve the application now is simple enough. You need to look for a set of keywords in
fdump.txt, and it can be as complex as scoring using a text classification algorithm we learned in
Chapter 6, Text Classification.

The other use case could be to look for a topic of interest, and then to look for the resulting pages for
open posts and comments. This is exactly analogous to searching using the graph search bar on your
Facebook home page. However, the power of doing this programmatically is that we can conduct these
searches and then each page can be recursively parsed for use comments. The code for searching user
data is as follows:

User search

>>>fb.request("search", {'q' : 'nitin', 'type' : 'user'})
Place based on the nearest location.
>>>fb.request("search", {'q' : 'starbucks', 'type' : 'place'})
Look for open pages.
>>>fb.request("search", {'q' : 'Stanford university', 'type' : page})
Look for event matching to the key word.
>>>fb.request("search", {'q' : 'beach party', 'type' : 'event'})

Once we have dumped all the relevant data into a structured format, we can apply some of the concepts
we learned when we went through the topics of NLP and machine learning. Let's pick the same use case
of finding posts, that will mostly be complaints on a Facebook page.

I assume that we now have the data in the following format:

Userid FB Post

XXXX0001 The product was pathetic and I tried reaching out to your customer care, but nobody
responded

XXXX002 Great work guys

XXXX003 Where can I call to get my account activated ??? Really bad service

We will go back to the same example we had in Chapter 6, Text Classification, where we built a text
classifier to detect whether the SMS (text message) was spam. Similarly, we can create training data
using this kind of data, where from the given set of posts, we will ask manual taggers to tag the
comments that are complaints and the ones that are not. Once we have significant training data, we can
build the same text classifier:

fb_classification.py
>>>from sklearn.feature_extraction.text import TfidfVectorizer
>>>vectorizer = TfidfVectorizer(min_df=2, ngram_range=(1, 2),
stop_words='english', strip_accents='unicode', norm='l2')
>>>X_train = vectorizer.fit_transform(x_train)
>>>X_test = vectorizer.transform(x_test)

>>>from sklearn.linear_model import SGDClassifier
>>>clf = SGDClassifier(alpha=.0001, n_iter=50).fit(X_train, y_train)
>>>y_pred = clf.predict(X_test)

Let's assume that these three are the only samples. We can tag 1st and 3rd to be classified as complaints,
while 2nd will not be a complaint. Although we will build a vectorizer of unigram and bigram in the
same way, we can actually build a classifier using the same process. I ignored some of the preprocessing
steps here. You can use the same process as discussed in Chapter 6, Text Classification. In some of the
cases, it will be hard/expensive to get training data like this. In some of these cases, we can apply either
an unsupervised algorithm, such as text clustering or topic modeling. The other way is to use some
different dataset that is openly available and build model on that and apply it here. For example, in the
same use case, we can crawl some of the customer complaints available on the Web and use that as
training data for our model. This can work as a good proxy for labeled data.

Influencer friends

One other use case of social media could be finding out the most influencer in your social graph. In our
case, it could be finding out a clear node that has a vast amount of inlinks and outlinks will be the
influencer in the graph.

The same problem in the context of business can be finding out the most influential customers, and
targeting them to market our products.

The code for the Influencer friends is as follows:

>>>friends = fb.get_connections("me", "friends")["data"]
>>>print friends
>>>for frd in friends:
>>> print fb.get_connections(frd["id"],"friends")

Once you have a list of all your friends and mutual friends, you can create a data structure like this:

source node destination node link_exist

Friend 1 Friend 2 1

Friend 1 Friend 3 1

Friend 2 Friend 3 0

Friend 1 Friend 4 1

This a kind of data structure that can be used to generate a network, and is a very good way of
visualizing the social graph. I used D3 here, but python also has a library called NetworkX
(https://networkx.github.io/) that can be used to generate graph visualization, as shown in the following
graph. To generate a visualization, you need to arrive at a adjacency matrix that can be created based on
the bases of the preceding information about who is the friend of whom.

https://networkx.github.io/

Visualization of a sample network in D3

Summary
In this chapter, we touched upon some of the most popular social networks. You learned how to get data
using Python. You understood the structure and kind of attributes data has. We explored different options
provided by the API.

We explored some of the most common use cases in the context of social media mining. We touched
upon the use cases about trending topics, influencer detection, information flow, and so on. We
visualized some of these use cases. We also applied some of the learnings from the previous chapter,
where we used NLTK to get some of the topic and entity extraction, while in scikit-learn we classified
some of the complaints.

In conclusion, I would suggest that you look for some of the same use cases in context of some other
social networks and try to explore them. The great part of these social networks is that all of them have a
data API, and most of them are open enough to do some interesting analysis. If you apply the same
learning you did in this chapter, you need to understand the API, how to get the data, and then how to
apply some of the concepts we learned in the previous chapters. I hope that after learning all this, you
will come up with more use cases, and some interesting analysis of social media.

Chapter 10. Text Mining at Scale
In this chapter, we will go back to some of the libraries we learned about in the previous chapters, but
this time, we want to learn to learn how these libraries will scale up with bigdata. We assume that you
have a fair bit of an idea about big data, Hadoop and Hive. We will explore how some of the Python
libraries, such as NLTK, scikit-learn, and pandas can be used on a Hadoop cluster with a large amount of
unstructured data.

We will cover some of the most common use cases in the context of NLP and text mining, and we will
also provide a code snippet that will be helpful for you to get your job done. We will look at three major
examples that can capture the vast majority of your text mining problems. We will tell you how to run
NLTK at scale to perform some of the NLP tasks that we completed in the initial chapters. We will give
you a few examples of some of the text classification tasks that can be done on Big Data.

One other aspect of doing machine learning and NLP at a very high scale is to understand whether the
problem is parallelizable or not. We will talk in brief about some of the problems discussed in the
previous chapter, and whether these problems are big data problems or not. Or in some case is it even
possible to solve this using Big Data.

Since most of the libraries we learned so far are written in Python, let's deal with one of the main
questions of how to get Python on Big Data (Hadoop).

By end of the chapter we like reader to have :

• Good understanding about big data related technologies such as Hadoop, Hive and how it can be
done using python.

• Step by step tutorial to work with NLTK, Scikit & PySpark on Big Data.

Different ways of using Python on Hadoop
There are many ways to run a Python process on Hadoop. We will talk about some of the most popular
ways through which we can run Python on Hadoop as a streaming MapReduce job, Python UDF in
Hive, and Python hadoop wrappers.

Python streaming

Typically a Hadoop job has to be written in form of a map and reduce function. User has to write an
implementation of map and reduce function for the given task. Commonly these mappers and reducers
are implemented in JAVA. At the same time Hadoop provide streaming, you where a user can write a
Python mapper and reducer function similar to Java in any other language. I am assuming that you have
run a word count example using Python. We will also use the same example using NLTK later in this
chapter.

Note

In case you have not, have a look at

http://www.michael-noll.com/tutorials/writing-an-hadoop-mapreduce-program-in-python/ to know more
about MapReduce in Python.

Hive/Pig UDF

Other way to use Python is by writing a UDF (User Defined Function) in Hive/Pig. The idea here is
that most of the operations we are performing in NLTK are highly parallelizable. For example, POS
tagging, Tokenization, Lemmatization, Stop Word removal, and NER can be highly distributable. The
reason being the content of each row is independent from the other row, and we don't need any context
while doing some of these operations.

So, if we have NLTK and other Python libraries on each node of the cluster, we can write a user defined
function (UDF) in Python, using libraries such as NLTK and scikit. This is one of the easiest way of
doing NLTK, especially for scikit on a large scale. We will give you a glimpse of both of these in this
chapter.

Streaming wrappers

There is a long list of wrappers that different organizations have implemented to get Python running on
the cluster. Some of them are actually quite easy to use, but all of them suffer from performance bias. I
have listed some of them as follows, but you can go through the project page in case you want to know
more about them:

• Hadoopy
• Pydoop
• Dumbo
• mrjob

Note

For the exhaustive list of options available for the usage of Python on Hadoop, go through the article at

http://blog.cloudera.com/blog/2013/01/a-guide-to-python-frameworks-for-hadoop/.

http://www.michael-noll.com/tutorials/writing-an-hadoop-mapreduce-program-in-python/
http://blog.cloudera.com/blog/2013/01/a-guide-to-python-frameworks-for-hadoop/

NLTK on Hadoop
We talked enough about NLTK as a library, and what are some of the most-used functions it gives us.
Now, NLTK can solve many NLP problems from which many are highly parallelizable. This is the
reason why we will try to use NLTK on Hadoop.

The best way of running NLTK on Hadoop is to get it installed on all the nodes of the cluster. This is
probably not that difficult to achieve. There are ways in which you can do this, such as sending the
resource files as a streaming argument. However, we will rather prefer the first option.

A UDF

There are a variety of ways in which we can make NLTK run on Hadoop. Let's talk about one example
of using NLTK by doing tokenization in parallel using a Hive UDF.

For this use case, we have to follow these steps:

1. We have chosen a small dataset where only two columns exist. We have to create the same
schema in Hive:

ID Content

UA0001 "I tried calling you. The service was not up to the mark"

UA0002 "Can you please update my phone no"

UA0003 "Really bad experience"

UA0004 "I am looking for an iPhone"

2. Create the same schema in Hive. The following Hive script will do this for you:

Hive script

CREATE TABLE $InputTableName (
ID String,
Content String
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t';

3. Once we have the schema, essentially, we want to get something like tokens of the content in a
separate column. So, we just want another column in the $outTable with the same schema,
and the added column of tokens:

Hive script

CREATE TABLE $OutTableName (
ID String,
Content String,
Tokens String
)

4. Now, we have the schemas ready. We have to write the UDF in Python to read the table line by
line and then apply a tokenize method. This is very similar to what we did in Chapter 3, Part
of Speech Tagging. This is the piece of function that is analogous to all the examples in Chapter
3, Part of Speech Tagging. Now, if you want to get POS tags, Lemmatization, and HTML, you
just need to modify this UDF. Let's see how the UDF will look for our tokenizer:

>>>import sys
>>>import datetime
>>>import pickle
>>>import nltk
>>>nltk.download('punkt')
>>>for line in sys.stdin:
>>> line = line.strip()
>>> print>>sys.stderr, line
>>> id, content= line.split('\t')
>>> print>>sys.stderr,tok.tokenize(content)
>>> tokens =nltk.word_tokenize(concat_all_text)
>>> print '\t'.join([id,content,tokens])

5. Just name this UDF something like: nltk_scoring.py.
6. Now, we have to run the insert hive query with the TRANSFORM function to apply the UDF on

the given content and to do tokenization and dump the tokens in the new column:

Hive script

add FILE nltk_scoring.py;
add FILE english.pickle; #Adding file to DistributedCache
INSERT OVERWRITE TABLE $OutTableName
SELECT

TRANSFORM (id, content)
USING 'PYTHONPATH nltk_scoring.py'
AS (id string, content string, tokens string)

FROM $InputTablename;

7. If you are getting an error like this, you have not installed the NLTK and NLTK data correctly:

raiseLookupError(resource_not_found)
LookupError:
**

Resource u'tokenizers/punkt/english.pickle' not found. Please

use the NLTK Downloader to obtain the resource: >>>
nltk.download()
Searched in:

- '/home/nltk_data'
- '/usr/share/nltk_data'
- '/usr/local/share/nltk_data'
- '/usr/lib/nltk_data'
- '/usr/local/lib/nltk_data'

8. If you are able to run this Hive job successfully, you will get a table named OutTableName,
that will look something like this:

ID Content

UA0001 "I tried calling you, The service
was not up to the mark"

[" I", " tried", "calling", "you", "The", "service"
"was", "not", "up", "to", "the", "mark"]

UA0002 "Can you please update my
phone no"

["Can", "you", "please" "update", " my", "phone"
"no"]

UA0003 "Really bad experience" ["Really"," bad" "experience"]

UA0004 "I am looking for an iphone" ["I", "am", "looking", "for", "an", "iPhone"]

Python streaming

Let's try the second option of Python streaming. We have Hadoop streaming, where we can write our
own mapper and reducer functions, and then use Python streaming with mapper.py, as it looks quite
similar to our Hive UDF. Here we are using the same example with map-reduce python streaming this
will give us a option of choosing a Hive table or using a HDFS file directly. We will just go over the
content of the file and tokenize it. We will not perform any reduce operation here, but for learning, I
included a dummy reducer, which just dumps it. So now, we can ignore the reducer from the execution
command completely.

Here is the code for the Mapper.py:

Mapper.py

>>>import sys
>>>import pickle
>>>import nltk
>>>for line in sys.stdin:
>>> line = line.strip()
>>> id, content = line.split('\t')

>>> tokens =nltk.word_tokenize(concat_all_text)
>>> print '\t'.join([id,content,topics])

Here is the code for the Reducer.py:

Reducer.py

>>>import sys
>>>import pickle
>>>import nltk
>>>for line in sys.stdin:
>>>

line = line.strip()
>>> id, content,tokens = line.split('\t')
>>> print '\t'.join([id,content,tokens])

The following is the Hadoop command to execute a Python stream:Hive script

hadoop jar <path>/hadoop-streaming.jar \
-D mapred.reduce.tasks=1 -file <path>/mapper.py \
-mapper <path>/mapper.py \
-file <path>/reducer.py \
-reducer <path>/reducer.py \
-input /hdfspath/infile \
-output outfile

Scikit-learn on Hadoop
The other important use case for big data is machine learning. Specially with Hadoop, scikit-learn is
more important, as this is one of the best options we have to score a machine learning model on big data.
Large-scale machine learning is currently one of the hottest topics, and doing this in a big data
environment such as Hadoop is all the more important. Now, the two aspects of machine learning
models are building a model on big data and to build model on a significantly large amount of data and
scoring a significantly large amount of data.

To understand more, let's take the same example data we used in the previous table, where we have
some customer comments. Now, we can build, let's say, a text classification mode using a significant
training sample, and use some of the learnings from Chapter 6, Text Classification to build a Naive
Bayes, SVM, or a logistic regression model on the data. While scoring, we might need to score a huge
amount of data, such as customer comments. On the other hand building the model itself on big data is
not possible with scikit-learn, we will require tool like spark/Mahot for that. We will take the same step-
by-step approach of scoring using a pre-trained model as we did with NLTK. While building the mode
on big data will be covered in the next section. For scoring using a pre-trained model specifically when
we are working on a text mining kind of problem. We need two main objects (a vectorizer and
modelclassifier) to be stored as a serialized pickle object.

Note

Here, pickle is a Python module to achieve serialization by which the object will be saved in a binary
state on the disk and can be consumed by loading again.

https://docs.python.org/2/library/pickle.html

Build an offline model using scikit on your local machine and make sure you pickle objects. For
example, if I use the Naive Bayes example from Chapter 6, Text Classification, we need to store
vectorizer and clf as pickle objects:

>>>vectorizer = TfidfVectorizer(sublinear_tf=True, min_df=in_min_df,
stop_words='english', ngram_range=(1,2), max_df=in_max_df)
>>>joblib.dump(vectorizer, "vectorizer.pkl", compress=3)
>>>clf = GaussianNB().fit(X_train,y_train)
>>>joblib.dump(clf, "classifier.pkl")

The following are the steps for creating a output table which will have all the customer comments for the
entire history:

1. Create the same schema in Hive as we did in the previous example. The following Hive script
will do this for you. This table can be huge; in our case, let's assume that it contains all the
customer comments about the company in the past:

Hive script

https://docs.python.org/2/library/pickle.html

CREATE TABLE $InputTableName (
ID String,
Content String
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t';

2. Build an output table with the output column like the predict and probability score:

Hive script

CREATE TABLE $OutTableName (
ID String,
Content String,
predict String,
predict_score double
)

3. Now, we have to load these pickle objects to the distributed cache using the addFILE
command in Hive:

add FILE vectorizer.pkl;
add FILE classifier.pkl;

4. The next step is to write the Hive UDF, where we are loading these pickle objects. Now, they
start behaving the same as they were on the local. Once we have the classifier and vectorizer
object, we can use our test sample, which is nothing but a string, and generate the TFIDF vector
out of this. The vectorizer object can be used now to predict the class as well as the probability
of the class:

Classification.py

>>>import sys
>>>import pickle
>>>import sklearn
>>>from sklearn.externals import joblib

>>>clf = joblib.load('classifier.pkl')
>>>vectorizer = joblib.load('vectorizer.pkl')

>>>for line in sys.stdin:
>>> line = line.strip()
>>> id, content= line.split('\t')
>>> X_test = vectorizer.transform([str(content)])

>>> prob = clf.predict_proba(X_test)
>>> pred = clf.predict(X_test)
>>> prob_score =prob[:,1]
>>> print '\t'.join([id, content,pred,prob_score])

5. Once we have written the classification.py UDF, we have to also add this UDF to the
distributed cache and then effectively, run this UDF as a TRANSFORM function on each and
every row of the table. The Hive script for this will look like this:

Hive script

add FILE classification.py;

INSERT OVERWRITE TABLE $OutTableName
SELECT

TRANSFORM (id, content)
USING 'python2.7 classification.py'
AS (id string, scorestringscore string)

FROM $Tablename;

6. If everything goes well, then we will have the output table with the output schema as:

ID Content Predict Prob_score

UA0001 "I tried calling you, The service was not up to the mark" Complaint 0.98

UA0002 "Can you please update my phone no " No 0.23

UA0003 "Really bad experience" Complaint 0..97

UA0004 "I am looking for an iPhone " No 0.01

So, our output table will have all the customer comments for the entire history, scores for whether they
were complaints or not, and also a confidence score. We have choosen a Hive UDF for our example, but
the similar process can be done through the Pig and Python steaming in a similar way as we did in
NLTK.

This example was to give you a hands-on experience of how to score a machine learning model on Hive.
In the next example, we will talk about how to build a machine learning/NLP model on big data.

PySpark
Let's go back to the same discussion we had of building a machine learning/NLP model on Hadoop and
the other where we score a ML model on Hadoop. We discussed second option of scoring in depth in the
last section. Instead sampling a smaller data-set and scoring let’s use a larger data-set and build a large-
scale machine learning model step-by-step using PySpark. I am again using the same running data with
the same schema:

ID Comment Class

UA0001 I tried calling you, The service was not up to the mark 1

UA0002 Can you please update my phone no 0

UA0003 Really bad experience 1

UA0004 I am looking for an iPhone 0

UA0005 Can somebody help me with my password 1

UA0006 Thanks for considering my request for 0

Consider the schema for last 10 years worth of comments of the organization. Now, instead of using a
small sample to build a classification model, and then using a pretrained model to score all the
comments, let me give you a step-by-step example of how to build a text classification model using
PySpark.

The first thing that we need to do is we need to import some of the modules. Starting with
SparkContext, which is more of a configuration, you can provide more parameters, such as app
names and others for this.

>>>from pyspark import SparkContext
>>>sc = SparkContext(appName="comment_classifcation")

Note

For more information, go through the article at

http://spark.apache.org/docs/0.7.3/api/pyspark/pyspark.context.SparkContext-class.html.

http://spark.apache.org/docs/0.7.3/api/pyspark/pyspark.context.SparkContext-class.html

The next thing is reading a tab delimited text file. Reading the file should be on HDFS. This file could
be huge (~Tb/Pb):

>>>lines = sc.textFile("testcomments.txt")

The lines are now a list of all the rows in the corpus:

>>>parts = lines.map(lambda l: l.split("\t"))
>>>corpus = parts.map(lambda row: Row(id=row[0], comment=row[1],
class=row[2]))

The part is a list of fields as we have each field in the line delimited on "\t".

Let's break the corpus that has [ID, comment, class (0,1)] in the different RDD objects:

>>>comment = corpus.map(lambda row: " " + row.comment)
>>>class_var = corpus.map(lambda row:row.class)

Once we have the comments, we need to do a process very similar to what we did in Chapter 6, Text
Classification, where we used scikit to do tokenization, hash vectorizer and calculate TF, IDF, and tf-idf
using a vectorizer.

The following is the snippet of how to create tokenization, term frequency, and inverse document
frequency:

>>>from pyspark.mllib.feature import HashingTF
>>>from pyspark.mllib.feature import IDF
https://spark.apache.org/docs/1.2.0/mllib-feature-extraction.html

>>>comment_tokenized = comment.map(lambda line: line.strip().split("
"))
>>>hashingTF = HashingTF(1000) # to select only 1000 features
>>>comment_tf = hashingTF.transform(comment_tokenized)
>>>comment_idf = IDF().fit(comment_tf)
>>>comment_tfidf = comment_idf.transform(comment_tf)

We will merge the class with the tfidf RDD like this:

>>>finaldata = class_var.zip(comment_tfidf)

We will do a typical test, and train sampling:

>>>train, test = finaldata.randomSplit([0.8, 0.2], seed=0)

Let's perform the main classification commands, which are quite similar to scikit. We are using a logistic
regression, which is widely used classifier. The pyspark.mllib provides you with a variety of
algorithms.

Note

For more information on pyspark.mllib visit https://spark.apache.org/docs/latest/api/python/
pyspark.mllib.html

The following is an example of Naive bayes classifier:

>>>from pyspark.mllib.regression import LabeledPoint
>>>from pyspark.mllib.classification import NaiveBayes
>>>train_rdd = train.map(lambda t: LabeledPoint(t[0], t[1]))
>>>test_rdd = test.map(lambda t: LabeledPoint(t[0], t[1]))
>>>nb = NaiveBayes.train(train_rdd,lambda = 1.0)
>>>nb_output = test_rdd.map(lambda point:
(NB.predict(point.features), point.label))
>>>print nb_output

The nb_output command contains the final predictions for the test sample. The great thing to
understand is that with just less than 50 lines, we built a snippet code for an industry-standard text
classification with even petabytes of the training sample.

https://spark.apache.org/docs/latest/api/python/pyspark.mllib.html
https://spark.apache.org/docs/latest/api/python/pyspark.mllib.html

Summary
To summarize this chapter, our objective was to apply the concepts that we learned so far in the context
of big data. In this chapter, you learned how to use some Python libraries, such as NLTK and scikit with
Hadoop. We talked about scoring a machine learning model, or an NLP-based operation.

We also saw three major examples of the most-common use cases. On understanding these examples,
you can apply most of the NLTK, scikit and PySpark functions.

This chapter was a quick and brief introduction to NLP and text mining on big data. This is one of the
hottest topics, and each term and tool which I talked about in the example snippet could be a book in
itself. I tried to give you a hacker's approach, to give you an introduction to big data and text mining on
a large scale. I encourage you to read more about some of these big data technologies such as Hadoop,
Hive, Pig, and Spark and try to explore some of the examples we gave in this chapter.

Part 2. Module 2
Python 3 Text Processing with NLTK 3 Cookbook

Over 80 practical recipes on natural language processing techniques using Python’s NTLK 3.0

Chapter 1. Tokenizing Text and WordNet Basics
In this chapter, we will cover the following recipes:

• Tokenizing text into sentences
• Tokenizing sentences into words
• Tokenizing sentences using regular expressions
• Training a sentence tokenizer
• Filtering stopwords in a tokenized sentence
• Looking up Synsets for a word in WordNet
• Looking up lemmas and synonyms in WordNet
• Calculating WordNet Synset similarity
• Discovering word collocations

Introduction
Natural Language ToolKit (NLTK) is a comprehensive Python library for natural language processing
and text analytics. Originally designed for teaching, it has been adopted in the industry for research and
development due to its usefulness and breadth of coverage. NLTK is often used for rapid prototyping of
text processing programs and can even be used in production applications. Demos of select NLTK
functionality and production-ready APIs are available at http://text-processing.com.

This chapter will cover the basics of tokenizing text and using WordNet. Tokenization is a method of
breaking up a piece of text into many pieces, such as sentences and words, and is an essential first step
for recipes in the later chapters. WordNet is a dictionary designed for programmatic access by natural
language processing systems. It has many different use cases, including:

• Looking up the definition of a word
• Finding synonyms and antonyms
• Exploring word relations and similarity
• Word sense disambiguation for words that have multiple uses and definitions

NLTK includes a WordNet corpus reader, which we will use to access and explore WordNet. A corpus is
just a body of text, and corpus readers are designed to make accessing a corpus much easier than direct
file access. We'll be using WordNet again in the later chapters, so it's important to familiarize yourself
with the basics first.

http://text-processing.com

Tokenizing text into sentences
Tokenization is the process of splitting a string into a list of pieces or tokens. A token is a piece of a
whole, so a word is a token in a sentence, and a sentence is a token in a paragraph. We'll start with
sentence tokenization, or splitting a paragraph into a list of sentences.

Getting ready

Installation instructions for NLTK are available at http://nltk.org/install.html and the latest version at the
time of writing this is Version 3.0b1. This version of NLTK is built for Python 3.0 or higher, but it is
backwards compatible with Python 2.6 and higher. In this book, we will be using Python 3.3.2. If you've
used earlier versions of NLTK (such as version 2.0), note that some of the APIs have changed in Version
3 and are not backwards compatible.

Once you've installed NLTK, you'll also need to install the data following the instructions at
http://nltk.org/data.html. I recommend installing everything, as we'll be using a number of corpora and
pickled objects. The data is installed in a data directory, which on Mac and Linux/Unix is usually
/usr/share/nltk_data, or on Windows is C:\nltk_data. Make sure that tokenizers/
punkt.zip is in the data directory and has been unpacked so that there's a file at tokenizers/
punkt/PY3/english.pickle.

Finally, to run the code examples, you'll need to start a Python console. Instructions on how to do so are
available at http://nltk.org/install.html. For Mac and Linux/Unix users, you can open a terminal and type
python.

How to do it...

Once NLTK is installed and you have a Python console running, we can start by creating a paragraph of
text:

>>> para = "Hello World. It's good to see you. Thanks for buying
this book."

Tip

Downloading the example code

You can download the example code files for all Packt books you have purchased from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.

Now we want to split the paragraph into sentences. First we need to import the sentence tokenization
function, and then we can call it with the paragraph as an argument:

>>> from nltk.tokenize import sent_tokenize
>>> sent_tokenize(para)

http://nltk.org/install.html
http://nltk.org/data.html
http://nltk.org/install.html
http://www.packtpub.com
http://www.packtpub.com/support

['Hello World.', "It's good to see you.", 'Thanks for buying this
book.']

So now we have a list of sentences that we can use for further processing.

How it works...

The sent_tokenize function uses an instance of PunktSentenceTokenizer from the
nltk.tokenize.punkt module. This instance has already been trained and works well for many
European languages. So it knows what punctuation and characters mark the end of a sentence and the
beginning of a new sentence.

There's more...

The instance used in sent_tokenize() is actually loaded on demand from a pickle file. So if you're
going to be tokenizing a lot of sentences, it's more efficient to load the PunktSentenceTokenizer
class once, and call its tokenize() method instead:

>>> import nltk.data
>>> tokenizer = nltk.data.load('tokenizers/punkt/PY3/english.pickle')
>>> tokenizer.tokenize(para)
['Hello World.', "It's good to see you.", 'Thanks for buying this
book.']

Tokenizing sentences in other languages

If you want to tokenize sentences in languages other than English, you can load one of the other pickle
files in tokenizers/punkt/PY3 and use it just like the English sentence tokenizer. Here's an
example for Spanish:

>>> spanish_tokenizer = nltk.data.load('tokenizers/punkt/PY3/
spanish.pickle')
>>> spanish_tokenizer.tokenize('Hola amigo. Estoy bien.')
['Hola amigo.', 'Estoy bien.']

You can see a list of all the available language tokenizers in /usr/share/nltk_data/
tokenizers/punkt/PY3 (or C:\nltk_data\tokenizers\punkt\PY3).

See also

In the next recipe, we'll learn how to split sentences into individual words. After that, we'll cover how to
use regular expressions to tokenize text. We'll cover how to train your own sentence tokenizer in an
upcoming recipe, Training a sentence tokenizer.

Tokenizing sentences into words
In this recipe, we'll split a sentence into individual words. The simple task of creating a list of words
from a string is an essential part of all text processing.

How to do it...

Basic word tokenization is very simple; use the word_toke nize() function:

>>> from nltk.tokenize import word_tokenize
>>> word_tokenize('Hello World.')
['Hello', 'World', '.']

How it works...

The word_tokenize() function is a wrapper function that calls tokenize() on an instance of the
TreebankWordTokenizer class. It's equivalent to the following code:

>>> from nltk.tokenize import TreebankWordTokenizer
>>> tokenizer = TreebankWordTokenizer()
>>> tokenizer.tokenize('Hello World.')
['Hello', 'World', '.']

It works by separating words using spaces and punctuation. And as you can see, it does not discard the
punctuation, allowing you to decide what to do with it.

There's more...

Ignoring the obviously named WhitespaceTokenizer and SpaceTokenizer, there are two
other word tokenizers worth looking at: PunktWordTokenizer and WordPunctTokenizer.
These differ from TreebankWordTokenizer by how they handle punctuation and contractions, but
they all inherit from TokenizerI. The inheritance tree looks like what's shown in the following
diagram:

Separating contractions

The TreebankWordTokenizer class uses conventions found in the Penn Treebank corpus. This
corpus is one of the most used corpora for natural language processing, and was created in the 1980s by
annotating articles from the Wall Street Journal. We'll be using this later in Chapter 4, Part-of-speech
Tagging, and Chapter 5, Extracting Chunks.

One of the tokenizer's most significant conventions is to separate contractions. For example, consider
the following code:

>>> word_tokenize("can't")
['ca', "n't"]

If you find this convention unacceptable, then read on for alternatives, and see the next recipe for
tokenizing with regular expressions.

PunktWordTokenizer

An alternative word tokenizer is PunktWordTokenizer. It splits on punctuation, but keeps it with
the word instead of creating separate tokens, as shown in the following code:

>>> from nltk.tokenize import PunktWordTokenizer
>>> tokenizer = PunktWordTokenizer()

>>> tokenizer.tokenize("Can't is a contraction.")
['Can', "'t", 'is', 'a', 'contraction.']

WordPunctTokenizer

Another alternative word tokenizer is WordPunctTokenizer. It splits all punctuation into separate
tokens:

>>> from nltk.tokenize import WordPunctTokenizer
>>> tokenizer = WordPunctTokenizer()
>>> tokenizer.tokenize("Can't is a contraction.")
['Can', "'", 't', 'is', 'a', 'contraction', '.']

See also

For more control over word tokenization, you'll want to read the next recipe to learn how to use regular
expressions and the RegexpTokenizer for tokenization. And for more on the Penn Treebank corpus,
visit http://www.cis.upenn.edu/~treebank/.

http://www.cis.upenn.edu/~treebank/

Tokenizing sentences using regular expressions
Regular expressions can be used if you want complete control over how to tokenize text. As regular
expressions can get complicated very quickly, I only recommend using them if the word tokenizers
covered in the previous recipe are unacceptable.

Getting ready

First you need to decide how you want to tokenize a piece of text as this will determine how you
construct your regular expression. The choices are:

• Match on the tokens
• Match on the separators or gaps

We'll start with an example of the first, matching alphanumeric tokens plus single quotes so that we don't
split up contractions.

How to do it...

We'll create an instance of RegexpTokenizer, giving it a regular expression string to use for
matching tokens:

>>> from nltk.tokenize import RegexpTokenizer
>>> tokenizer = RegexpTokenizer("[\w']+")
>>> tokenizer.tokenize("Can't is a contraction.")
["Can't", 'is', 'a', 'contraction']

There's also a simple helper function you can use if you don't want to instantiate the class, as shown in
the following code:

>>> from nltk.tokenize import regexp_tokenize
>>> regexp_tokenize("Can't is a contraction.", "[\w']+")
["Can't", 'is', 'a', 'contraction']

Now we finally have something that can treat contractions as whole words, instead of splitting them into
tokens.

How it works...

The RegexpTokenizer class works by compiling your pattern, then calling re.findall() on
your text. You could do all this yourself using the re module, but RegexpTokenizer implements the
TokenizerI interface, just like all the word tokenizers from the previous recipe. This means it can be
used by other parts of the NLTK package, such as corpus readers, which we'll cover in detail in Chapter
3, Creating Custom Corpora. Many corpus readers need a way to tokenize the text they're reading, and
can take optional keyword arguments specifying an instance of a TokenizerI subclass. This way, you
have the ability to provide your own tokenizer instance if the default tokenizer is unsuitable.

There's more...

RegexpTokenizer can also work by matching the gaps, as opposed to the tokens. Instead of using
re.findall(), the RegexpTokenizer class will use re.split(). This is how the
BlanklineTokenizer class in nltk.tokenize is implemented.

Simple whitespace tokenizer

The following is a simple example of using RegexpT okenizer to tokenize on whitespace:

>>> tokenizer = RegexpTokenizer('\s+', gaps=True)
>>> tokenizer.tokenize("Can't is a contraction.")
["Can't", 'is', 'a', 'contraction.']

Notice that punctuation still remains in the tokens. The gaps=True parameter means that the pattern is
used to identify gaps to tokenize on. If we used gaps=False, then the pattern would be used to
identify tokens.

See also

For simpler word tokenization, see the previous recipe.

Training a sentence tokenizer
NLTK's default sentence tokenizer is general purpose, and usually works quite well. But sometimes it is
not the best choice for your text. Perhaps your text uses nonstandard punctuation, or is formatted in a
unique way. In such cases, training your own sentence tokenizer can result in much more accurate
sentence tokenization.

Getting ready

For this example, we'll be using the webtext corpus, specifically the overheard.txt file, so make
sure you've downloaded this corpus. The text in this file is formatted as dialog that looks like this:

White guy: So, do you have any plans for this evening?
Asian girl: Yeah, being angry!
White guy: Oh, that sounds good.

As you can see, this isn't your standard paragraph of sentences formatting, which makes it a perfect case
for training a sentence tokenizer.

How to do it...

NLTK provides a PunktSentenceTokenizer class that you can train on raw text to produce a
custom sentence tokenizer. You can get raw text either by reading in a file, or from an NLTK corpus
using the raw() method. Here's an example of training a sentence tokenizer on dialog text, using
overheard.txt from the webtext corpus:

>>> from nltk.tokenize import PunktSentenceTokenizer
>>> from nltk.corpus import webtext
>>> text = webtext.raw('overheard.txt')
>>> sent_tokenizer = PunktSentenceTokenizer(text)

Let's compare the results to the default sentence tokenizer, as follows:

>>> sents1 = sent_tokenizer.tokenize(text)
>>> sents1[0]
'White guy: So, do you have any plans for this evening?'

>>> from nltk.tokenize import sent_tokenize
>>> sents2 = sent_tokenize(text)
>>> sents2[0]
'White guy: So, do you have any plans for this evening?'
>>> sents1[678]
'Girl: But you already have a Big Mac...'
>>> sents2[678]
'Girl: But you already have a Big Mac...\\nHobo: Oh, this is all
theatrical.'

While the first sentence is the same, you can see that the tokenizers disagree on how to tokenize
sentence 679 (this is the first sentence where the tokenizers diverge). The default tokenizer includes the
next line of dialog, while our custom tokenizer correctly thinks that the next line is a separate sentence.
This difference is a good demonstration of why it can be useful to train your own sentence tokenizer,
especially when your text isn't in the typical paragraph-sentence structure.

How it works...

The PunktSentenceTokenizer class uses an unsupervised learning algorithm to learn what
constitutes a sentence break. It is unsupervised because you don't have to give it any labeled training
data, just raw text. You can read more about these kinds of algorithms at https://en.wikipedia.org/wiki/
Unsupervised_learning. The specific technique used in this case is called sentence boundary detection
and it works by counting punctuation and tokens that commonly end a sentence, such as a period or
newline, then using the resulting frequencies to decide what the sentence boundaries should actually
look like.

This is a simplified description of the algorithm—if you'd like more details, take a look at the source
code of the nltk.tokenize.punkt.PunktTrainer class, which can be found online at
http://www.nltk.org/_modules/nltk/tokenize/punkt.html#PunktSentenceTokenizer.

There's more...

The PunktSentenceTokenizer class learns from any string, which means you can open a text file
and read its content. Here is an example of reading overheard.txt directly instead of using the
raw() corpus method. This assumes that the webtext corpus is located in the standard directory at
/usr/share/nltk_data/corpora. We also have to pass a specific encoding to the open()
function, as follows, because the file is not in ASCII:

>>> with open('/usr/share/nltk_data/corpora/webtext/overheard.txt',
encoding='ISO-8859-2') as f:
... text = f.read()
>>> sent_tokenizer = PunktSentenceTokenizer(text)
>>> sents = sent_tokenizer.tokenize(text)
>>> sents[0]
'White guy: So, do you have any plans for this evening?'
>>> sents[678]
'Girl: But you already have a Big Mac...'

Once you have a custom sentence tokenizer, you can use it for your own corpora. Many corpus readers
accept a sent_tokenizer parameter, which lets you override the default sentence tokenizer object
with your own sentence tokenizer. Corpus readers are covered in more detail in Chapter 3, Creating
Custom Corpora.

See also

Most of the time, the default sentence tokenizer will be sufficient. This is covered in the first recipe,
Tokenizing text into sentences.

https://en.wikipedia.org/wiki/Unsupervised_learning
https://en.wikipedia.org/wiki/Unsupervised_learning
http://www.nltk.org/_modules/nltk/tokenize/punkt.html#PunktSentenceTokenizer

Filtering stopwords in a tokenized sentence
Stopwords are common words that generally do not contribute to the meaning of a sentence, at least for
the purposes of information retrieval and natural language processing. These are words such as the and
a. Most search engines will filter out stopwords from search queries and documents in order to save
space in their index.

Getting ready

NLTK comes with a stopwords corpus that contains word lists for many languages. Be sure to unzip
the data file, so NLTK can find these word lists at nltk_data/corpora/stopwords/.

How to do it...

We're going to create a set of all English stopwords, then use it to filter stopwords from a sentence with
the help of the following code:

>>> from nltk.corpus import stopwords
>>> english_stops = set(stopwords.words('english'))
>>> words = ["Can't", 'is', 'a', 'contraction']
>>> [word for word in words if word not in english_stops]
["Can't", 'contraction']

How it works...

The stopwords corpus is an instance of nltk.corpus.reader.WordListCorpusReader.
As such, it has a words() method that can take a single argument for the file ID, which in this case is
'english', referring to a file containing a list of English stopwords. You could also call
stopwords.words() with no argument to get a list of all stopwords in every language available.

There's more...

You can see the list of all English stopwords using stopwords.words('english') or by
examining the word list file at nltk_data/corpora/stopwords/english. There are also
stopword lists for many other languages. You can see the complete list of languages using the fileids
method as follows:

>>> stopwords.fileids()
['danish', 'dutch', 'english', 'finnish', 'french', 'german',
'hungarian', 'italian', 'norwegian', 'portuguese', 'russian',
'spanish', 'swedish', 'turkish']

Any of these fileids can be used as an argument to the words() method to get a list of stopwords
for that language. For example:

>>> stopwords.words('dutch')
['de', 'en', 'van', 'ik', 'te', 'dat', 'die', 'in', 'een', 'hij',
'het', 'niet', 'zijn', 'is', 'was', 'op', 'aan', 'met', 'als',
'voor', 'had', 'er', 'maar', 'om', 'hem', 'dan', 'zou', 'of', 'wat',
'mijn', 'men', 'dit', 'zo', 'door', 'over', 'ze', 'zich', 'bij',
'ook', 'tot', 'je', 'mij', 'uit', 'der', 'daar', 'haar', 'naar',
'heb', 'hoe', 'heeft', 'hebben', 'deze', 'u', 'want', 'nog', 'zal',
'me', 'zij', 'nu', 'ge', 'geen', 'omdat', 'iets', 'worden', 'toch',
'al', 'waren', 'veel', 'meer', 'doen', 'toen', 'moet', 'ben',
'zonder', 'kan', 'hun', 'dus', 'alles', 'onder', 'ja', 'eens',
'hier', 'wie', 'werd', 'altijd', 'doch', 'wordt', 'wezen', 'kunnen',
'ons', 'zelf', 'tegen', 'na', 'reeds', 'wil', 'kon', 'niets', 'uw',
'iemand', 'geweest', 'andere']

See also

If you'd like to create your own stopwords corpus, see the Creating a wordlist corpus recipe in
Chapter 3, Creating Custom Corpora, to learn how to use WordListCorpusReader. We'll also be
using stopwords in the Discovering word collocations recipe later in this chapter.

Looking up Synsets for a word in WordNet
WordNet is a lexical database for the English language. In other words, it's a dictionary designed
specifically for natural language processing.

NLTK comes with a simple interface to look up words in WordNet. What you get is a list of Synset
instances, which are groupings of synonymous words that express the same concept. Many words have
only one Synset, but some have several. In this recipe, we'll explore a single Synset, and in the next
recipe, we'll look at several in more detail.

Getting ready

Be sure you've unzipped the wordnet corpus at nltk_data/corpora/wordnet. This will allow
WordNetCorpusReader to access it.

How to do it...

Now we're going to look up the Synset for cookbook, and explore some of the properties and methods
of a Synset using the following code:

>>> from nltk.corpus import wordnet
>>> syn = wordnet.synsets('cookbook')[0]
>>> syn.name()
'cookbook.n.01'
>>> syn.definition()
'a book of recipes and cooking directions'

How it works...

You can look up any word in WordNet using wordnet.synsets(word) to get a list of Synsets. The
list may be empty if the word is not found. The list may also have quite a few elements, as some words
can have many possible meanings, and, therefore, many Synsets.

There's more...

Each Synset in the list has a number of methods you can use to learn more about it. The name()
method will give you a unique name for the Synset, which you can use to get the Synset directly:

>>> wordnet.synset('cookbook.n.01')
Synset('cookbook.n.01')

The definition() method should be self-explanatory. Some Synsets also have an examples()
method, which contains a list of phrases that use the word in context:

>>> wordnet.synsets('cooking')[0].examples()
['cooking can be a great art', 'people are needed who have

experience in cookery', 'he left the preparation of meals to his
wife']

Working with hypernyms

Synsets are organized in a structure similar to that of an inheritance tree. More abstract terms are known
as hypernyms and more specific terms are hyponyms. This tree can be traced all the way up to a root
hypernym.

Hypernyms provide a way to categorize and group words based on their similarity to each other. The
Calculating WordNet Synset similarity recipe details the functions used to calculate the similarity based
on the distance between two words in the hypernym tree:

>>> syn.hypernyms()
[Synset('reference_book.n.01')]
>>> syn.hypernyms()[0].hyponyms()
[Synset('annual.n.02'), Synset('atlas.n.02'),
Synset('cookbook.n.01'), Synset('directory.n.01'),
Synset('encyclopedia.n.01'), Synset('handbook.n.01'),
Synset('instruction_book.n.01'), Synset('source_book.n.01'),
Synset('wordbook.n.01')]
>>> syn.root_hypernyms()
[Synset('entity.n.01')]

As you can see, reference_book is a hypernym of cookbook, but cookbook is only one of the
many hyponyms of reference_book. And all these types of books have the same root hypernym,
which is entity, one of the most abstract terms in the English language. You can trace the entire path
from entity down to cookbook using the hypernym_paths() method, as follows:

>>> syn.hypernym_paths()
[[Synset('entity.n.01'), Synset('physical_entity.n.01'),
Synset('object.n.01'), Synset('whole.n.02'),
Synset('artifact.n.01'), Synset('creation.n.02'),
Synset('product.n.02'), Synset('work.n.02'),
Synset('publication.n.01'), Synset('book.n.01'),
Synset('reference_book.n.01'), Synset('cookbook.n.01')]]

The hypernym_paths() method returns a list of lists, where each list starts at the root hypernym and
ends with the original Synset. Most of the time, you'll only get one nested list of Synsets.

Part of speech (POS)

You can also look up a simplified part-of-speech tag as follows:

>>> syn.pos()
'n'

There are four common part-of-speech tags (or POS tags) found in WordNet, as shown in the following
table:

Part of speech Tag

Noun n

Adjective a

Adverb r

Verb v

These POS tags can be used to look up specific Synsets for a word. For example, the word 'great'
can be used as a noun or an adjective. In WordNet, 'great' has 1 noun Synset and 6 adjective
Synsets, as shown in the following code:

>>> len(wordnet.synsets('great'))
7
>>> len(wordnet.synsets('great', pos='n'))
1
>>> len(wordnet.synsets('great', pos='a'))
6

These POS tags will be referenced more in the Using WordNet for tagging recipe in Chapter 4, Part-of-
speech Tagging.

See also

In the next two recipes, we'll explore lemmas and how to calculate Synset similarity. And in Chapter 2,
Replacing and Correcting Words, we'll use WordNet for lemmatization, synonym replacement, and then
explore the use of antonyms.

Looking up lemmas and synonyms in WordNet
Building on the previous recipe, we can also look up lemmas in WordNet to find synonyms of a word. A
lemma (in linguistics), is the canonical form or morphological form of a word.

How to do it...

In the following code, we'll find that there are two lemmas for the cookbook Synset using the
lemmas() method:

>>> from nltk.corpus import wordnet
>>> syn = wordnet.synsets('cookbook')[0]
>>> lemmas = syn.lemmas()
>>> len(lemmas)
2
>>> lemmas[0].name()
'cookbook'
>>> lemmas[1].name()
'cookery_book'
>>> lemmas[0].synset() == lemmas[1].synset()
True

How it works...

As you can see, cookery_book and cookbook are two distinct lemmas in the same Synset. In fact, a
lemma can only belong to a single Synset. In this way, a Synset represents a group of lemmas that all
have the same meaning, while a lemma represents a distinct word form.

There's more...

Since all the lemmas in a Synset have the same meaning, they can be treated as synonyms. So if you
wanted to get all synonyms for a Synset, you could do the following:

>>> [lemma.name() for lemma in syn.lemmas()]
['cookbook', 'cookery_book']

All possible synonyms

As mentioned earlier, many words have multiple Synsets because the word can have different meanings
depending on the context. But, let's say you didn't care about the context, and wanted to get all the
possible synonyms for a word:

>>> synonyms = []
>>> for syn in wordnet.synsets('book'):
... for lemma in syn.lemmas():
... synonyms.append(lemma.name())

>>> len(synonyms)
38

As you can see, there appears to be 38 possible synonyms for the word 'book'. But in fact, some
synonyms are verb forms, and many synonyms are just different usages of 'book'. If, instead, we take
the set of synonyms, there are fewer unique words, as shown in the following code:

>>> len(set(synonyms))
25

Antonyms

Some lemmas also have antonyms. The word good, for example, has 27 Synsets, five of which have
lemmas with antonyms, as shown in the following code:

>>> gn2 = wordnet.synset('good.n.02')
>>> gn2.definition()
'moral excellence or admirableness'
>>> evil = gn2.lemmas()[0].antonyms()[0]
>>> evil.name
'evil'
>>> evil.synset().definition()
'the quality of being morally wrong in principle or practice'
>>> ga1 = wordnet.synset('good.a.01')
>>> ga1.definition()
'having desirable or positive qualities especially those suitable
for a thing specified'
>>> bad = ga1.lemmas()[0].antonyms()[0]
>>> bad.name()
'bad'
>>> bad.synset().definition()
'having undesirable or negative qualities'

The antonyms() method returns a list of lemmas. In the first case, as we can see in the previous code,
the second Synset for good as a noun is defined as moral excellence, and its first antonym is
evil, defined as morally wrong. In the second case, when good is used as an adjective to describe
positive qualities, the first antonym is bad, which describes negative qualities.

See also

In the next recipe, we'll learn how to calculate Synset similarity. Then in Chapter 2, Replacing and
Correcting Words, we'll revisit lemmas for lemmatization, synonym replacement, and antonym
replacement.

Calculating WordNet Synset similarity
Synsets are organized in a hypernym tree. This tree can be used for reasoning about the similarity
between the Synsets it contains. The closer the two Synsets are in the tree, the more similar they are.

How to do it...

If you were to look at all the hyponyms of reference_book (which is the hypernym of cookbook),
you'd see that one of them is instruction_book. This seems intuitively very similar to a
cookbook, so let's see what WordNet similarity has to say about it with the help of the following code:

>>> from nltk.corpus import wordnet
>>> cb = wordnet.synset('cookbook.n.01')
>>> ib = wordnet.synset('instruction_book.n.01')
>>> cb.wup_similarity(ib)
0.9166666666666666

So they are over 91% similar!

How it works...

The wup_similarity method is short for Wu-Palmer Similarity, which is a scoring method based
on how similar the word senses are and where the Synsets occur relative to each other in the hypernym
tree. One of the core metrics used to calculate similarity is the shortest path distance between the two
Synsets and their common hypernym:

>>> ref = cb.hypernyms()[0]
>>> cb.shortest_path_distance(ref)
1
>>> ib.shortest_path_distance(ref)
1
>>> cb.shortest_path_distance(ib)
2

So cookbook and instruction_book must be very similar, because they are only one step away
from the same reference_book hypernym, and, therefore, only two steps away from each other.

There's more...

Let's look at two dissimilar words to see what kind of score we get. We'll compare dog with
cookbook, two seemingly very different words.

>>> dog = wordnet.synsets('dog')[0]
>>> dog.wup_similarity(cb)
0.38095238095238093

Wow, dog and cookbook are apparently 38% similar! This is because they share common hypernyms
further up the tree:

>>> sorted(dog.common_hypernyms(cb))
[Synset('entity.n.01'), Synset('object.n.01'),
Synset('physical_entity.n.01'), Synset('whole.n.02')]

Comparing verbs

The previous comparisons were all between nouns, but the same can be done for verbs as well:

>>> cook = wordnet.synset('cook.v.01')
>>> bake = wordnet.0('bake.v.02')
>>> cook.wup_similarity(bake)
00.6666666666666666

The previous Synsets were obviously handpicked for demonstration, and the reason is that the hypernym
tree for verbs has a lot more breadth and a lot less depth. While most nouns can be traced up to the
hypernym object, thereby providing a basis for similarity, many verbs do not share common
hypernyms, making WordNet unable to calculate the similarity. For example, if you were to use the
Synset for bake.v.01 in the previous code, instead of bake.v.02, the return value would be None.
This is because the root hypernyms of both the Synsets are different, with no overlapping paths. For this
reason, you also cannot calculate the similarity between words with different parts of speech.

Path and Leacock Chordorow (LCH) similarity

Two other similarity comparisons are the path similarity and the LCH similarity, as shown in the
following code:

>>> cb.path_similarity(ib)
0.3333333333333333
>>> cb.path_similarity(dog)
0.07142857142857142
>>> cb.lch_similarity(ib)
2.538973871058276
>>> cb.lch_similarity(dog)
0.9985288301111273

As you can see, the number ranges are very different for these scoring methods, which is why I prefer
the wup_similarity method.

See also

The recipe on Looking up Synsets for a word in WordNet has more details about hypernyms and the
hypernym tree.

Discovering word collocations
Collocations are two or more words that tend to appear frequently together, such as United States. Of
course, there are many other words that can come after United, such as United Kingdom and United
Airlines. As with many aspects of natural language processing, context is very important. And for
collocations, context is everything!

In the case of collocations, the context will be a document in the form of a list of words. Discovering
collocations in this list of words means that we'll find common phrases that occur frequently throughout
the text. For fun, we'll start with the script for Monty Python and the Holy Grail.

Getting ready

The script for Monty Python and the Holy Grail is found in the webtext corpus, so be sure that it's
unzipped at nltk_data/corpora/webtext/.

How to do it...

We're going to create a list of all lowercased words in the text, and then produce
BigramCollocationFinder, which we can use to find bigrams, which are pairs of words. These
bigrams are found using association measurement functions in the nltk.met rics package, as
follows:

>>> from nltk.corpus import webtext
>>> from nltk.collocations import BigramCollocationFinder
>>> from nltk.metrics import BigramAssocMeasures
>>> words = [w.lower() for w in webtext.words('grail.txt')]
>>> bcf = BigramCollocationFinder.from_words(words)
>>> bcf.nbest(BigramAssocMeasures.likelihood_ratio, 4)
[("'", 's'), ('arthur', ':'), ('#', '1'), ("'", 't')]

Well, that's not very useful! Let's refine it a bit by adding a word filter to remove punctuation and
stopwords:

>>> from nltk.corpus import stopwords
>>> stopset = set(stopwords.words('english'))
>>> filter_stops = lambda w: len(w) < 3 or w in stopset
>>> bcf.apply_word_filter(filter_stops)
>>> bcf.nbest(BigramAssocMeasures.likelihood_ratio, 4)
[('black', 'knight'), ('clop', 'clop'), ('head', 'knight'),
('mumble', 'mumble')]

Much better, we can clearly see four of the most common bigrams in Monty Python and the Holy Grail.
If you'd like to see more than four, simply increase the number to whatever you want, and the
collocation finder will do its best.

How it works...

BigramCollocationFinder constructs two frequency distributions: one for each word, and
another for bigrams. A frequency distribution, or FreqDist in NLTK, is basically an enhanced Python
dictionary where the keys are what's being counted, and the values are the counts. Any filtering
functions that are applied reduce the size of these two FreqDists by eliminating any words that don't
pass the filter. By using a filtering function to eliminate all words that are one or two characters, and all
English stopwords, we can get a much cleaner result. After filtering, the collocation finder is ready to
accept a generic scoring function for finding collocations.

There's more...

In addition to BigramCollocationFinder, there's also TrigramCollocationFinder, which
finds triplets instead of pairs. This time, we'll look for trigrams in Australian singles advertisements with
the help of the following code:

>>> from nltk.collocations import TrigramCollocationFinder
>>> from nltk.metrics import TrigramAssocMeasures
>>> words = [w.lower() for w in webtext.words('singles.txt')]
>>> tcf = TrigramCollocationFinder.from_words(words)
>>> tcf.apply_word_filter(filter_stops)
>>> tcf.apply_freq_filter(3)
>>> tcf.nbest(TrigramAssocMeasures.likelihood_ratio, 4)
[('long', 'term', 'relationship')]

Now, we don't know whether people are looking for a long-term relationship or not, but clearly it's an
important topic. In addition to the stopword filter, I also applied a frequency filter, which removed any
trigrams that occurred less than three times. This is why only one result was returned when we asked for
four because there was only one result that occurred more than two times.

Scoring functions

There are many more scoring functions available besides likelihood_ratio(). But other than
raw_freq(), you may need a bit of a statistics background to understand how they work. Consult the
NLTK API documentation for NgramAssocMeasures in the nltk.metrics package to see all
the possible scoring functions.

Scoring ngrams

In addition to the nbest() method, there are two other ways to get ngrams (a generic term used for
describing bigrams and trigrams) from a collocation finder:

• above_score(score_fn, min_score): This can be used to get all ngrams with scores
that are at least min_score. The min_score value that you choose will depend heavily on
the score_fn you use.

• score_ngrams(score_fn): This will return a list with tuple pairs of (ngram, score). This
can be used to inform your choice for min_score.

See also

The nltk.metrics module will be used again in the Measuring precision and recall of a classifier
and Calculating high information words recipes in Chapter 7, Text Classification.

Chapter 2. Replacing and Correcting Words
In this chapter, we will cover the following recipes:

• Stemming words
• Lemmatizing words with WordNet
• Replacing words matching regular expressions
• Removing repeating characters
• Spelling correction with Enchant
• Replacing synonyms
• Replacing negations with antonyms

Introduction
In this chapter, we will go over various word replacement and correction techniques. The recipes cover
the gamut of linguistic compression, spelling correction, and text normalization. All of these methods
can be very useful for preprocessing text before search indexing, document classification, and text
analysis.

Stemming words
Stemming is a technique to remove affixes from a word, ending up with the stem. For example, the stem
of cooking is cook, and a good stemming algorithm knows that the ing suffix can be removed.
Stemming is most commonly used by search engines for indexing words. Instead of storing all forms of
a word, a search engine can store only the stems, greatly reducing the size of index while increasing
retrieval accuracy.

One of the most common stemming algorithms is the Porter stemming algorithm by Martin Porter. It
is designed to remove and replace well-known suffixes of English words, and its usage in NLTK will be
covered in the next section.

Note

The resulting stem is not always a valid word. For example, the stem of cookery is cookeri. This is
a feature, not a bug.

How to do it...

NLTK comes with an implementation of the Porter stemming algorithm, which is very easy to use.
Simply instantiate the PorterStemmer class and call the stem() method with the word you want to
stem:

>>> from nltk.stem import PorterStemmer
>>> stemmer = PorterStemmer()
>>> stemmer.stem('cooking')
'cook'
>>> stemmer.stem('cookery')
'cookeri'

How it works...

The PorterStemmer class knows a number of regular word forms and suffixes and uses this
knowledge to transform your input word to a final stem through a series of steps. The resulting stem is
often a shorter word, or at least a common form of the word, which has the same root meaning.

There's more...

There are other stemming algorithms out there besides the Porter stemming algorithm, such as the
Lancaster stemming algorithm, developed at Lancaster University. NLTK includes it as the
LancasterStemmer class. At the time of writing this book, there is no definitive research
demonstrating the superiority of one algorithm over the other. However, Porter stemming algorithm is
generally the default choice.

All the stemmers covered next inherit from the StemmerI interface, which defines the stem()
method. The following is an inheritance diagram that explains this:

The LancasterStemmer class

The functions of the LancasterStemmer class are just like the functions of the PorterStemmer
class, but can produce slightly different results. It is known to be slightly more aggressive than the
PorterStemmer functions:

>>> from nltk.stem import LancasterStemmer
>>> stemmer = LancasterStemmer()
>>> stemmer.stem('cooking')
'cook'
>>> stemmer.stem('cookery')
'cookery'

The RegexpStemmer class

You can also construct your own stemmer using the RegexpStemmer class. It takes a single regular
expression (either compiled or as a string) and removes any prefix or suffix that matches the expression:

>>> from nltk.stem import RegexpStemmer
>>> stemmer = RegexpStemmer('ing')
>>> stemmer.stem('cooking')
'cook'
>>> stemmer.stem('cookery')
'cookery'
>>> stemmer.stem('ingleside')
'leside'

A RegexpStemmer class should only be used in very specific cases that are not covered by the
PorterStemmer or the LancasterStemmer class because it can only handle very specific
patterns and is not a general-purpose algorithm.

The SnowballStemmer class

The SnowballStemmer class supports 13 non-English languages. It also provides two English
stemmers: the original porter algorithm as well as the new English stemming algorithm. To use the
SnowballStemmer class, create an instance with the name of the language you are using and then
call the stem() method. Here is a list of all the supported languages and an example using the Spanish
SnowballStemmer class:

>>> from nltk.stem import SnowballStemmer
>>> SnowballStemmer.languages('danish', 'dutch', 'english',
'finnish', 'french', 'german', 'hungarian', 'italian', 'norwegian',
'porter', 'portuguese', 'romanian', 'russian', 'spanish', 'swedish')
>>> spanish_stemmer = SnowballStemmer('spanish')
>>> spanish_stemmer.stem('hola')
u'hol'

See also

In the next recipe, we will cover Lemmatization, which is quite similar to stemming, but subtly different.

Lemmatizing words with WordNet
Lemmatization is very similar to stemming, but is more akin to synonym replacement. A lemma is a
root word, as opposed to the root stem. So unlike stemming, you are always left with a valid word that
means the same thing. However, the word you end up with can be completely different. A few examples
will explain this.

Getting ready

Make sure that you have unzipped the wordnet corpus in nltk_data/corpora/wordnet. This
will allow the WordNetLemmatizer class to access WordNet. You should also be familiar with the
part-of-speech tags covered in the Looking up Synsets for a word in WordNet recipe of Chapter 1,
Tokenizing Text and WordNet Basics.

How to do it...

We will use the WordNetLemmatizer class to find lemmas:

>>> from nltk.stem import WordNetLemmatizer
>>> lemmatizer = WordNetLemmatizer()
>>> lemmatizer.lemmatize('cooking')
'cooking'
>>> lemmatizer.lemmatize('cooking', pos='v')
'cook'
>>> lemmatizer.lemmatize('cookbooks')
'cookbook'

How it works...

The WordNetLemmatizer class is a thin wrapper around the wordnet corpus and uses the
morphy() function of the WordNetCorpusReader class to find a lemma. If no lemma is found, or
the word itself is a lemma, the word is returned as is. Unlike with stemming, knowing the part of speech
of the word is important. As demonstrated previously, cooking does not return a different lemma
unless you specify that the POS is a verb. This is because the default POS is a noun, and as a noun,
cooking is its own lemma. On the other hand, cookbooks is a noun with its singular form,
cookbook, as its lemma.

There's more...

Here's an example that illustrates one of the major differences between stemming and lemmatization:

>>> from nltk.stem import PorterStemmer
>>> stemmer = PorterStemmer()
>>> stemmer.stem('believes')
'believ'

>>> lemmatizer.lemmatize('believes')
'belief'

Instead of just chopping off the es like the PorterStemmer class, the WordNetLemmatizer class
finds a valid root word. Where a stemmer only looks at the form of the word, the lemmatizer looks at the
meaning of the word. By returning a lemma, you will always get a valid word.

Combining stemming with lemmatization

Stemming and lemmatization can be combined to compress words more than either process can by itself.
These cases are somewhat rare, but they do exist:

>>> stemmer.stem('buses')
'buse'
>>> lemmatizer.lemmatize('buses')
'bus'
>>> stemmer.stem('bus')
'bu'

In this example, stemming saves one character, lemmatization saves two characters, and stemming the
lemma saves a total of three characters out of five characters. That is nearly a 60% compression rate!
This level of word compression over many thousands of words, while unlikely to always produce such
high gains, can still make a huge difference.

See also

In the previous recipe, we covered the basics of stemming and WordNet was introduced in the Looking
up Synsets for a word in WordNet and Looking up lemmas and synonyms in WordNet recipes of Chapter
1, Tokenizing Text and WordNet Basics. Looking forward, we will cover the Using WordNet for tagging
recipe in Chapter 4, Part-of-speech Tagging.

Replacing words matching regular expressions
Now, we are going to get into the process of replacing words. If stemming and lemmatization are a kind
of linguistic compression, then word replacement can be thought of as error correction or text
normalization.

In this recipe, we will replace words based on regular expressions, with a focus on expanding
contractions. Remember when we were tokenizing words in Chapter 1, Tokenizing Text and WordNet
Basics, and it was clear that most tokenizers had trouble with contractions? This recipe aims to fix this
by replacing contractions with their expanded forms, for example, by replacing "can't" with "cannot" or
"would've" with "would have".

Getting ready

Understanding how this recipe works will require a basic knowledge of regular expressions and the re
module. The key things to know are matching patterns and the re.sub() function.

How to do it...

First, we need to define a number of replacement patterns. This will be a list of tuple pairs, where the
first element is the pattern to match with and the second element is the replacement.

Next, we will create a RegexpReplacer class that will compile the patterns and provide a
replace() method to substitute all the found patterns with their replacements.

The following code can be found in the replacers.py module in the book's code bundle and is
meant to be imported, not typed into the console:

import re

replacement_patterns = [
(r'won\'t', 'will not'),
(r'can\'t', 'cannot'),
(r'i\'m', 'i am'),
(r'ain\'t', 'is not'),
(r'(\w+)\'ll', '\g<1> will'),
(r'(\w+)n\'t', '\g<1> not'),
(r'(\w+)\'ve', '\g<1> have'),
(r'(\w+)\'s', '\g<1> is'),
(r'(\w+)\'re', '\g<1> are'),
(r'(\w+)\'d', '\g<1> would')

]

class RegexpReplacer(object):
def __init__(self, patterns=replacement_patterns):

self.patterns = [(re.compile(regex), repl) for (regex, repl) in

patterns]

def replace(self, text):
s = text
for (pattern, repl) in self.patterns:

s = re.sub(pattern, repl, s)
return s

How it works...

Here is a simple usage example:

>>> from replacers import RegexpReplacer
>>> replacer = RegexpReplacer()
>>> replacer.replace("can't is a contraction")
'cannot is a contraction'
>>> replacer.replace("I should've done that thing I didn't do")
'I should have done that thing I did not do'

The RegexpReplacer.replace() function works by replacing every instance of a replacement
pattern with its corresponding substitution pattern. In replacement patterns, we have defined tuples such
as r'(\w+)\'ve' and '\g<1> have'. The first element matches a group of ASCII characters
followed by 've. By grouping the characters before 've in parenthesis, a match group is found and can
be used in the substitution pattern with the \g<1> reference. So, we keep everything before 've, then
replace 've with the word have. This is how should've can become should have.

There's more...

This replacement technique can work with any kind of regular expression, not just contractions. So, you
can replace any occurrence of & with and, or eliminate all occurrences of - by replacing it with an
empty string. The RegexpReplacer class can take any list of replacement patterns for whatever
purpose.

Replacement before tokenization

Let's try using the RegexpReplacer class as a preliminary step before tokenization:

>>> from nltk.tokenize import word_tokenize
>>> from replacers import RegexpReplacer
>>> replacer = RegexpReplacer()
>>> word_tokenize("can't is a contraction")
['ca', "n't", 'is', 'a', 'contraction']
>>> word_tokenize(replacer.replace("can't is a contraction"))
['can', 'not', 'is', 'a', 'contraction']

Much better! By eliminating the contractions in the first place, the tokenizer will produce cleaner results.
Cleaning up the text before processing is a common pattern in natural language processing.

See also

For more information on tokenization, see the first three recipes in Chapter 1, Tokenizing Text and
WordNet Basics. For more replacement techniques, continue reading the rest of this chapter.

Removing repeating characters
In everyday language, people are often not strictly grammatical. They will write things such as I
looooooove it in order to emphasize the word love. However, computers don't know that
"looooooove" is a variation of "love" unless they are told. This recipe presents a method to remove these
annoying repeating characters in order to end up with a proper English word.

Getting ready

As in the previous recipe, we will be making use of the re module, and more specifically,
backreferences. A backreference is a way to refer to a previously matched group in a regular
expression. This will allow us to match and remove repeating characters.

How to do it...

We will create a class that has the same form as the RegexpReplacer class from the previous recipe.
It will have a replace() method that takes a single word and returns a more correct version of that
word, with the dubious repeating characters removed. This code can be found in replacers.py in
the book's code bundle and is meant to be imported:

import re

class RepeatReplacer(object):
def __init__(self):

self.repeat_regexp = re.compile(r'(\w*)(\w)\2(\w*)')
self.repl = r'\1\2\3'

def replace(self, word):
repl_word = self.repeat_regexp.sub(self.repl, word)

if repl_word != word:
return self.replace(repl_word)

else:
return repl_word

And now some example use cases:

>>> from replacers import RepeatReplacer
>>> replacer = RepeatReplacer()
>>> replacer.replace('looooove')
'love'
>>> replacer.replace('oooooh')
'oh'
>>> replacer.replace('goose')
'gose'

How it works...

The RepeatReplacer class starts by compiling a regular expression to match and define a
replacement string with backreferences. The repeat_regexp pattern matches three groups:

• 0 or more starting characters (\w*)
• A single character (\w) that is followed by another instance of that character (\2)
• 0 or more ending characters (\w*)

The replacement string is then used to keep all the matched groups, while discarding the backreference
to the second group. So, the word looooove gets split into (looo)(o)o(ve) and then recombined
as loooove, discarding the last o. This continues until only one o remains, when repeat_regexp
no longer matches the string and no more characters are removed.

There's more...

In the preceding examples, you can see that the RepeatReplacer class is a bit too greedy and ends
up changing goose into gose. To correct this issue, we can augment the replace() function with a
WordNet lookup. If WordNet recognizes the word, then we can stop replacing characters. Here is the
WordNet-augmented version:

import re
from nltk.corpus import wordnet

class RepeatReplacer(object):
def __init__(self):

self.repeat_regexp = re.compile(r'(\w*)(\w)\2(\w*)')
self.repl = r'\1\2\3'

def replace(self, word):
if wordnet.synsets(word):

return word
repl_word = self.repeat_regexp.sub(self.repl, word)

if repl_word != word:
return self.replace(repl_word)

else:
return repl_word

Now, goose will be found in WordNet, and no character replacement will take place. Also, oooooh
will become ooh instead of oh because ooh is actually a word in WordNet, defined as an expression of
admiration or pleasure.

See also

Read the next recipe to learn how to correct misspellings. For more information on WordNet, refer to the
WordNet recipes in Chapter 1, Tokenizing Text and WordNet Basics. We will also be using WordNet for
antonym replacement later in this chapter.

Spelling correction with Enchant
Replacing repeating characters is actually an extreme form of spelling correction. In this recipe, we will
take on the less extreme case of correcting minor spelling issues using Enchant—a spelling correction
API.

Getting ready

You will need to install Enchant and a dictionary for it to use. Enchant is an offshoot of the AbiWord
open source word processor, and more information on it can be found at http://www.abisource.com/
projects/enchant/.

For dictionaries, Aspell is a good open source spellchecker and dictionary that can be found at
http://aspell.net/.

Finally, you will need the PyEnchant library, which can be found at the following link:
http://pythonhosted.org/pyenchant/

You should be able to install it with the easy_install command that comes with Python setuptools,
such as by typing sudo easy_install pyenchant on Linux or Unix. On a Mac machine,
PyEnchant may be difficult to install. If you have difficulties, consult http://pythonhosted.org/pyenchant/
download.html.

How to do it...

We will create a new class called SpellingReplacer in replacers.py, and this time, the
replace() method will check Enchant to see whether the word is valid. If not, we will look up the
suggested alternatives and return the best match using nltk.metrics.edit_distance():

import enchant
from nltk.metrics import edit_distance

class SpellingReplacer(object):
def __init__(self, dict_name='en', max_dist=2):

self.spell_dict = enchant.Dict(dict_name)
self.max_dist = max_dist

def replace(self, word):
if self.spell_dict.check(word):

return word
suggestions = self.spell_dict.suggest(word)

if suggestions and edit_distance(word, suggestions[0]) <=
self.max_dist:
return suggestions[0]

http://www.abisource.com/projects/enchant/
http://www.abisource.com/projects/enchant/
http://aspell.net/
http://pythonhosted.org/pyenchant/
http://pythonhosted.org/pyenchant/download.html
http://pythonhosted.org/pyenchant/download.html

else:
return word

The preceding class can be used to correct English spellings, as follows:

>>> from replacers import SpellingReplacer
>>> replacer = SpellingReplacer()
>>> replacer.replace('cookbok')
'cookbook'

How it works...

The SpellingReplacer class starts by creating a reference to an Enchant dictionary. Then, in the
replace() method, it first checks whether the given word is present in the dictionary. If it is, no
spelling correction is necessary and the word is returned. If the word is not found, it looks up a list of
suggestions and returns the first suggestion, as long as its edit distance is less than or equal to
max_dist. The edit distance is the number of character changes necessary to transform the given word
into the suggested word. The max_dist value then acts as a constraint on the Enchant suggest
function to ensure that no unlikely replacement words are returned. Here is an example showing all the
suggestions for languege, a misspelling of language:

>>> import enchant
>>> d = enchant.Dict('en')
>>> d.suggest('languege')
['language', 'languages', 'languor', "language's"]

Except for the correct suggestion, language, all the other words have an edit distance of three or
greater. You can try this yourself with the following code:

>>> from nltk.metrics import edit_distance
>>> edit_distance('language', 'languege')
1
>>> edit_distance('language', 'languo')
3

There's more...

You can use language dictionaries other than en, such as en_GB, assuming the dictionary has already
been installed. To check which other languages are available, use enchant.list_languages():

>>> enchant.list_languages()
['en', 'en_CA', 'en_GB', 'en_US']

Tip

If you try to use a dictionary that doesn't exist, you will get enchant.DictNotFoundError. You
can first check whether the dictionary exists using enchant.dict_exists(), which will return
True if the named dictionary exists, or False otherwise.

The en_GB dictionary

Always ensure that you use the correct dictionary for whichever language you are performing spelling
correction on. The en_US dictionary can give you different results than en_GB, such as for the word
theater. The word theater is the American English spelling whereas the British English spelling is
theatre:

>>> import enchant
>>> dUS = enchant.Dict('en_US')
>>> dUS.check('theater')
True
>>> dGB = enchant.Dict('en_GB')
>>> dGB.check('theater')
False
>>> from replacers import SpellingReplacer
>>> us_replacer = SpellingReplacer('en_US')
>>> us_replacer.replace('theater')
'theater'
>>> gb_replacer = SpellingReplacer('en_GB')
>>> gb_replacer.replace('theater')
'theatre'

Personal word lists

Enchant also supports personal word lists. These can be combined with an existing dictionary, allowing
you to augment the dictionary with your own words. So, let's say you had a file named mywords.txt
that had nltk on one line. You could then create a dictionary augmented with your personal word list as
follows:

>>> d = enchant.Dict('en_US')
>>> d.check('nltk')
False
>>> d = enchant.DictWithPWL('en_US', 'mywords.txt')
>>> d.check('nltk')
True

To use an augmented dictionary with our SpellingReplacer class, we can create a subclass in
replacers.py that takes an existing spelling dictionary:

class CustomSpellingReplacer(SpellingReplacer):
def __init__(self, spell_dict, max_dist=2):

self.spell_dict = spell_dict
self.max_dist = max_dist

This CustomSpellingReplacer class will not replace any words that you put into
mywords.txt:

>>> from replacers import CustomSpellingReplacer
>>> d = enchant.DictWithPWL('en_US', 'mywords.txt')
>>> replacer = CustomSpellingReplacer(d)
>>> replacer.replace('nltk')
'nltk'

See also

The previous recipe covered an extreme form of spelling correction by replacing repeating characters.
You can also perform spelling correction by simple word replacement as discussed in the next recipe.

Replacing synonyms
It is often useful to reduce the vocabulary of a text by replacing words with common synonyms. By
compressing the vocabulary without losing meaning, you can save memory in cases such as frequency
analysis and text indexing. More details about these topics are available at https://en.wikipedia.org/wiki/
Frequency_analysis and https://en.wikipedia.org/wiki/Full_text_search. Vocabulary reduction can also
increase the occurrence of significant collocations, which was covered in the Discovering word
collocations recipe of Chapter 1, Tokenizing Text and WordNet Basics.

Getting ready

You will need a defined mapping of a word to its synonym. This is a simple controlled vocabulary. We
will start by hardcoding the synonyms as a Python dictionary, and then explore other options to store
synonym maps.

How to do it...

We'll first create a WordReplacer class in replacers.py that takes a word replacement mapping:

class WordReplacer(object):
def __init__(self, word_map):

self.word_map = word_map

def replace(self, word):
return self.word_map.get(word, word)

Then, we can demonstrate its usage for simple word replacement:

>>> from replacers import WordReplacer
>>> replacer = WordReplacer({'bday': 'birthday'})
>>> replacer.replace('bday')
'birthday'
>>> replacer.replace('happy')
'happy'

How it works...

The WordReplacer class is simply a class wrapper around a Python dictionary. The replace()
method looks up the given word in its word_map dictionary and returns the replacement synonym if it
exists. Otherwise, the given word is returned as is.

If you were only using the word_map dictionary, you wouldn't need the WordReplacer class and
could instead call word_map.get() directly. However, WordReplacer can act as a base class for
other classes that construct the word_map dictionary from various file formats. Read on for more
information.

https://en.wikipedia.org/wiki/Frequency_analysis
https://en.wikipedia.org/wiki/Frequency_analysis
https://en.wikipedia.org/wiki/Full_text_search

There's more...

Hardcoding synonyms in a Python dictionary is not a good long-term solution. Two better alternatives
are to store the synonyms in a CSV file or in a YAML file. Choose whichever format is easiest for those
who maintain your synonym vocabulary. Both of the classes outlined in the following section inherit the
replace() method from WordReplacer.

CSV synonym replacement

The CsvWordReplacer class extends WordReplacer in replacers.py in order to construct
the word_map dictionary from a CSV file:

import csv

class CsvWordReplacer(WordReplacer):
def __init__(self, fname):

word_map = {}
for line in csv.reader(open(fname)):

word, syn = line
word_map[word] = syn

super(CsvWordReplacer, self).__init__(word_map)

Your CSV file should consist of two columns, where the first column is the word and the second column
is the synonym meant to replace it. If this file is called synonyms.csv and the first line is bday,
birthday, then you can perform the following:

>>> from replacers import CsvWordReplacer
>>> replacer = CsvWordReplacer('synonyms.csv')
>>> replacer.replace('bday')
'birthday'
>>> replacer.replace('happy')
'happy'

YAML synonym replacement

If you have PyYAML installed, you can create YamlWordReplacer in replacers.py as shown in
the following:

import yaml

class YamlWordReplacer(WordReplacer):
def __init__(self, fname):

word_map = yaml.load(open(fname))
super(YamlWordReplacer, self).__init__(word_map)

Note

Download and installation instructions for PyYAML are located at http://pyyaml.org/wiki/PyYAML.
You can also type pip install pyyaml on the command prompt

Your YAML file should be a simple mapping of word: synonym, such as bday: birthday. Note
that the YAML syntax is very particular, and the space after the colon is required. If the file is named
synonyms.yaml, then you can perform the following:

>>> from replacers import YamlWordReplacer
>>> replacer = YamlWordReplacer('synonyms.yaml')
>>> replacer.replace('bday')
'birthday'
>>> replacer.replace('happy')
'happy'

See also

You can use the WordReplacer class to perform any kind of word replacement, even spelling
correction for more complicated words that can't be automatically corrected, as we did in the previous
recipe. In the next recipe, we will cover antonym replacement.

http://pyyaml.org/wiki/PyYAML

Replacing negations with antonyms
The opposite of synonym replacement is antonym replacement. An antonym is a word that has the
opposite meaning of another word. This time, instead of creating custom word mappings, we can use
WordNet to replace words with unambiguous antonyms. Refer to the Looking up lemmas and synonyms
in WordNet recipe in Chapter 1, Tokenizing Text and WordNet Basics, for more details on antonym
lookups.

How to do it...

Let's say you have a sentence like let's not uglify our code. With antonym replacement,
you can replace not uglify with beautify, resulting in the sentence let's beautify our
code. To do this, we will create an AntonymReplacer class in replacers.py as follows:

from nltk.corpus import wordnet

class AntonymReplacer(object):
def replace(self, word, pos=None):

antonyms = set()
for syn in wordnet.synsets(word, pos=pos):

for lemma in syn.lemmas():
for antonym in lemma.antonyms():

antonyms.add(antonym.name())
if len(antonyms) == 1:

return antonyms.pop()
else:

return None

def replace_negations(self, sent):
i, l = 0, len(sent)
words = []
while i < l:

word = sent[i]
if word == 'not' and i+1 < l:

ant = self.replace(sent[i+1])
if ant:

words.append(ant)
i += 2
continue

words.append(word)
i += 1

return words

Now, we can tokenize the original sentence into ["let's", 'not', 'uglify', 'our',
'code'] and pass this to the replace_negations() function. Here are some examples:

>>> from replacers import AntonymReplacer
>>> replacer = AntonymReplacer()
>>> replacer.replace('good')
>>> replacer.replace('uglify')
'beautify'
>>> sent = ["let's", 'not', 'uglify', 'our', 'code']
>>> replacer.replace_negations(sent)
["let's", 'beautify', 'our', 'code']

How it works...

The AntonymReplacer class has two methods: replace() and replace_negations(). The
replace() method takes a single word and an optional part-of-speech tag, then looks up the Synsets
for the word in WordNet. Going through all the Synsets and every lemma of each Synset, it creates a set
of all antonyms found. If only one antonym is found, then it is an unambiguous replacement. If there is
more than one antonym, which can happen quite often, then we don't know for sure which antonym is
correct. In the case of multiple antonyms (or no antonyms), replace() returns None as it cannot
make a decision.

In replace_negations(), we look through a tokenized sentence for the word not. If not is
found, then we try to find an antonym for the next word using replace(). If we find an antonym,
then it is appended to the list of words, replacing not and the original word. All other words are
appended as is, resulting in a tokenized sentence with unambiguous negations replaced by their
antonyms.

There's more...

As unambiguous antonyms aren't very common in WordNet, you might want to create a custom
antonym mapping in the same way we did for synonyms. This AntonymWordReplacer can be
constructed by inheriting from both WordReplacer and AntonymReplacer:

class AntonymWordReplacer(WordReplacer, AntonymReplacer):
pass

The order of inheritance is very important, as we want the initialization and replace function of
WordReplacer combined with the replace_negations function from AntonymReplacer.
The result is a replacer that can perform the following:

>>> from replacers import AntonymWordReplacer
>>> replacer = AntonymWordReplacer({'evil': 'good'})
>>> replacer.replace_negations(['good', 'is', 'not', 'evil'])
['good', 'is', 'good']

Of course, you can also inherit from CsvWordReplacer or YamlWordReplacer instead of
WordReplacer if you want to load the antonym word mappings from a file.

See also

The previous recipe covers the WordReplacer from the perspective of synonym replacement. In
Chapter 1, Tokenizing Text and WordNet Basics, WordNet usage is covered in detail in the Looking up
Synsets for a word in WordNet and Looking up lemmas and synonyms in WordNet recipes.

Chapter 3. Creating Custom Corpora
In this chapter, we will cover the following recipes:

• Setting up a custom corpus
• Creating a wordlist corpus
• Creating a part-of-speech tagged word corpus
• Creating a chunked phrase corpus
• Creating a categorized text corpus
• Creating a categorized chunk corpus reader
• Lazy corpus loading
• Creating a custom corpus view
• Creating a MongoDB-backed corpus reader
• Corpus editing with file locking

Introduction
In this chapter, we'll cover how to use corpus readers and create custom corpora. If you want to train
your own model, such as a part-of-speech tagger or text classifier, you will need to create a custom
corpus to train on. Model training is covered in the subsequent chapters.

Now you'll learn how to use the existing corpus data that comes with NLTK. This information is
essential for future chapters when we'll need to access the corpora as training data. You've already
accessed the WordNet corpus in Chapter 1, Tokenizing Text and WordNet Basics. This chapter will
introduce you to many more corpora.

We'll also cover creating custom corpus readers, which can be used when your corpus is not in a file
format that NLTK already recognizes, or if your corpus is not located in files at all, but instead is located
in a database such as MongoDB. It is essential to be familiar with tokenization, which was covered in
Chapter 1, Tokenizing Text and WordNet Basics.

Setting up a custom corpus
A corpus is a collection of text documents, and corpora is the plural of corpus. This comes from the
Latin word for body; in this case, a body of text. So a custom corpus is really just a bunch of text files
in a directory, often alongside many other directories of text files.

Getting ready

You should already have the NLTK data package installed, following the instructions at
http://www.nltk.org/data. We'll assume that the data is installed to C:\nltk_data on Windows, and
/usr/share/nltk_data on Linux, Unix, and Mac OS X.

How to do it...

NLTK defines a list of data directories, or paths, in nltk.data.path. Our custom corpora must be
within one of these paths so it can be found by NLTK. In order to avoid conflict with the official data
package, we'll create a custom nltk_data directory in our home directory. The following is some
Python code to create this directory and verify that it is in the list of known paths specified by
nltk.data.path:

>>> import os, os.path
>>> path = os.path.expanduser('~/nltk_data')
>>> if not os.path.exists(path):
... os.mkdir(path)
>>> os.path.exists(path)
True
>>> import nltk.data
>>> path in nltk.data.path
True

If the last line, path in nltk.data.path, is True, then you should now have a nltk_data
directory in your home directory. The path should be %UserProfile%\nltk_data on Windows, or
~/nltk_data on Unix, Linux, and Mac OS X. For simplicity, I'll refer to the directory as
~/nltk_data.

Note

If the last line does not return True, try creating the nltk_data directory manually in your home
directory, then verify that the absolute path is in nltk.data.path. It's essential to ensure that this
directory exists and is in nltk.data.path before continuing. You can see a list of the directories by
running python -c "import nltk.data; print(nltk.data.path)". Once you have
your nltk_data directory, the convention is that corpora resides in a corpora subdirectory. Create
this corpora directory within the nltk_data directory, so that the path is ~/nltk_data/
corpora. Finally, we'll create a subdirectory in corpora to hold our custom corpus. Let's call it
cookbook, giving us the full path, which is ~/nltk_data/corpora/cookbook. So on Unix,
Linux, and Mac OS X, you could run the following to create the directory:

http://www.nltk.org/data

mkdir -p ~/nltk_data/corpora/cookbook

Now, we can create a simple wordlist file and make sure it loads. In the Spelling correction with Enchant
recipe in Chapter 2, Replacing and Correcting Words, we created a wordlist file called mywords.txt.
Put this file into ~/nltk_data/corpora/cookbook/. Now we can use nltk.data.load(),
as shown in the following code, to load the file:

>>> import nltk.data
>>> nltk.data.load('corpora/cookbook/mywords.txt', format='raw')
b'nltk\n'

Note

We need to specify format='raw' since nltk.data.load() doesn't know how to interpret
.txt files. As we'll see, it does know how to interpret a number of other file formats.

How it works...

The nltk.data.load() function recognizes a number of formats, such as 'raw', 'pickle', and
'yaml'. If no format is specified, then it tries to guess the format based on the file's extension. In the
previous case, we have a .txt file, which is not a recognized extension, so we have to specify the
'raw' format. But, if we used a file that ended in .yaml, then we would not need to specify the
format.

Filenames passed into nltk.data.load() can be absolute or relative paths. Relative paths must be
relative to one of the paths specified in nltk.data.path. The file is found using
nltk.data.find(path), which searches all known paths combined with the relative path.
Absolute paths do not require a search, and are used as is. When using relative paths, be sure to use
choose unambiguous names for your files so as not to conflict with any existing NLTK data.

There's more...

For most corpora access, you won't actually need to use nltk.data.load, as that will be handled by
the CorpusReader classes covered in the following recipes. But it's a good function to be familiar
with for loading pickle files and .yaml files, and it also introduces the idea of putting all of your data
files into a path known by NLTK.

Loading a YAML file

If you put the synonyms.yaml file from the Replacing synonyms recipe in Chapter 2, Replacing and
Correcting Words into ~/nltk_data/corpora/cookbook (next to mywords.txt), you can use
nltk.data.load() to load it without specifying a format:

>>> import nltk.data
>>> nltk.data.load('corpora/cookbook/synonyms.yaml')
{'bday': 'birthday'}

This assumes that PyYAML is installed. If not, you can find download and installation instructions at
http://pyyaml.org/wiki/PyYAML.

See also

In the next recipes, we'll cover various corpus readers, and then in the Lazy corpus loading recipe, we'll
use the LazyCorpusLoader class, which expects corpus data to be in a corpora subdirectory of
one of the paths specified by nltk.data.path.

http://pyyaml.org/wiki/PyYAML

Creating a wordlist corpus
The WordListCorpusReader class is one of the simplest CorpusReader classes. It provides
access to a file containing a list of words, one word per line. In fact, you've already used it when we used
the stopwords corpus in Chapter 1, Tokenizing Text and WordNet Basics, in the Filtering stopwords in a
tokenized sentence and Discovering word collocations recipes.

Getting ready

We need to start by creating a wordlist file. This could be a single column CSV file, or just a normal text
file with one word per line. Let's create a file named wordlist that looks like this:

nltk
corpus
corpora
wordnet

How to do it...

Now we can instantiate a WordListCorpusReader class that will produce a list of words from our
file. It takes two arguments: the directory path containing the files, and a list of filenames. If you open
the Python console in the same directory as the files, then '.' can be used as the directory path.
Otherwise, you must use a directory path such as nltk_data/corpora/cookbook:

>>> from nltk.corpus.reader import WordListCorpusReader
>>> reader = WordListCorpusReader('.', ['wordlist'])
>>> reader.words()
['nltk', 'corpus', 'corpora', 'wordnet']
>>> reader.fileids()
['wordlist']

How it works...

The WordListCorpusReader class inherits from CorpusReader, which is a common base class
for all corpus readers. The CorpusReader class does all the work of identifying which files to read,
while WordListCorpusReader reads the files and tokenizes each line to produce a list of words.
The following is an inheritance diagram:

When you call the words() function, it calls nltk.tokenize.line_tokenize() on the raw
file data, which you can access using the raw() function as follows:

>>> reader.raw()
'nltk\ncorpus\ncorpora\nwordnet\n'
>>> from nltk.tokenize import line_tokenize
>>> line_tokenize(reader.raw())
['nltk', 'corpus', 'corpora', 'wordnet']

There's more...

The stopwords corpus is a good example of a multifile WordListCorpusReader. In the Filtering
stopwords in a tokenized sentence recipe in Chapter 1, Tokenizing Text and WordNet Basics, we saw that
it had one wordlist file for each language, and you could access the words for that language by calling
stopwords.words(fileid). If you want to create your own multifile wordlist corpus, this is a
great example to follow.

Names wordlist corpus

Another wordlist corpus that comes with NLTK is the names corpus that is shown in the following
code. It contains two files: female.txt and male.txt, each containing a list of a few thousand
common first names organized by gender as follows:

>>> from nltk.corpus import names
>>> names.fileids()
['female.txt', 'male.txt']
>>> len(names.words('female.txt'))
5001

>>> len(names.words('male.txt'))
2943

English words corpus

NLTK also comes with a large list of English words. There's one file with 850 basic words, and another
list with over 200,000 known English words, as shown in the following code:

>>> from nltk.corpus import words
>>> words.fileids()
['en', 'en-basic']
>>> len(words.words('en-basic'))
850
>>> len(words.words('en'))
234936

See also

The Filtering stopwords in a tokenized sentence recipe in Chapter 1, Tokenizing Text and WordNet
Basics, has more details on using the stopwords corpus. In the following recipes, we'll cover more
advanced corpus file formats and corpus reader classes.

Creating a part-of-speech tagged word corpus
Part-of-speech tagging is the process of identifying the part-of-speech tag for a word. Most of the time,
a tagger must first be trained on a training corpus. How to train and use a tagger is covered in detail in
Chapter 4, Part-of-speech Tagging, but first we must know how to create and use a training corpus of
part-of-speech tagged words.

Getting ready

The simplest format for a tagged corpus is of the form word/tag. The following is an excerpt from the
brown corpus:

The/at-tl expense/nn and/cc time/nn involved/vbn are/ber
astronomical/jj ./.

Each word has a tag denoting its part-of-speech. For example, nn refers to a noun, while a tag that starts
with vb is a verb.

Note

Different corpora can use different tags to mean the same thing. For example, the treebank corpus
uses different tags as compared to the brown corpus, even though both are English text. But both sets of
tags can be converted into a universal tagset, described at the end of this recipe.

How to do it...

If you were to put the previous excerpt into a file called brown.pos, you could then create a
TaggedCorpusReader class using the following code:

>>> from nltk.corpus.reader import TaggedCorpusReader
>>> reader = TaggedCorpusReader('.', r'.*\.pos')
>>> reader.words()
['The', 'expense', 'and', 'time', 'involved', 'are', ...]
>>> reader.tagged_words()
[('The', 'AT-TL'), ('expense', 'NN'), ('and', 'CC'), ...]
>>> reader.sents()
[['The', 'expense', 'and', 'time', 'involved', 'are',
'astronomical', '.']]
>>> reader.tagged_sents()
[[('The', 'AT-TL'), ('expense', 'NN'), ('and', 'CC'), ('time',
'NN'), ('involved', 'VBN'), ('are', 'BER'), ('astronomical', 'JJ'),
('.', '.')]]
>>> reader.paras()
[[['The', 'expense', 'and', 'time', 'involved', 'are',
'astronomical', '.']]]
>>> reader.tagged_paras()

[[[('The', 'AT-TL'), ('expense', 'NN'), ('and', 'CC'), ('time',
'NN'), ('involved', 'VBN'), ('are', 'BER'), ('astronomical', 'JJ'),
('.', '.')]]]

How it works...

This time, instead of naming the file explicitly, we use a regular expression, r'.*\.pos', to match all
the files whose names end with .pos. We could have done the same thing as we did with the
WordListCorpusReader class, and pass ['brown.pos'] as the second argument, but this way
you can see how to include multiple files in a corpus without naming each one explicitly.

The TaggedCorpusReader class provides a number of methods for extracting text from a corpus.
First, you can get a list of all words or a list of tagged tokens. A tagged token is simply a tuple of
(word, tag). Next, you can get a list of every sentence and also every tagged sentence where the
sentence is itself a list of words or tagged tokens. Finally, you can get a list of paragraphs, where each
paragraph is a list of sentences and each sentence is a list of words or tagged tokens. The following is an
inheritance diagram listing all the major methods:

There's more...

All the functions we just demonstrated depend on tokenizers to split the text. The
TaggedCorpusReader class tries to have good defaults, but you can customize them by passing in
your own tokenizers at the time of initialization.

Customizing the word tokenizer

The default word tokenizer is an instance of nltk.tokenize.WhitespaceTokenizer. If you
want to use a different tokenizer, you can pass that in as word_tokenizer, as shown in the following
code:

>>> from nltk.tokenize import SpaceTokenizer
>>> reader = TaggedCorpusReader('.', r'.*\.pos',
word_tokenizer=SpaceTokenizer())
>>> reader.words()
['The', 'expense', 'and', 'time', 'involved', 'are', ...]

Customizing the sentence tokenizer

The default sentence tokenizer is an instance of nltk.tokenize.RegexpTokenize with '\n' to
identify the gaps. It assumes that each sentence is on a line all by itself, and individual sentences do not
have line breaks. To customize this, you can pass in your own tokenizer as sent_tokenizer, as
shown in the following code:

>>> from nltk.tokenize import LineTokenizer
>>> reader = TaggedCorpusReader('.', r'.*\.pos',
sent_tokenizer=LineTokenizer())
>>> reader.sents()
[['The', 'expense', 'and', 'time', 'involved', 'are',
'astronomical', '.']]

Customizing the paragraph block reader

Paragraphs are assumed to be split by blank lines. This is done with the para_block_reader
function, which is nltk.corpus.reader.util.read_blankline_block. There are a
number of other block reader functions in nltk.corpus.reader.util, whose purpose is to read
blocks of text from a stream. Their usage will be covered in more detail later in the Creating a custom
corpus view recipe, where we'll create a custom corpus reader.

Customizing the tag separator

If you don't want to use '/' as the word/tag separator, you can pass an alternative string to
TaggedCorpusReader for sep. The default is sep='/', but if you want to split words and tags
with '|', such as 'word|tag', then you should pass in sep='|'.

Converting tags to a universal tagset

NLTK 3.0 provides a method for converting known tagsets to a universal tagset. A tagset is just a list of
part-of-speech tags used by one or more corpora. The universal tagset is a simplified and condensed
tagset composed of only 12 part-of-speech tags, as shown in the following table:

Universal tag Description

VERB All verbs

NOUN Common and proper nouns

PRON Pronouns

ADJ Adjectives

ADV Adverbs

ADP Prepositions and postpositions

CONJ Conjunctions

DET Determiners

NUM Cardinal numbers

PRT Participles

X Other

. Punctuation

Mappings from a known tagset to the universal tagset can be found at nltk_data/taggers/
universal_tagset. For example, treebank tag mappings are in nltk_data/taggers/
universal_tagset/en-ptb.map.

To map corpus tags to the universal tagset, the corpus reader must be initialized with a known tagset
name. Then you pass in tagset='universal' to a method like tagged_words(), as shown in
the following code:

>>> reader = TaggedCorpusReader('.', r'.*\.pos', tagset='en-brown')
>>> reader.tagged_words(tagset='universal')
[('The', 'DET'), ('expense', 'NOUN'), ('and', 'CONJ'), ...]

Most NLTK tagged corpora are initialized with a known tagset, making conversion easy. The following
is an example with the treebank corpus:

>>> from nltk.corpus import treebank
>>> treebank.tagged_words()
[('Pierre', 'NNP'), ('Vinken', 'NNP'), (',', ','), ...]
>>> treebank.tagged_words(tagset='universal')
[('Pierre', 'NOUN'), ('Vinken', 'NOUN'), (',', '.'), …]

If you try to map using an unknown mapping or tagset, every word will be tagged with UNK:

>>> treebank.tagged_words(tagset='brown')
[('Pierre', 'UNK'), ('Vinken', 'UNK'), (',', 'UNK'), ...]

See also

Chapter 4, Part-of-speech Tagging, will cover part-of-speech tags and tagging in much more detail. And
for more on tokenizers, see the first three recipes of Chapter 1, Tokenizing Text and WordNet Basics.

In the next recipe, we'll create a chunked phrase corpus, where each phrase is also part-of-speech
tagged.

Creating a chunked phrase corpus
A chunk is a short phrase within a sentence. If you remember sentence diagrams from grade school,
they were a tree-like representation of phrases within a sentence. This is exactly what chunks are:
subtrees within a sentence tree, and they will be covered in much more detail in Chapter 5, Extracting
Chunks. The following is a sample sentence tree with three Noun Phrase (NP) chunks shown as
subtrees:

This recipe will cover how to create a corpus with sentences that contain chunks.

Getting ready

The following is an excerpt from the tagged treebank corpus. It has part-of-speech tags, as in the
previous recipe, but it also has square brackets for denoting chunks. The text within the brackets has
been highlighted to make the chunks more apparent. The following sentence is the same sentence as in
the previous tree diagram, but in text form:

[Earlier/JJR staff-reduction/NN moves/NNS] have/VBP trimmed/VBN
about/IN [300/CD jobs/NNS] ,/, [the/DT spokesman/NN] said/VBD ./.

In this format, every chunk is a noun phrase. Words that are not within brackets are part of the sentence
tree, but are not part of any noun phrase subtree.

How to do it...

Put the previous excerpt into a file called treebank.chunk, and then do the following:

>>> from nltk.corpus.reader import ChunkedCorpusReader
>>> reader = ChunkedCorpusReader('.', r'.*\.chunk')
>>> reader.chunked_words()
[Tree('NP', [('Earlier', 'JJR'), ('staff-reduction', 'NN'),
('moves', 'NNS')]), ('have', 'VBP'), ...]
>>> reader.chunked_sents()
[Tree('S', [Tree('NP', [('Earlier', 'JJR'), ('staff-reduction',
'NN'), ('moves', 'NNS')]), ('have', 'VBP'), ('trimmed', 'VBN'),
('about', 'IN'), Tree('NP', [('300', 'CD'), ('jobs', 'NNS')]), (',',
','), Tree('NP', [('the', 'DT'), ('spokesman', 'NN')]), ('said',
'VBD'), ('.', '.')])]
>>> reader.chunked_paras()

[[Tree('S', [Tree('NP', [('Earlier', 'JJR'), ('staff-reduction',
'NN'), ('moves', 'NNS')]), ('have', 'VBP'), ('trimmed', 'VBN'),
('about', 'IN'), Tree('NP', [('300', 'CD'), ('jobs', 'NNS')]), (',',
','), Tree('NP', [('the', 'DT'), ('spokesman', 'NN')]), ('said',
'VBD'), ('.', '.')])]]

The ChunkedCorpusReader class provides the same methods as the TaggedCorpusReader for
getting tagged tokens, along with three new methods for getting chunks. Each chunk is represented as an
instance of nltk.tree.Tree. Sentence level trees look like Tree('S', [...]) while noun
phrase trees look like Tree('NP', [...]). In chunked_sents(), you get a list of sentence
trees, with each noun phrase as a subtree of the sentence. In chunked_words(), you get a list of
noun phrase trees alongside tagged tokens of words that were not in a chunk. The following is an
inheritance diagram listing the major methods:

Note

You can draw a tree by calling the draw() method. Using the corpus reader defined earlier, you could
do reader.chunked_sents()[0].draw() to get the same sentence tree diagram shown at the
beginning of this recipe.

How it works...

The ChunkedCorpusReader class is similar to the TaggedCorpusReader class from the
previous recipe. It has the same default sent_tokenizer and para_block_reader functions,
but instead of a word_tokenizer function, it uses a str2chunktree() function. The default is
nltk.chunk.util.tagstr2tree(), which parses a sentence string containing bracketed chunks
into a sentence tree, with each chunk as a noun phrase subtree. Words are split by whitespace, and the
default word/tag separator is '/'. If you want to customize chunk parsing, then you can pass in your
own function for str2chunktree().

There's more...

An alternative format for denoting chunks is called IOB tags. IOB tags are similar to part-of-speech tags,
but provide a way to denote the inside, outside, and beginning of a chunk. They also have the benefit of
allowing multiple different chunk phrase types, not just noun phrases. The following is an excerpt from
the conll2000 corpus. Each word is on its own line with a part-of-speech tag followed by an IOB tag:

Mr. NNP B-NP
Meador NNP I-NP
had VBD B-VP
been VBN I-VP
executive JJ B-NP
vice NN I-NP
president NN I-NP
of IN B-PP
Balcor NNP B-NP
. . O

B-NP denotes the beginning of a noun phrase, while I-NP denotes that the word is inside of the current
noun phrase. B-VP and I-VP denote the beginning and inside of a verb phrase. O ends the sentence.

To read a corpus using the IOB format, you must use the ConllChunkCorpusReader class. Each
sentence is separated by a blank line, but there is no separation for paragraphs. This means that the
para_* methods are not available. If you put the previous IOB example text into a file named
conll.iob, you can create and use a ConllChunkCorpusReader class with the following code.
The third argument to ConllChunkCorpusReader should be a tuple or list specifying the types of
chunks in the file, which in this case is ('NP', 'VP', 'PP'):

>>> from nltk.corpus.reader import ConllChunkCorpusReader
>>> conllreader = ConllChunkCorpusReader('.', r'.*\.iob', ('NP',

'VP', 'PP'))
>>> conllreader.chunked_words()
[Tree('NP', [('Mr.', 'NNP'), ('Meador', 'NNP')]), Tree('VP',
[('had', 'VBD'), ('been', 'VBN')]), ...]
>>> conllreader.chunked_sents()
[Tree('S', [Tree('NP', [('Mr.', 'NNP'), ('Meador', 'NNP')]),
Tree('VP', [('had', 'VBD'), ('been', 'VBN')]), Tree('NP',
[('executive', 'JJ'), ('vice', 'NN'), ('president', 'NN')]),
Tree('PP', [('of', 'IN')]), Tree('NP', [('Balcor', 'NNP')]), ('.',
'.')])]
>>> conllreader.iob_words()
[('Mr.', 'NNP', 'B-NP'), ('Meador', 'NNP', 'I-NP'), ...]
>>> conllreader.iob_sents()
[[('Mr.', 'NNP', 'B-NP'), ('Meador', 'NNP', 'I-NP'), ('had', 'VBD',
'B-VP'), ('been', 'VBN', 'I-VP'), ('executive', 'JJ', 'B-NP'),
('vice', 'NN', 'I-NP'), ('president', 'NN', 'I-NP'), ('of', 'IN',
'B-PP'), ('Balcor', 'NNP', 'B-NP'), ('.', '.', 'O')]]

The previous code also shows the iob_words() and iob_sents() methods, which return lists of
three tuples of (word, pos, iob). The inheritance diagram for ConllChunkCorpusReader
looks like the following diagram, with most of the methods implemented by its superclass,
ConllCorpusReader:

Tree leaves

When it comes to chunk trees, the leaves of a tree are the tagged tokens. So if you want to get a list of all
the tagged tokens in a tree, call the leaves() method using the following code:

>>> reader.chunked_words()[0].leaves()
[('Earlier', 'JJR'), ('staff-reduction', 'NN'), ('moves', 'NNS')]
>>> reader.chunked_sents()[0].leaves()
[('Earlier', 'JJR'), ('staff-reduction', 'NN'), ('moves', 'NNS'),
('have', 'VBP'), ('trimmed', 'VBN'), ('about', 'IN'), ('300', 'CD'),
('jobs', 'NNS'), (',', ','), ('the', 'DT'), ('spokesman', 'NN'),
('said', 'VBD'), ('.', '.')]
>>> reader.chunked_paras()[0][0].leaves()
[('Earlier', 'JJR'), ('staff-reduction', 'NN'), ('moves', 'NNS'),
('have', 'VBP'), ('trimmed', 'VBN'), ('about', 'IN'), ('300', 'CD'),

('jobs', 'NNS'), (',', ','), ('the', 'DT'), ('spokesman', 'NN'),
('said', 'VBD'), ('.', '.')]

Treebank chunk corpus

The nltk.corpus.treebank_chunk corpus uses ChunkedCorpusReader to provide part-of-
speech tagged words and noun phrase chunks of Wall Street Journal headlines. NLTK comes with a 5
percent sample from the Penn Treebank Project. You can find out more at
http://www.cis.upenn.edu/~treebank/home.html.

CoNLL2000 corpus

CoNLL stands for the Conference on Computational Natural Language Learning. For the year 2000
conference, a shared task was undertaken to produce a corpus of chunks based on the Wall Street
Journal corpus. In addition to Noun Phrases (NP), it also contains Verb Phrases (VP) and
Prepositional Phrases (PP). This chunked corpus is available as nltk.corpus.conll2000, which
is an instance of ConllChunkCorpusReader. You can read more at http://www.cnts.ua.ac.be/
conll2000/chunking/.

See also

Chapter 5, Extracting Chunks, will cover chunk extraction in detail. Also see the previous recipe for
details on getting tagged tokens from a corpus reader.

http://www.cis.upenn.edu/~treebank/home.html
http://www.cnts.ua.ac.be/conll2000/chunking/
http://www.cnts.ua.ac.be/conll2000/chunking/

Creating a categorized text corpus
If you have a large corpus of text, you might want to categorize it into separate sections. This can be
helpful for organization, or for text classification, which is covered in Chapter 7, Text Classification. The
brown corpus, for example, has a number of different categories, as shown in the following code:

>>> from nltk.corpus import brown
>>> brown.categories()
['adventure', 'belles_lettres', 'editorial', 'fiction',
'government', 'hobbies', 'humor', 'learned', 'lore', 'mystery',
'news', 'religion', 'reviews', 'romance', 'science_fiction']

In this recipe, we'll learn how to create our own categorized text corpus.

Getting ready

The easiest way to categorize a corpus is to have one file for each category. The following are two
excerpts from the movie_reviews corpus:

• movie_pos.txt:

the thin red line is flawed but it provokes .

• movie_neg.txt:

a big-budget and glossy production can not make up for a lack
of spontaneity that permeates their tv show .

With these two files, we'll have two categories: pos and neg.

How to do it...

We'll use the CategorizedPlaintextCorpusReader class, which inherits from both
PlaintextCorpusReader and CategorizedCorpusReader. These two superclasses require
three arguments: the root directory, the fileids arguments, and a category specification:

>>> from nltk.corpus.reader import CategorizedPlaintextCorpusReader
>>> reader = CategorizedPlaintextCorpusReader('.', r'movie_.*\.txt',
cat_pattern=r'movie_(\w+)\.txt')
>>> reader.categories()
['neg', 'pos']
>>> reader.fileids(categories=['neg'])
['movie_neg.txt']
>>> reader.fileids(categories=['pos'])
['movie_pos.txt']

How it works...

The first two arguments to CategorizedPlaintextCorpusReader are the root directory and
fileids, which are passed on to the PlaintextCorpusReader class to read in the files. The
cat_pattern keyword argument is a regular expression for extracting the category names from the
fileids arguments. In our case, the category is the part of the fileid argument after movie_ and
before .txt. The category must be surrounded by grouping parenthesis.

The cat_pattern keyword is passed to CategorizedCorpusReader, which overrides the
common corpus reader functions such as fileids(), words(), sents(), and paras() to accept
a categories keyword argument. This way, you could get all the pos sentences by calling
reader.sents(categories=['pos']). The CategorizedCorpusReader class also
provides the categories() function, which returns a list of all the known categories in the corpus.

The CategorizedPlaintextCorpusReader class is an example of using multiple inheritance to
join methods from multiple superclasses, as shown in the following diagram:

There's more...

Instead of cat_pattern, you could pass in a cat_map, which is a dictionary mapping a fileid
argument to a list of category labels, as shown in the following code:

>>> reader = CategorizedPlaintextCorpusReader('.', r'movie_.*\.txt',
cat_map={'movie_pos.txt': ['pos'], 'movie_neg.txt': ['neg']})
>>> reader.categories()
['neg', 'pos']

Category file

A third way of specifying categories is to use the cat_file keyword argument to specify a filename
containing a mapping of fileid to category. For example, the brown corpus has a file called
cats.txt that looks like the following:

ca44 news
cb01 editorial

The reuters corpus has files in multiple categories, and its cats.txt looks like the following:

test/14840 rubber coffee lumber palm-oil veg-oil
test/14841 wheat grain

Categorized tagged corpus reader

The brown corpus reader is actually an instance of CategorizedTaggedCorpusReader, which
inherits from CategorizedCorpusReader and TaggedCorpusReader. Just like in
CategorizedPlaintextCorpusReader, it overrides all the methods of
TaggedCorpusReader to allow a categories argument, so you can call
brown.tagged_sents(categories=['news']) to get all the tagged sentences from the news
category. You can use the CategorizedTaggedCorpusReader class just like
CategorizedPlaintextCorpusReader for your own categorized and tagged text corpora.

Categorized corpora

The movie_reviews corpus reader is an instance of CategorizedPlaintextCorpusReader,
as is the reuters corpus reader. But where the movie_reviews corpus only has two categories
(neg and pos), reuters has 90 categories. These corpora are often used for training and evaluating
classifiers, which will be covered in Chapter 7, Text Classification.

See also

In the next chapter, we'll create a subclass of CategorizedCorpusReader and
ChunkedCorpusReader for reading a categorized chunk corpus. Also, see Chapter 7, Text
Classification in which we use categorized text for classification.

Creating a categorized chunk corpus reader
NLTK provides a CategorizedPlaintextCorpusReader and
CategorizedTaggedCorpusReader class, but there's no categorized corpus reader for chunked
corpora. So in this recipe, we're going to make one.

Getting ready

Refer to the earlier recipe, Creating a chunked phrase corpus, for an explanation of
ChunkedCorpusReader, and refer to the previous recipe for details on
CategorizedPlaintextCorpusReader and CategorizedTaggedCorpusReader, both of
which inherit from CategorizedCorpusReader.

How to do it...

We'll create a class called CategorizedChunkedCorpusReader that inherits from both
CategorizedCorpusReader and ChunkedCorpusReader. It is heavily based on the
CategorizedTaggedCorpusReader class, and also provides three additional methods for getting
categorized chunks. The following code is found in catchunked.py:

from nltk.corpus.reader import CategorizedCorpusReader,
ChunkedCorpusReader

class CategorizedChunkedCorpusReader(CategorizedCorpusReader,
ChunkedCorpusReader):

def __init__(self, *args, **kwargs):
CategorizedCorpusReader.__init__(self, kwargs)
ChunkedCorpusReader.__init__(self, *args, **kwargs)

def _resolve(self, fileids, categories):
if fileids is not None and categories is not None:

raise ValueError('Specify fileids or categories, not both')
if categories is not None:

return self.fileids(categories)
else:

return fileids

All of the following methods call the corresponding function in ChunkedCorpusReader with the
value returned from _resolve(). We'll start with the plain text methods:

def raw(self, fileids=None, categories=None):
return ChunkedCorpusReader.raw(self, self._resolve(fileids,

categories))

def words(self, fileids=None, categories=None):
return ChunkedCorpusReader.words(self, self._resolve(fileids,

categories))

def sents(self, fileids=None, categories=None):
return ChunkedCorpusReader.sents(self, self._resolve(fileids,

categories))

def paras(self, fileids=None, categories=None):
return ChunkedCorpusReader.paras(self, self._resolve(fileids,

categories))

Next is the code for the tagged text methods:

def tagged_words(self, fileids=None, categories=None):
return ChunkedCorpusReader.tagged_words(self,

self._resolve(fileids, categories))

def tagged_sents(self, fileids=None, categories=None):
return ChunkedCorpusReader.tagged_sents(self,

self._resolve(fileids, categories))

def tagged_paras(self, fileids=None, categories=None):
return ChunkedCorpusReader.tagged_paras(self,

self._resolve(fileids, categories))

And finally, we have code for the chunked methods, which is what we've really been after:

def chunked_words(self, fileids=None, categories=None):
return ChunkedCorpusReader.chunked_words(self,

self._resolve(fileids, categories))

def chunked_sents(self, fileids=None, categories=None):
return ChunkedCorpusReader.chunked_sents(self,

self._resolve(fileids, categories))

def chunked_paras(self, fileids=None, categories=None):
return ChunkedCorpusReader.chunked_paras(self,

self._resolve(fileids, categories))

All these methods together give us a complete CategorizedChunkedCorpusReader class.

How it works...

The CategorizedChunkedCorpusReader class overrides all the ChunkedCorpusReader
methods to take a categories argument for locating fileids. These fileids are found with the
internal _resolve() function. This _resolve() function makes use of
CategorizedCorpusReader.fileids() to return fileids for a given list of categories. If no
categories are given, _resolve() just returns the given fileids, which could be None, in which

case all the files are read. The initialization of both CategorizedCorpusReader and
ChunkedCorpusReader is what makes all this possible. If you look at the code for
CategorizedTaggedCorpusReader, you'll see that it's very similar.

The inheritance diagram looks like this:

The following is example code for using the treebank corpus. All we're doing is making categories
out of the fileids arguments, but the point is that you could use the same techniques to create your
own categorized chunk corpus:

>>> import nltk.data
>>> from catchunked import CategorizedChunkedCorpusReader
>>> path = nltk.data.find('corpora/treebank/tagged')
>>> reader = CategorizedChunkedCorpusReader(path, r'wsj_.*\.pos',
cat_pattern=r'wsj_(.*)\.pos')
>>> len(reader.categories()) == len(reader.fileids())

True
>>> len(reader.chunked_sents(categories=['0001']))
16

We use nltk.data.find() to search the data directories to get a FileSystemPathPointer
class to the treebank corpus. All the treebank tagged files start with wsj_, followed by a number,
and end with .pos. The previous code turns that file number into a category.

There's more...

As covered in the Creating a chunked phrase corpus recipe, there's an alternative format and reader for a
chunk corpus using IOB tags. To have a categorized corpus of IOB chunks, we have to make a new
corpus reader.

Categorized CoNLL chunk corpus reader

The following is the code for the subclass of CategorizedCorpusReader and
ConllChunkReader called CategorizedConllChunkCorpusReader. It overrides all
methods of ConllCorpusReader that take a fileids argument, so the methods can also take a
categories argument. The ConllChunkCorpusReader is just a small subclass of
ConllCorpusReader that handles initialization; most of the work is done in
ConllCorpusReader. This code can also be found in catchunked.py.

from nltk.corpus.reader import CategorizedCorpusReader,
ConllCorpusReader, ConllChunkCorpusReader

class CategorizedConllChunkCorpusReader(CategorizedCorpusReader,
ConllChunkCorpusReader):

def __init__(self, *args, **kwargs):
CategorizedCorpusReader.__init__(self, kwargs)
ConllChunkCorpusReader.__init__(self, *args, **kwargs)

def _resolve(self, fileids, categories):
if fileids is not None and categories is not None:

raise ValueError('Specify fileids or categories, not both')
if categories is not None:

return self.fileids(categories)
else:

return fileids

All the following methods call the corresponding method of ConllCorpusReader with the value
returned from _resolve(). We'll start with the plain text methods:

def raw(self, fileids=None, categories=None):
return ConllCorpusReader.raw(self, self._resolve(fileids,

categories))

def words(self, fileids=None, categories=None):
return ConllCorpusReader.words(self, self._resolve(fileids,

categories))

def sents(self, fileids=None, categories=None):
return ConllCorpusReader.sents(self, self._resolve(fileids,

categories))

The ConllCorpusReader class does not recognize paragraphs, so there are no *_paras()
methods. Next will be the code for the tagged and chunked methods, as follows:

def tagged_words(self, fileids=None, categories=None):
return ConllCorpusReader.tagged_words(self,

self._resolve(fileids, categories))
def tagged_sents(self, fileids=None, categories=None):

return ConllCorpusReader.tagged_sents(self,
self._resolve(fileids, categories))

def chunked_words(self, fileids=None, categories=None,
chunk_types=None):

return ConllCorpusReader.chunked_words(self,
self._resolve(fileids, categories), chunk_types)

def chunked_sents(self, fileids=None, categories=None,
chunk_types=None):

return ConllCorpusReader.chunked_sents(self,
self._resolve(fileids, categories), chunk_types)

For completeness, we must override the following methods of the ConllCorpusReader class:

def parsed_sents(self, fileids=None, categories=None,
pos_in_tree=None):

return ConllCorpusReader.parsed_sents(
self, self._resolve(fileids, categories), pos_in_tree)

def srl_spans(self, fileids=None, categories=None):
return ConllCorpusReader.srl_spans(self, self._resolve(fileids,

categories))

def srl_instances(self, fileids=None, categories=None,
pos_in_tree=None, flatten=True):

return ConllCorpusReader.srl_instances(self,
self._resolve(fileids, categories), pos_in_tree, flatten)

def iob_words(self, fileids=None, categories=None):
return ConllCorpusReader.iob_words(self, self._resolve(fileids,

categories))

def iob_sents(self, fileids=None, categories=None):
return ConllCorpusReader.iob_sents(self, self._resolve(fileids,

categories))

The inheritance diagram for this class is as follows:

Here is example code using the conll2000 corpus:

>>> import nltk.data
>>> from catchunked import CategorizedConllChunkCorpusReader
>>> path = nltk.data.find('corpora/conll2000')
>>> reader = CategorizedConllChunkCorpusReader(path, r'.*\.txt',

('NP','VP','PP'), cat_pattern=r'(.*)\.txt')
>>> reader.categories()
['test', 'train']
>>> reader.fileids()
['test.txt', 'train.txt']
>>> len(reader.chunked_sents(categories=['test']))
2012

Like with treebank, we're using the fileids for categories. The ConllChunkCorpusReader
class requires a third argument to specify the chunk types. These chunk types are used to parse the IOB
tags. As you learned in the Creating a chunked phrase corpus recipe, the conll2000 corpus
recognizes the following three chunk types:

• NP for noun phrases
• VP for verb phrases
• PP for prepositional phrases

See also

In the Creating a chunked phrase corpus recipe of this chapter, we covered both the
ChunkedCorpusReader and ConllChunkCorpusReader classes. And in the previous recipe,
we covered CategorizedPlaintextCorpusReader and
CategorizedTaggedCorpusReader, which share the same superclass used by
CategorizedChunkedCorpusReader and CategorizedConllChunkReader, that is,
CategorizedCorpusReader.

Lazy corpus loading
Loading a corpus reader can be an expensive operation due to the number of files, file sizes, and various
initialization tasks. And while you'll often want to specify a corpus reader in a common module, you
don't always need to access it right away. To speed up module import time when a corpus reader is
defined, NLTK provides a LazyCorpusLoader class that can transform itself into your actual corpus
reader as soon as you need it. This way, you can define a corpus reader in a common module without it
slowing down module loading.

How to do it...

The LazyCorpusLoader class requires two arguments: the name of the corpus and the corpus reader
class, plus any other arguments needed to initialize the corpus reader class.

The name argument specifies the root directory name of the corpus, which must be within a corpora
subdirectory of one of the paths in nltk.data.path. See the Setting up a custom corpus recipe of
this chapter for more details on nltk.data.path.

For example, if you have a custom corpora named cookbook in your local nltk_data directory, its
path would be ~/nltk_data/corpora/cookbook. You'd then pass 'cookbook' to
LazyCorpusLoader as the name, and LazyCorpusLoader will look in ~/nltk_data/
corpora for a directory named 'cookbook'.

The second argument to LazyCorpusLoader is reader_cls, which should be the name of a
subclass of CorpusReader, such as WordListCorpusReader. You will also need to pass in any
other arguments required by the reader_cls argument for initialization. This will be demonstrated as
follows, using the same wordlist file we created in the earlier recipe, Creating a wordlist corpus. The
third argument to LazyCorpusLoader is the list of filenames and fileids that will be passed to
WordListCorpusReader at initialization:

>>> from nltk.corpus.util import LazyCorpusLoader
>>> from nltk.corpus.reader import WordListCorpusReader
>>> reader = LazyCorpusLoader('cookbook', WordListCorpusReader,
['wordlist'])
>>> isinstance(reader, LazyCorpusLoader)
True
>>> reader.fileids()
['wordlist']
>>> isinstance(reader, LazyCorpusLoader)
False
>>> isinstance(reader, WordListCorpusReader)
True

How it works...

The LazyCorpusLoader class stores all the arguments given, but otherwise does nothing until you
try to access an attribute or method. This way, initialization is very fast, eliminating the overhead of
loading the corpus reader immediately. As soon as you do access an attribute or method, it does the
following:

1. Calls nltk.data.find('corpora/%s' % name) to find the corpus data root directory.
2. Instantiates the corpus reader class with the root directory and any other arguments.
3. Transforms itself into the corpus reader class.

So in the previous example code, before we call reader.fileids(), reader is an instance of
LazyCorpusLoader, but after the call, reader becomes an instance of WordListCorpusReader.

There's more...

All of the corpora included with NLTK and defined in nltk.corpus are initially a
LazyCorpusLoader class. The following is some code from nltk.corpus defining the
treebank corpora:

treebank = LazyCorpusLoader('treebank/combined',
BracketParseCorpusReader, r'wsj_.*\.mrg',tagset='wsj',
encoding='ascii')
treebank_chunk = LazyCorpusLoader('treebank/tagged',
ChunkedCorpusReader,
r'wsj_.*\.pos',sent_tokenizer=RegexpTokenizer(r'(?<=/\.)\s*(?![^\[]*\
])', gaps=True),

para_block_reader=tagged_treebank_para_block_reader,
encoding='ascii')
treebank_raw = LazyCorpusLoader('treebank/raw',
PlaintextCorpusReader, r'wsj_.*', encoding='ISO-8859-2')

As you can see in the previous code, any number of additional arguments can be passed through by
LazyCorpusLoader to its reader_cls argument.

Creating a custom corpus view
A corpus view is a class wrapper around a corpus file that reads in blocks of tokens as needed. Its
purpose is to provide a view into a file without reading the whole file at once (since corpus files can
often be quite large). If the corpus readers included by NLTK already meet all your needs, then you do
not have to know anything about corpus views. But, if you have a custom file format that needs special
handling, this recipe will show you how to create and use a custom corpus view. The main corpus view
class is StreamBackedCorpusView, which opens a single file as a stream, and maintains an
internal cache of blocks it has read.

Blocks of tokens are read in with a block reader function. A block can be any piece of text, such as a
paragraph or a line, and tokens are parts of a block, such as individual words. In the Creating a part-of-
speech tagged word corpus recipe, we discussed the default para_block_reader function of the
TaggedCorpusReader class, which reads lines from a file until it finds a blank line, then returns
those lines as a single paragraph token. The actual block reader function is
nltk.corpus.reader.util.read_blankline_block. The TaggedCorpusReader class
passes this block reader function into a TaggedCorpusView class whenever it needs to read blocks
from a file. The TaggedCorpusView class is a subclass of StreamBackedCorpusView that
knows to split paragraphs of word/tag into (word, tag) tuples.

How to do it...

We'll start with the simple case of a plain text file with a heading that should be ignored by the corpus
reader. Let's make a file called heading_text.txt that looks like this:

A simple heading

Here is the actual text for the corpus.

Paragraphs are split by blanklines.

This is the 3rd paragraph.

Normally, we'd use the PlaintextCorpusReader class, but by default it will treat A simple
heading as the first paragraph. To ignore this heading, we need to subclass the
PlaintextCorpusReader class so we can override its CorpusView class variable with our own
StreamBackedCorpusView subclass. The following is the code found in corpus.py:

from nltk.corpus.reader import PlaintextCorpusReader
from nltk.corpus.reader.util import StreamBackedCorpusView

class IgnoreHeadingCorpusView(StreamBackedCorpusView):
def __init__(self, *args, **kwargs):

StreamBackedCorpusView.__init__(self, *args, **kwargs)
open self._stream
self._open()

skip the heading block
self.read_block(self._stream)
reset the start position to the current position in the stream
self._filepos = [self._stream.tell()]

class IgnoreHeadingCorpusReader(PlaintextCorpusReader):
CorpusView = IgnoreHeadingCorpusView

To demonstrate that this works as expected, here is code showing that the default
PlaintextCorpusReader class finds four paragraphs, while our
IgnoreHeadingCorpusReader class only has three paragraphs:

>>> from nltk.corpus.reader import PlaintextCorpusReader
>>> plain = PlaintextCorpusReader('.', ['heading_text.txt'])
>>> len(plain.paras())
4
>>> from corpus import IgnoreHeadingCorpusReader
>>> reader = IgnoreHeadingCorpusReader('.', ['heading_text.txt'])
>>> len(reader.paras())
3

How it works...

The PlaintextCorpusReader class by design has a CorpusView class variable that can be
overridden by subclasses. So we do just that, and make our IgnoreHeadingCorpusView class the
CorpusView class variable.

Note

Most corpus readers do not have a CorpusView class variable because they require very specific
corpus views.

The IgnoreHeadingCorpusView class is a subclass of StreamBackedCorpusView that does
the following on initialization:

1. Opens the file using self._open(). This function is defined by
StreamBackedCorpusView, and sets the internal instance variable self._stream to the
opened file.

2. Reads one block with read_blankline_block(), which then reads the heading as a
paragraph, and moves the stream's file position forward to the next block.

3. Resets the start file position to the current position of self._stream. The
self._filepos variable is an internal index of where each block is in the file.

The following is a diagram illustrating the relationships between the classes:

There's more...

Corpus views can get a lot fancier and more complicated, but the core concept is the same: read blocks
from a stream to return a list of tokens. There are a number of block readers provided in
nltk.corpus.reader.util, but you can always create your own. If you do want to define your
own block reader function, then you have two choices on how to implement it:

1. Define it as a separate function and pass it into StreamBackedCorpusView as
block_reader. This is a good option if your block reader is fairly simple, reusable, and
doesn't require any outside variables or configuration.

2. Subclass StreamBackedCorpusView and override the read_block() method. This is
what many custom corpus views do because the block reading is highly specialized and requires
additional functions and configuration, usually provided by the corpus reader when the corpus
view is initialized.

Block reader functions

The following is a survey of most of the included block readers in nltk.corpus.reader.util.
Unless otherwise mentioned, each block reader function takes a single argument: the stream argument
to read from:

• read_whitespace_block(): This will read 20 lines from the stream, splitting each line
into tokens by whitespace.

• read_wordpunct_block(): This reads 20 lines from the stream, splitting each line using
nltk.tokenize.wordpunct_tokenize().

• read_line_block(): This reads 20 lines from the stream and returns them as a list, with
each line as a token.

• read_blankline_block(): This will read lines from the stream until it finds a blank line.
It will then return a single token of all lines found combined into a single string.

• read_regexp_block(): This takes two additional arguments, which must be regular
expressions that can be passed to re.match(): start_re and end_re. The start_re
variable matches the starting line of a block, and end_re matches the ending line of the block.
The end_re variable defaults to None, in which case the block will end as soon as a new
start_re match is found. The return value is a single token of all lines in the block joined
into a single string.

Pickle corpus view

If you want to have a corpus of pickled objects, you can use the PickleCorpusView, a subclass of
StreamBackedCorpusView, found in nltk.corpus.reader.util. A file consists of blocks
of pickled objects, and can be created with the PickleCorpusView.write() class method, which
takes a sequence of objects and an output file, then pickles each object using pickle.dump() and
writes it to the file. It overrides the read_block() method to return a list of unpickled objects from
the stream, using pickle.load().

Concatenated corpus view

Also found in nltk.corpus.reader.util is the ConcatenatedCorpusView class. This
class is useful if you have multiple files that you want a corpus reader to treat as a single file. A
ConcatenatedCorpusView class is created by giving it a list of corpus_views, which are then
iterated over as if they were a single view.

See also

The concept of block readers was introduced in the Creating a part-of-speech tagged word corpus
recipe.

Creating a MongoDB-backed corpus reader
All the corpus readers we've dealt with so far have been file-based. That is in part due to the design of
the CorpusReader base class, and also the assumption that most corpus data will be in text files.
However, sometimes you'll have a bunch of data stored in a database that you want to access and use
just like a text file corpus. In this recipe, we'll cover the case where you have documents in MongoDB,
and you want to use a particular field of each document as your block of text.

Getting ready

MongoDB is a document-oriented database that has become a popular alternative to relational databases
such as MySQL. The installation and setup of MongoDB is outside the scope of this book, but you can
find instructions at http://docs.mongodb.org/manual/.

You'll also need to install PyMongo, a Python driver for MongoDB. You should be able to do this with
either easy_install or pip, by typing sudo easy_install pymongo or sudo pip
install pymongo.

The following code assumes that your database is on localhost port 27017, which is the MongoDB
default configuration, and that you'll be using the test database with a collection named corpus that
contains documents with a text field. Explanations for these arguments are available in the PyMongo
documentation at http://api.mongodb.org/python/current/.

How to do it...

Since the CorpusReader class assumes you have a file-based corpus, we can't directly subclass it.
Instead, we're going to emulate both the StreamBackedCorpusView and
PlaintextCorpusReader classes. The StreamBackedCorpusView class is a subclass of
nltk.util.AbstractLazySequence, so we'll subclass AbstractLazySequence to create a
MongoDB view, and then create a new class that will use the view to provide functionality similar to the
PlaintextCorpusReader class. The following is the code, which is found in mongoreader.py:

import pymongo
from nltk.data import LazyLoader
from nltk.tokenize import TreebankWordTokenizer
from nltk.util import AbstractLazySequence, LazyMap,
LazyConcatenation

class MongoDBLazySequence(AbstractLazySequence):
def __init__(self, host='localhost', port=27017, db='test',

collection='corpus', field='text'):
self.conn = pymongo.MongoClient(host, port)
self.collection = self.conn[db][collection]
self.field = field

def __len__(self):

http://docs.mongodb.org/manual/
http://api.mongodb.org/python/current/

return self.collection.count()

def iterate_from(self, start):
f = lambda d: d.get(self.field, '')
return iter(LazyMap(f, self.collection.find(fields=[self.field],

skip=start)))

class MongoDBCorpusReader(object):
def __init__(self, word_tokenizer=TreebankWordTokenizer(),

sent_tokenizer=LazyLoader('tokenizers/punkt/PY3/
english.pickle'),**kwargs):

self._seq = MongoDBLazySequence(**kwargs)
self._word_tokenize = word_tokenizer.tokenize
self._sent_tokenize = sent_tokenizer.tokenize

def text(self):
return self._seq

def words(self):
return LazyConcatenation(LazyMap(self._word_tokenize,

self.text()))

def sents(self):
return LazyConcatenation(LazyMap(self._sent_tokenize,

self.text()))

How it works...

The AbstractLazySequence class is an abstract class that provides read-only, on-demand iteration.
Subclasses must implement the __len__() and iterate_from(start) methods, while it
provides the rest of the list and iterator emulation methods. By creating the MongoDBLazySequence
subclass as our view, we can iterate over documents in the MongoDB collection on demand, without
keeping all the documents in memory. The LazyMap class is a lazy version of Python's built-in map()
function, and is used in iterate_from() to transform the document into the specific field that we're
interested in. It's also a subclass of AbstractLazySequence.

The MongoDBCorpusReader class creates an internal instance of MongoDBLazySequence for
iteration, then defines the word and sentence tokenization methods. The text() method simply returns
the instance of MongoDBLazySequence, which results in a lazily evaluated list of each text field.
The words() method uses LazyMap and LazyConcatenation to return a lazily evaluated list of
all words, while the sents() method does the same for sentences. The sent_tokenizer is loaded
on demand with LazyLoader, which is a wrapper around nltk.data.load(), analogous to
LazyCorpusLoader. The LazyConcatentation class is a subclass of
AbstractLazySequence too, and produces a flat list from a given list of lists (each list may also be
lazy). In our case, we're concatenating the results of LazyMap to ensure we don't return nested lists.

There's more...

All of the parameters are configurable. For example, if you had a db named website, with a collection
named comments, whose documents had a field called comment, you could create a
MongoDBCorpusReader class as follows:

>>> reader = MongoDBCorpusReader(db='website',
collection='comments', field='comment')

You can also pass in custom instances for word_tokenizer and sent_tokenizer, as long as the
objects implement the nltk.tokenize.TokenizerI interface by providing a tokenize(text)
method.

See also

Corpus views were covered in the previous recipe, and tokenization was covered in Chapter 1,
Tokenizing Text and WordNet Basics.

Corpus editing with file locking
Corpus readers and views are all read-only, but there will be times when you want to add to or edit the
corpus files. However, modifying a corpus file while other processes are using it, such as through a
corpus reader, can lead to dangerous undefined behavior. This is where file locking comes in handy.

Getting ready

You must install the lockfile library using sudo easy_install lockfile or sudo pip
install lockfile. This library provides cross-platform file locking, and so will work on
Windows, Unix/Linux, Mac OS X, and more. You can find detailed documentation on lockfile at
http://packages.python.org/lockfile/.

How to do it...

Here are two file editing functions: append_line() and remove_line(). Both try to acquire an
exclusive lock on the file before updating it. An exclusive lock means that these functions will wait until
no other process is reading from or writing to the file. Once the lock is acquired, any other process that
tries to access the file will have to wait until the lock is released. This way, modifying the file will be
safe and not cause any undefined behavior in other processes. These functions can be found in
corpus.py, as follows:

import lockfile, tempfile, shutil

def append_line(fname, line): with lockfile.FileLock(fname):
fp = open(fname, 'a+')
fp.write(line)
fp.write('\n')
fp.close()

def remove_line(fname, line):

with lockfile.FileLock(fname):
tmp = tempfile.TemporaryFile()
fp = open(fname, 'rw+')
write all lines from orig file, except if matches given line
for l in fp:

if l.strip() != line:
tmp.write(l)

reset file pointers so entire files are copied
fp.seek(0)
tmp.seek(0)
copy tmp into fp, then truncate to remove trailing line(s)
shutil.copyfileobj(tmp, fp)
fp.truncate()

http://packages.python.org/lockfile/

fp.close()
tmp.close()

The lock acquiring and releasing happens transparently when you do with
lockfile.FileLock(fname).

Note

Instead of using with lockfile.FileLock(fname), you can also get a lock by calling lock =
lockfile.FileLock(fname), then call lock.acquire() to acquire the lock, and
lock.release() to release the lock.

How it works...

You can use these functions as follows:

>>> from corpus import append_line, remove_line
>>> append_line('test.txt', 'foo')
>>> remove_line('test.txt', 'foo')

In append_line(), a lock is acquired, the file is opened in append mode, the text is written along
with an end-of-line character, and then the file is closed, releasing the lock.

Tip

A lock acquired by lockfile only protects the file from other processes that also use lockfile. In
other words, just because your Python process has a lock with lockfile doesn't mean a non-Python
process can't modify the file. For this reason, it's best to only use lockfile with files that will not be
edited by an non-Python processes, or Python processes that do not use lockfile.

The remove_line() function is a bit more complicated. Because we're removing a line, and not a
specific section of the file, we need to iterate over the file to find each instance of the line to remove.
The easiest way to do this while writing the changes back to the file, is to use a temporary file to hold
the changes, then copy that file back into the original file using shutil.copyfileobj().

Note

The remove_line() function does not work on Mac OS X, but does work on Linux. For
remove_line() to work, it must be able to open a file in both read and write modes, and Mac OS X
does not allow this.

These functions are best suited for a wordlist corpus, or some other corpus type with presumably unique
lines, that may be edited by multiple people at about the same time, such as through a web interface.
Using these functions with a more document-oriented corpus such as brown, treebank, or
conll2000, is probably a bad idea.

Chapter 4. Part-of-speech Tagging
In this chapter, we will cover the following recipes:

• Default tagging
• Training a unigram part-of-speech tagger
• Combining taggers with backoff tagging
• Training and combining ngram taggers
• Creating a model of likely word tags
• Tagging with regular expressions
• Affix tagging
• Training a Brill tagger
• Training the TnT tagger
• Using WordNet for tagging
• Tagging proper names
• Classifier-based tagging
• Training a tagger with NLTK-Trainer

Introduction
Part-of-speech tagging is the process of converting a sentence, in the form of a list of words, into a list
of tuples, where each tuple is of the form (word, tag). The tag is a part-of-speech tag, and signifies
whether the word is a noun, adjective, verb, and so on.

Part-of-speech tagging is a necessary step before chunking, which is covered in Chapter 5, Extracting
Chunks. Without the part-of-speech tags, a chunker cannot know how to extract phrases from a sentence.
But with part-of-speech tags, you can tell a chunker how to identify phrases based on tag patterns.

You can also use part-of-speech tags for grammar analysis and word sense disambiguation. For example,
the word duck could refer to a bird, or it could be a verb indicating a downward motion. Computers
cannot know the difference without additional information, such as part-of-speech tags. For more on
word sense disambiguation, refer to the URL https://en.wikipedia.org/wiki/Word_sense_disambiguation.

Most of the taggers we'll cover are trainable. They use a list of tagged sentences as their training data,
such as what you get from the tagged_sents() method of a TaggedCorpusReader class (see
the Creating a part-of-speech tagged word corpus recipe in Chapter 3, Creating Custom Corpora, for
more details). With these training sentences, the tagger generates an internal model that will tell it how
to tag a word. Other taggers use external data sources or match word patterns to choose a tag for a word.

All taggers in NLTK are in the nltk.tag package and inherit from the TaggerI base class.
TaggerI requires all subclasses to implement a tag() method, which takes a list of words as input
and returns a list of tagged words as output. TaggerI also provides an evaluate() method for
evaluating the accuracy of the tagger (covered at the end of the Default tagging recipe). Many taggers
can also be combined into a backoff chain, so that if one tagger cannot tag a word, the next tagger is
used, and so on.

https://en.wikipedia.org/wiki/Word_sense_disambiguation

Default tagging
Default tagging provides a baseline for part-of-speech tagging. It simply assigns the same part-of-speech
tag to every token. We do this using the DefaultTagger class. This tagger is useful as a last-resort
tagger, and provides a baseline to measure accuracy improvements.

Getting ready

We're going to use the treebank corpus for most of this chapter because it's a common standard and is
quick to load and test. But everything we do should apply equally well to brown, conll2000, and
any other part-of-speech tagged corpus.

How to do it...

The DefaultTagger class takes a single argument, the tag you want to apply. We'll give it NN, which
is the tag for a singular noun. DefaultTagger is most useful when you choose the most common
part-of-speech tag. Since nouns tend to be the most common types of words, a noun tag is
recommended.

>>> from nltk.tag import DefaultTagger
>>> tagger = DefaultTagger('NN')
>>> tagger.tag(['Hello', 'World'])
[('Hello', 'NN'), ('World', 'NN')]

Every tagger has a tag() method that takes a list of tokens, where each token is a single word. This list
of tokens is usually a list of words produced by a word tokenizer (see Chapter 1, Tokenizing Text and
WordNet Basics, for more on tokenization). As you can see, tag() returns a list of tagged tokens,
where a tagged token is a tuple of (word, tag).

How it works...

DefaultTagger is a subclass of SequentialBackoffTagger. Every subclass of
SequentialBackoffTagger must implement the choose_tag() method, which takes three
arguments:

• The list of tokens
• The index of the current token whose tag we want to choose
• The history, which is a list of the previous tags

SequentialBackoffTagger implements the tag() method, which calls the choose_tag()
method of the subclass for each index in the tokens list while accumulating a history of the previously
tagged tokens. This history is the reason for the Sequential in SequentialBackoffTagger. We'll
get to the backoff portion of the name in the Combining taggers with backoff tagging recipe. Here's a
diagram showing the inheritance tree:

The choose_tag() method of DefaultTagger is very simple: it returns the tag we gave it at the
time of initialization. It does not care about the current token or the history.

There's more...

There are a lot of different tags you could give to the DefaultTagger class. You can find a complete
list of possible tags for the treebank corpus at http://www.ling.upenn.edu/courses/Fall_2003/ling001/
penn_treebank_pos.html. These tags are also documented in Appendix A, Penn Treebank Part-of-speech
Tags.

Evaluating accuracy

To know how accurate a tagger is, you can use the evaluate() method, which takes a list of tagged
tokens as a gold standard to evaluate the tagger. Using our default tagger created earlier, we can evaluate
it against a subset of the treebank corpus tagged sentences.

>>> from nltk.corpus import treebank
>>> test_sents = treebank.tagged_sents()[3000:]

http://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
http://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

>>> tagger.evaluate(test_sents)
0.14331966328512843

So, by just choosing NN for every tag, we can achieve 14 % accuracy testing on one-fourth of the
treebank corpus. Of course, accuracy will be different if you choose a different default tag. We'll be
reusing these same test_sents for evaluating more taggers in the upcoming recipes.

Tagging sentences

TaggerI also implements a tag_sents() method that can be used to tag a list of sentences, instead
of a single sentence. Here's an example of tagging two simple sentences:

>>> tagger.tag_sents([['Hello', 'world', '.'], ['How', 'are', 'you',
'?']])
[[('Hello', 'NN'), ('world', 'NN'), ('.', 'NN')], [('How', 'NN'),
('are', 'NN'), ('you', 'NN'), ('?', 'NN')]]

The result is a list of two tagged sentences, and of course, every tag is NN because we're using the
DefaultTagger class. The tag_sents() method can be quiet useful if you have many sentences
you wish to tag all at once.

Untagging a tagged sentence

Tagged sentences can be untagged using nltk.tag.untag(). Calling this function with a tagged
sentence will return a list of words without the tags.

>>> from nltk.tag import untag
>>> untag([('Hello', 'NN'), ('World', 'NN')])
['Hello', 'World']

See also

For more on tokenization, see Chapter 1, Tokenizing Text and WordNet Basics. And to learn more about
tagged sentences, see the Creating a part-of-speech tagged word corpus recipe in Chapter 3, Creating
Custom Corpora. For a complete list of part-of-speech tags found in the treebank corpus, see
Appendix A, Penn Treebank Part-of-speech Tags.

Training a unigram part-of-speech tagger
A unigram generally refers to a single token. Therefore, a unigram tagger only uses a single word as its
context for determining the part-of-speech tag.

UnigramTagger inherits from NgramTagger, which is a subclass of ContextTagger, which
inherits from SequentialBackoffTagger. In other words, UnigramTagger is a context-based
tagger whose context is a single word, or unigram.

How to do it...

UnigramTagger can be trained by giving it a list of tagged sentences at initialization.

>>> from nltk.tag import UnigramTagger
>>> from nltk.corpus import treebank
>>> train_sents = treebank.tagged_sents()[:3000]
>>> tagger = UnigramTagger(train_sents)
>>> treebank.sents()[0]
['Pierre', 'Vinken', ',', '61', 'years', 'old', ',', 'will', 'join',
'the', 'board', 'as', 'a', 'nonexecutive', 'director', 'Nov.', '29',
'.']
>>> tagger.tag(treebank.sents()[0])
[('Pierre', 'NNP'), ('Vinken', 'NNP'), (',', ','), ('61', 'CD'),
('years', 'NNS'), ('old', 'JJ'), (',', ','), ('will', 'MD'),
('join', 'VB'), ('the', 'DT'), ('board', 'NN'), ('as', 'IN'), ('a',
'DT'), ('nonexecutive', 'JJ'), ('director', 'NN'), ('Nov.', 'NNP'),
('29', 'CD'), ('.', '.')]

We use the first 3000 tagged sentences of the treebank corpus as the training set to initialize the
UnigramTagger class. Then, we see the first sentence as a list of words, and can see how it is
transformed by the tag() function into a list of tagged tokens.

How it works...

UnigramTagger builds a context model from the list of tagged sentences. Because
UnigramTagger inherits from ContextTagger, instead of providing a choose_tag() method,
it must implement a context() method, which takes the same three arguments as choose_tag().
The result of context() is, in this case, the word token. The context token is used to create the model,
and also to look up the best tag once the model is created. Here's an inheritance diagram showing each
class, starting at SequentialBackoffTagger:

Let's see how accurate the UnigramTagger class is on the test sentences (see the previous recipe for
how test_sents is created).

>>> tagger.evaluate(test_sents)
0.8588819339520829

It has almost 86 % accuracy for a tagger that only uses single word lookup to determine the part-of-
speech tag. All accuracy gains from here on will be much smaller.

Note

Actual accuracy values may change each time you run the code. This is because the default iteration
order in Python 3 is random. To get consistent accuracy values, run Python with the
PYTHONHASHSEED environment variable set to 0 or any positive integer. For example:

$ PYTHONHASHSEED=0 python chapter4.py

All accuracy values in this book were calculated with PYTHONHASHSEED=0.

There's more...

The model building is actually implemented in ContextTagger. Given the list of tagged sentences, it
calculates the frequency that a tag has occurred for each context. The tag with the highest frequency for
a context is stored in the model.

Overriding the context model

All taggers that inherit from ContextTagger can take a pre-built model instead of training their own.
This model is simply a Python dict mapping a context key to a tag. The context keys will depend on
what the ContextTagger subclass returns from its context() method. For UnigramTagger,
context keys are individual words. But for other NgramTagger subclasses, the context keys will be
tuples.

Here's an example where we pass a very simple model to the UnigramTagger class instead of a
training set.

>>> tagger = UnigramTagger(model={'Pierre': 'NN'})
>>> tagger.tag(treebank.sents()[0])
[('Pierre', 'NN'), ('Vinken', None), (',', None), ('61', None),
('years', None), ('old', None), (',', None), ('will', None),
('join', None), ('the', None), ('board', None), ('as', None), ('a',
None), ('nonexecutive', None), ('director', None), ('Nov.', None),
('29', None), ('.', None)]

Since the model only contained the context key Pierre, only the first word got a tag. Every other word
got None as the tag since the context word was not in the model. So, unless you know exactly what you
are doing, let the tagger train its own model instead of passing in your own.

One good case for passing a self-created model to the UnigramTagger class is for when you have a
dictionary of words and tags, and you know that every word should always map to its tag. Then, you can
put this UnigramTagger as your first backoff tagger (covered in the next recipe) to look up tags for
unambiguous words.

Minimum frequency cutoff

The ContextTagger class uses frequency of occurrence to decide which tag is most likely for a
given context. By default, it will do this even if the context word and tag occurs only once. If you'd like
to set a minimum frequency threshold, then you can pass a cutoff value to the UnigramTagger
class.

>>> tagger = UnigramTagger(train_sents, cutoff=3)
>>> tagger.evaluate(test_sents)
0.7757392618173969

In this case, using cutoff=3 has decreased accuracy, but there may be times when a cutoff is a good
idea.

See also

In the next recipe, we'll cover backoff tagging to combine taggers, and in the Creating a model of likely
word tags recipe, we'll learn how to statistically determine tags for very common words.

Combining taggers with backoff tagging
Backoff tagging is one of the core features of SequentialBackoffTagger. It allows you to chain
taggers together so that if one tagger doesn't know how to tag a word, it can pass the word on to the next
backoff tagger. If that one can't do it, it can pass the word on to the next backoff tagger, and so on until
there are no backoff taggers left to check.

How to do it...

Every subclass of SequentialBackoffTagger can take a backoff keyword argument whose value
is another instance of a SequentialBackoffTagger. So, we'll use the DefaultTagger class
from the Default tagging recipe in this chapter as the backoff to the UnigramTagger class covered in
the previous recipe, Training a unigram part-of-speech tagger. Refer to both the recipes for details on
train_sents and test_sents.

>>> tagger1 = DefaultTagger('NN')
>>> tagger2 = UnigramTagger(train_sents, backoff=tagger1)
>>> tagger2.evaluate(test_sents)
0.8758471832505935

By using a default tag of NN whenever the UnigramTagger is unable to tag a word, we've increased
the accuracy by almost 2%!

How it works...

When a SequentialBackoffTagger class is initialized, it creates an internal list of backoff
taggers with itself as the first element. If a backoff tagger is given, then the backoff tagger's internal list
of taggers is appended. Here's some code to illustrate this:

>>> tagger1._taggers == [tagger1]
True
>>> tagger2._taggers == [tagger2, tagger1]
True

The _taggers list is the internal list of backoff taggers that the SequentialBackoffTagger
class uses when the tag() method is called. It goes through its list of taggers, calling choose_tag()
on each one. As soon as a tag is found, it stops and returns that tag. This means that if the primary tagger
can tag the word, then that's the tag that will be returned. But if it returns None, then the next tagger is
tried, and so on until a tag is found, or else None is returned. Of course, None will never be returned if
your final backoff tagger is a DefaultTagger.

There's more...

While most of the taggers included in NLTK are subclasses of SequentialBackoffTagger, not all
of them are. There's a few taggers that we'll cover in the later recipes that cannot be used as part of a
backoff tagging chain, such as the BrillTagger class. However, these taggers generally take another

tagger to use as a baseline, and a SequentialBackoffTagger class is often a good choice for that
baseline.

Saving and loading a trained tagger with pickle

Since training a tagger can take a while, and you generally only need to do the training once, pickling a
trained tagger is a useful way to save it for later usage. If your trained tagger is called tagger, then
here's how to dump and load it with pickle:

>>> import pickle
>>> f = open('tagger.pickle', 'wb')
>>> pickle.dump(tagger, f)
>>> f.close()
>>> f = open('tagger.pickle', 'rb')
>>> tagger = pickle.load(f)

If your tagger pickle file is located in an NLTK data directory, you could also use
nltk.data.load('tagger.pickle') to load the tagger.

See also

In the next recipe, we'll combine more taggers with backoff tagging. Also, see the previous two recipes
for details on the DefaultTagger and UnigramTagger classes.

Training and combining ngram taggers
In addition to UnigramTagger, there are two more NgramTagger subclasses: BigramTagger
and TrigramTagger. The BigramTagger subclass uses the previous tag as part of its context,
while the TrigramTagger subclass uses the previous two tags. An ngram is a subsequence of n
items, so the BigramTagger subclass looks at two items (the previous tagged word and the current
word), and the TrigramTagger subclass looks at three items.

These two taggers are good at handling words whose part-of-speech tag is context-dependent. Many
words have a different part of speech depending on how they are used. For example, we've been talking
about taggers that tag words. In this case, tag is used as a verb. But the result of tagging is a part-of-
speech tag, so tag can also be a noun. The idea with the NgramTagger subclasses is that by looking at
the previous words and part-of-speech tags, we can better guess the part-of-speech tag for the current
word. Internally, each tagger maintains a context dictionary (implemented in the ContextTagger
parent class) that is used to guess that tag based on the context. In the case of NgramTagger
subclasses, the context is some number of previous tagged words.

Getting ready

Refer to the first two recipes of this chapter for details on constructing train_sents and
test_sents.

How to do it...

By themselves, BigramTagger and TrigramTagger perform quite poorly. This is partly because
they cannot learn context from the first word(s) in a sentence. Since a UnigramTagger class doesn't
care about the previous context, it is able to have higher baseline accuracy by simply guessing the most
common tag for each word.

>>> from nltk.tag import BigramTagger, TrigramTagger
>>> bitagger = BigramTagger(train_sents)
>>> bitagger.evaluate(test_sents)
0.11310166199007123
>>> tritagger = TrigramTagger(train_sents)
>>> tritagger.evaluate(test_sents)
0.0688107058061731

Where BigramTagger and TrigramTagger can make a contribution is when we combine them
with backoff tagging. This time, instead of creating each tagger individually, we'll create a function that
will take train_sents, a list of SequentialBackoffTagger classes, and an optional final
backoff tagger, then train each tagger with the previous tagger as a backoff. Here's the code from
tag_util.py:

def backoff_tagger(train_sents, tagger_classes, backoff=None):
for cls in tagger_classes:

backoff = cls(train_sents, backoff=backoff)

return backoff

And to use it, we can do the following:

>>> from tag_util import backoff_tagger
>>> backoff = DefaultTagger('NN')
>>> tagger = backoff_tagger(train_sents, [UnigramTagger,
BigramTagger, TrigramTagger], backoff=backoff)
>>> tagger.evaluate(test_sents)
0.8806820634578028

So, we've gained almost 1% accuracy by including the BigramTagger and TrigramTagger
subclasses in the backoff chain. For corpora other than treebank, the accuracy gain may be more or
less significant, depending on the nature of the text.

How it works...

The backoff_tagger function creates an instance of each tagger class in the list, giving it
train_sents and the previous tagger as a backoff. The order of the list of tagger classes is quite
important: the first class in the list (UnigramTagger) will be trained first and given the initial backoff
tagger (the DefaultTagger). This tagger will then become the backoff tagger for the next tagger
class in the list. The final tagger returned will be an instance of the last tagger class in the list
(TrigramTagger). Here's some code to clarify this chain:

>>> tagger._taggers[-1] == backoff
True
>>> isinstance(tagger._taggers[0], TrigramTagger)
True
>>> isinstance(tagger._taggers[1], BigramTagger)
True

So, we get a TrigramTagger, whose first backoff is a BigramTagger. Then, the next backoff will
be a UnigramTagger, whose backoff is the DefaultTagger.

There's more...

The backoff_tagger function doesn't just work with NgramTagger classes, it can also be used for
constructing a chain containing any subclasses of SequentialBackoffTagger.

BigramTagger and TrigramTagger, because they are subclasses of NgramTagger and
ContextTagger, can also take a model and cutoff argument, just like the UnigramTagger. But
unlike for UnigramTagger, the context keys of the model must be two tuples, where the first element
is a section of the history and the second element is the current token. For the BigramTagger, an
appropriate context key looks like ((prevtag,), word), and for TrigramTagger, it looks like
((prevtag1, prevtag2), word).

Quadgram tagger

The NgramTagger class can be used by itself to create a tagger that uses more than three ngrams for
its context key.

>>> from nltk.tag import NgramTagger
>>> quadtagger = NgramTagger(4, train_sents)
>>> quadtagger.evaluate(test_sents)
0.058234405352903085

It's even worse than the TrigramTagger! Here's an alternative implementation of a
QuadgramTagger class that we can include in a list to backoff_tagger. This code can be found
in taggers.py.

from nltk.tag import NgramTagger

class QuadgramTagger(NgramTagger):
def __init__(self, *args, **kwargs):

NgramTagger.__init__(self, 4, *args, **kwargs)

This is essentially how BigramTagger and TrigramTagger are implemented: simple subclasses of
NgramTagger that pass in the number of ngrams to look at in the history argument of the
context() method.

Now, let's see how it does as part of a backoff chain.

>>> from taggers import QuadgramTagger
>>> quadtagger = backoff_tagger(train_sents, [UnigramTagger,
BigramTagger, TrigramTagger, QuadgramTagger], backoff=backoff)
>>> quadtagger.evaluate(test_sents)
0.8806388948845241

It's actually slightly worse than before, when we stopped with the TrigramTagger. So, the lesson is
that too much context can have a negative effect on accuracy.

See also

The previous two recipes cover the UnigramTagger and backoff tagging.

Creating a model of likely word tags
As previously mentioned in the Training a unigram part-of-speech tagger recipe, using a custom model
with a UnigramTagger class should only be done if you know exactly what you're doing. In this
recipe, we're going to create a model for the most common words, most of which always have the same
tag no matter what.

How to do it...

To find the most common words, we can use nltk.probability.FreqDist to count word
frequencies in the treebank corpus. Then, we can create a ConditionalFreqDist class for
tagged words, where we count the frequency of every tag for every word. Using these counts, we can
construct a model of the 200 most frequent words as keys, with the most frequent tag for each word as a
value. Here's the model creation function defined in tag_util.py.

from nltk.probability import FreqDist, ConditionalFreqDist

def word_tag_model(words, tagged_words, limit=200):
fd = FreqDist(words)
cfd = ConditionalFreqDist(tagged_words)
most_freq = (word for word, count in fd.most_common(limit))
return dict((word, cfd[word].max()) for word in most_freq)

And to use it with a UnigramTagger class, we can do the following:

>>> from tag_util import word_tag_model
>>> from nltk.corpus import treebank
>>> model = word_tag_model(treebank.words(), treebank.tagged_words())
>>> tagger = UnigramTagger(model=model)
>>> tagger.evaluate(test_sents)
0.559680552557738

An accuracy of almost 56% is ok, but nowhere near as good as the trained UnigramTagger. Let's try
adding it to our backoff chain.

>>> default_tagger = DefaultTagger('NN')
>>> likely_tagger = UnigramTagger(model=model,
backoff=default_tagger)
>>> tagger = backoff_tagger(train_sents, [UnigramTagger,
BigramTagger, TrigramTagger], backoff=likely_tagger)
>>> tagger.evaluate(test_sents)
0.8806820634578028

The final accuracy is exactly the same as without the likely_tagger. This is because the frequency
calculations we did to create the model are almost exactly the same as what happens when we train a
UnigramTagger class.

How it works...

The word_tag_model() function takes a list of all words, a list of all tagged words, and the
maximum number of words we want to use for our model. We give the list of words to a FreqDist
class, which counts the frequency of each word. Then, we get the top 200 words from the FreqDist
class by calling fd.most_common(), which obviously returns a list of the most common words and
counts. The FreqDist class is actually a subclass of collections.Counter, which provides the
most_common() method.

Next, we give the list of tagged words to ConditionalFreqDist, which creates a FreqDist class
of tags for each word, with the word as the condition. Finally, we return a dict of the top 200 words
mapped to their most likely tag.

Note

In the previous edition of this book, we used the keys() method of the FreqDist class because in
NLTK2, the keys were returned in sorted order, from the most frequent to the least. But in NLTK3,
FreqDist inherits from collections.Counter, and the keys() method does not use any
predictable ordering.

There's more...

It may seem useless to include this tagger as it does not change the accuracy. But the point of this recipe
is to demonstrate how to construct a useful model for a UnigramTagger class. Custom model
construction is a way to create a manual override of trained taggers that are otherwise black boxes. And
by putting the likely_tagger at the front of the chain, we can actually improve accuracy a little bit:

>>> tagger = backoff_tagger(train_sents, [UnigramTagger,
BigramTagger, TrigramTagger], backoff=default_tagger)
>>> likely_tagger = UnigramTagger(model=model, backoff=tagger)
>>> likely_tagger.evaluate(test_sents)
0.8824088063889488

Putting custom model taggers at the front of the backoff chain gives you complete control over how
specific words are tagged, while letting the trained taggers handle everything else.

See also

The Training a unigram part-of-speech tagger recipe has details on the UnigramTagger class and a
simple custom model example. See the earlier recipes Combining taggers with backoff tagging and
Training and combining ngram taggers for details on backoff tagging.

Tagging with regular expressions
You can use regular expression matching to tag words. For example, you can match numbers with \d to
assign the tag CD (which refers to a Cardinal number). Or you could match on known word patterns,
such as the suffix "ing". There's a lot of flexibility here, but be careful of over-specifying since language
is naturally inexact, and there are always exceptions to the rule.

Getting ready

For this recipe to make sense, you should be familiar with the regular expression syntax and Python's re
module.

How to do it...

The RegexpTagger class expects a list of two tuples, where the first element in the tuple is a regular
expression and the second element is the tag. The patterns shown in the following code can be found in
tag_util.py:

patterns = [
(r'^\d+$', 'CD'),
(r'.*ing$', 'VBG'), # gerunds, i.e. wondering
(r'.*ment$', 'NN'), # i.e. wonderment
(r'.*ful$', 'JJ') # i.e. wonderful

]

Once you've constructed this list of patterns, you can pass it into RegexpTagger.

>>> from tag_util import patterns
>>> from nltk.tag import RegexpTagger
>>> tagger = RegexpTagger(patterns)
>>> tagger.evaluate(test_sents)
0.037470321605870924

So, it's not too great with just a few patterns, but since RegexpTagger is a subclass of
SequentialBackoffTagger, it can be a useful part of a backoff chain. For example, it could be
positioned just before a DefaultTagger class, to tag words that the ngram tagger(s) missed.

How it works...

The RegexpTagger class saves the patterns given at initialization, then on each call to
choose_tag(), it iterates over the patterns and returns the tag for the first expression that matches the
current word using re.match(). This means that if you have two expressions that could match, the
tag of the first one will always be returned, and the second expression won't even be tried.

There's more...

The RegexpTagger class can replace the DefaultTagger class if you give it a pattern such as
(r'.*', 'NN'). This pattern should, of course, be last in the list of patterns, otherwise no other
patterns will match.

See also

In the next recipe, we'll cover the AffixTagger class, which learns how to tag based on prefixes and
suffixes of words. See the Default tagging recipe for details on the DefaultTagger class.

Affix tagging
The AffixTagger class is another ContextTagger subclass, but this time the context is either the
prefix or the suffix of a word. This means the AffixTagger class is able to learn tags based on fixed-
length substrings of the beginning or ending of a word.

How to do it...

The default arguments for an AffixTagger class specify three-character suffixes, and that words must
be at least five characters long. If a word is less than five characters, then None is returned as the tag.

>>> from nltk.tag import AffixTagger
>>> tagger = AffixTagger(train_sents)
>>> tagger.evaluate(test_sents)
0.27558817181092166

So, it does ok by itself with the default arguments. Let's try it by specifying three-character prefixes.

>>> prefix_tagger = AffixTagger(train_sents, affix_length=3)
>>> prefix_tagger.evaluate(test_sents)
0.23587308439456076

To learn on two-character suffixes, the code will look like this:

>>> suffix_tagger = AffixTagger(train_sents, affix_length=-2)
>>> suffix_tagger.evaluate(test_sents)
0.31940427368875457

How it works...

A positive value for affix_length means that the AffixTagger class will learn word prefixes,
essentially word[:affix_length]. If affix_length is negative, then suffixes are learned using
word[affix_length:].

There's more...

You can combine multiple affix taggers in a backoff chain if you want to learn on multiple character
length affixes. Here's an example of four AffixTagger classes learning on 2 and 3 character prefixes
and suffixes:

>>> pre3_tagger = AffixTagger(train_sents, affix_length=3)
>>> pre3_tagger.evaluate(test_sents)
0.23587308439456076
>>> pre2_tagger = AffixTagger(train_sents, affix_length=2,
backoff=pre3_tagger)
>>> pre2_tagger.evaluate(test_sents)

0.29786315562270665
>>> suf2_tagger = AffixTagger(train_sents, affix_length=-2,
backoff=pre2_tagger)
>>> suf2_tagger.evaluate(test_sents)
0.32467083962875026
>>> suf3_tagger = AffixTagger(train_sents, affix_length=-3,
backoff=suf2_tagger)
>>> suf3_tagger.evaluate(test_sents)
0.3590761925318368

As you can see, the accuracy goes up each time.

Note

The ordering in the previous block of code is not the best, nor is it the worst. I'll leave it to you to
explore the possibilities and discover the best backoff chain of values for AffixTagger and
affix_length.

Working with min_stem_length

The AffixTagger class also takes a min_stem_length keyword argument, with a default value of
2. If the word length is less than min_stem_length plus the absolute value of affix_length,
then None is returned by the context() method. Increasing min_stem_length forces the
AffixTagger class to only learn on longer words, while decreasing min_stem_length will allow
it to learn on shorter words. Of course, for shorter words, the affix_length argument could be equal
to or greater than the word length, and AffixTagger would essentially be acting like a
UnigramTagger class.

See also

You can manually specify prefixes and suffixes using regular expressions, as shown in the previous
recipe. The Training a unigram part-of-speech tagger and Training and combining ngram taggers
recipes have details on NgramTagger subclasses, which are also subclasses of ContextTagger.

Training a Brill tagger
The BrillTagger class is a transformation-based tagger. It is the first tagger that is not a subclass of
SequentialBackoffTagger. Instead, the BrillTagger class uses a series of rules to correct the
results of an initial tagger. These rules are scored based on how many errors they correct minus the
number of new errors they produce.

How to do it...

Here's a function from tag_util.py that trains a BrillTagger class using
BrillTaggerTrainer. It requires an initial_tagger and train_sents.

from nltk.tag import brill, brill_trainer

def train_brill_tagger(initial_tagger, train_sents, **kwargs):
templates = [

brill.Template(brill.Pos([-1])),
brill.Template(brill.Pos([1])),
brill.Template(brill.Pos([-2])),
brill.Template(brill.Pos([2])),
brill.Template(brill.Pos([-2, -1])),
brill.Template(brill.Pos([1, 2])),
brill.Template(brill.Pos([-3, -2, -1])),
brill.Template(brill.Pos([1, 2, 3])),
brill.Template(brill.Pos([-1]), brill.Pos([1])),
brill.Template(brill.Word([-1])),
brill.Template(brill.Word([1])),
brill.Template(brill.Word([-2])),
brill.Template(brill.Word([2])),
brill.Template(brill.Word([-2, -1])),
brill.Template(brill.Word([1, 2])),
brill.Template(brill.Word([-3, -2, -1])),
brill.Template(brill.Word([1, 2, 3])),
brill.Template(brill.Word([-1]), brill.Word([1])),

]

trainer = brill_trainer.BrillTaggerTrainer(initial_tagger,
templates, deterministic=True)

return trainer.train(train_sents, **kwargs)

To use it, we can create our initial_tagger from a backoff chain of NgramTagger classes, then
pass that into the train_brill_tagger() function to get a BrillTagger back.

>>> default_tagger = DefaultTagger('NN')
>>> initial_tagger = backoff_tagger(train_sents, [UnigramTagger,
BigramTagger, TrigramTagger], backoff=default_tagger)

>>> initial_tagger.evaluate(test_sents)
0.8806820634578028
>>> from tag_util import train_brill_tagger
>>> brill_tagger = train_brill_tagger(initial_tagger, train_sents)
>>> brill_tagger.evaluate(test_sents)
0.8827541549751781

So, the BrillTagger class has slightly increased accuracy over the initial_tagger.

How it works...

The BrillTaggerTrainer class takes an initial_tagger argument and a list of templates.
These templates must implement the BrillTemplateI interface, which is found in the
nltk.tbl.template module. The brill.Template class is such an implementation, and is
actually imported from nltk.tbl.template. The brill.Pos and brill.Word classes are
subclasses of nltk.tbl.template.Feature, and they describe what kind of features to use in the
template, in this case, one or more part-of-speech tags or words.

The templates specify how to learn transformation rules. For example,
brill.Template(brill.Pos([-1])) means that a rule can be generated using the previous
part-of-speech tag. The brill.Template(brill.Pos([1])) statement means that you can look
at the next part-of-speech tag to generate a rule. And brill.Template(brill.Word([-2,
-1])) means you can look at the combination of the previous two words to learn a transformation rule.

The thinking behind a transformation-based tagger is this: given the correct training sentences, the
output of the initial tagger, and the templates specifying features, try to generate transformation rules
that correct the initial tagger's output to be more in-line with the training sentences. The job of
BrillTaggerTrainer is to produce these rules, and to do so in a way that increases accuracy. A
transformation rule that fixes one problem may cause an error in another condition; thus, every rule must
be measured by how many errors it corrects versus how many new errors it introduces.

The workflow looks something like this:

There's more...

You can control the number of rules generated using the max_rules keyword argument to the
BrillTaggerTrainer.train() method. The default value is 200. You can also control the
quality of rules used with the min_score keyword argument. The default value is 2, though 3 can be a
good choice as well. The score is a measure of how well a rule corrects errors compared to how many
new errors it introduces.

Note

Increasing max_rules or min_score will greatly increase training time, without necessarily
increasing accuracy. Change these values with care.

Tracing

You can watch the BrillTaggerTrainer class do its work by passing trace=True into the
constructor, for example, trainer = brill.BrillTaggerTrainer(initial_tagger,
templates, deterministic=True, trace=True). This will give you the following output:

TBL train (fast) (seqs: 3000; tokens: 77511; tpls: 18; min score: 2;
min acc: None)

Finding initial useful rules...
Found 9869 useful rules.

Selecting rules...

This means it found 77511 rules with a score of at least min_score, and then it selects the best rules,
keeping no more than max_rules.

The default is trace=False, which means the trainer will work silently without printing its status.

See also

The Training and combining ngram taggers recipe details the construction of the initial_tagger
argument used earlier, and the Default tagging recipe explains the default_tagger argument.

Training the TnT tagger
TnT stands for Trigrams'n'Tags. It is a statistical tagger based on second order Markov models. The
details of this are out of the scope of this book, but you can read more about the original implementation
at http://www.coli.uni-saarland.de/~thorsten/tnt/.

How to do it...

The TnT tagger has a slightly different API than the previous taggers we've encountered. You must
explicitly call the train() method after you've created it. Here's a basic example.

>>> from nltk.tag import tnt
>>> tnt_tagger = tnt.TnT()
>>> tnt_tagger.train(train_sents)
>>> tnt_tagger.evaluate(test_sents)
0.8756313403842003

It's quite a good tagger all by itself, only slightly less accurate than the BrillTagger class from the
previous recipe. But if you do not call train() before evaluate(), you'll get an accuracy of 0%.

How it works...

The TnT tagger maintains a number of internal FreqDist and ConditionalFreqDist instances
based on the training data. These frequency distributions count unigrams, bigrams, and trigrams. Then,
during tagging, the frequencies are used to calculate the probabilities of possible tags for each word. So,
instead of constructing a backoff chain of NgramTagger subclasses, the TnT tagger uses all the ngram
models together to choose the best tag. It also tries to guess the tags for the whole sentence at once by
choosing the most likely model for the entire sentence, based on the probabilities of each possible tag.

Note

Training is fairly quick, but tagging is significantly slower than the other taggers we've covered. This is
due to all the floating point math that must be done to calculate the tag probabilities of each word.

There's more...

The TnT tagger accepts a few optional keyword arguments. You can pass in a tagger for unknown words
as unk. If this tagger is already trained, then you must also pass in Trained=True. Otherwise, it will
call unk.train(data) with the same data you pass into the train() method. Since none of the
previous taggers have a public train() method, I recommend always passing Trained=True if
you also pass an unk tagger. Here's an example using a DefaultTagger class, which does not
require any training.

>>> from nltk.tag import DefaultTagger
>>> unk = DefaultTagger('NN')
>>> tnt_tagger = tnt.TnT(unk=unk, Trained=True)

http://www.coli.uni-saarland.de/~thorsten/tnt/

>>> tnt_tagger.train(train_sents)
>>> tnt_tagger.evaluate(test_sents)
0.892467083962875

So, we got an almost 2% increase in accuracy! You must use a tagger that can tag a single word without
having seen that word before. This is because the unknown tagger's tag() method is only called with a
single word sentence. Other good candidates for an unknown tagger are RegexpTagger and
AffixTagger. Passing in a UnigramTagger class that's been trained on the same data is pretty
much useless, as it will have seen the exact same words and, therefore, have the same unknown word
blind spots.

Controlling the beam search

Another parameter you can modify for TnT is N, which controls the number of possible solutions the
tagger maintains while trying to guess the tags for a sentence. N defaults to 1000. Increasing it will
greatly increase the amount of memory used during tagging, without necessarily increasing the accuracy.
Decreasing N will decrease memory usage, but could also decrease accuracy. Here's what happens when
the value is changed to N=100.

>>> tnt_tagger = tnt.TnT(N=100)
>>> tnt_tagger.train(train_sents)
>>> tnt_tagger.evaluate(test_sents)
0.8756313403842003

So, the accuracy is exactly the same, but we use significantly less memory to achieve it. However, don't
assume that accuracy will not change if you decrease N; experiment with your own data to be sure.

Significance of capitalization

You can pass C=True to the TnT constructor if you want capitalization of words to be significant. The
default is C=False, which means all words are lowercase. The documentation on C says that treating
capitalization as significant probably will not increase accuracy. In my own testing, there was a very
slight (< 0.01%) increase in accuracy with C=True, probably because case-sensitivity can help identify
proper nouns.

See also

We have covered the DefaultTagger class in the Default tagging recipe, backoff tagging in the
Combining taggers with backoff tagging recipe, NgramTagger subclasses in the Training a unigram
part-of-speech tagger and Training and combining ngram taggers recipes, RegexpTagger in the
Tagging with regular expressions recipe, and the AffixTagger class in the Affix tagging recipe.

Using WordNet for tagging
If you remember from the Looking up Synsets for a word in WordNet recipe in Chapter 1, Tokenizing
Text and WordNet Basics, WordNet Synsets specify a part-of-speech tag. It's a very restricted set of
possible tags, and many words have multiple Synsets with different part-of-speech tags, but this
information can be useful for tagging unknown words. WordNet is essentially a giant dictionary, and it's
likely to contain many words that are not in your training data.

Getting ready

First, we need to decide how to map WordNet part-of-speech tags to the Penn Treebank part-of-speech
tags we've been using. The following is a table mapping one to the other. See the Looking up Synsets for
a word in WordNet recipe in Chapter 1, Tokenizing Text and WordNet Basics, for more details. The s,
which was not shown before, is just another kind of adjective, at least for tagging purposes.

WordNet tag Treebank tag

n NN

a JJ

s JJ

r RB

v VB

How to do it...

Now we can create a class that will look up words in WordNet, and then choose the most common tag
from the Synsets it finds. The WordNetTagger class defined in the following code can be found in
taggers.py:

from nltk.tag import SequentialBackoffTagger
from nltk.corpus import wordnet
from nltk.probability import FreqDist

class WordNetTagger(SequentialBackoffTagger):
'''
>>> wt = WordNetTagger()
>>> wt.tag(['food', 'is', 'great'])

[('food', 'NN'), ('is', 'VB'), ('great', 'JJ')]
'''
def __init__(self, *args, **kwargs):

SequentialBackoffTagger.__init__(self, *args, **kwargs)

self.wordnet_tag_map = {
'n': 'NN',
's': 'JJ',
'a': 'JJ',
'r': 'RB',
'v': 'VB'

}

def choose_tag(self, tokens, index, history):
word = tokens[index]
fd = FreqDist()

for synset in wordnet.synsets(word):
fd[synset.pos()] += 1

return self.wordnet_tag_map.get(fd.max())

Tip

Another way the FreqDist API has changed between NLTK2 and NLTK3 is that the inc() method
has been removed. Instead, you must use fd[key] += 1. Since FreqDist inherits from
collections.Counter, it's ok if fd[key] doesn't exist the first time you increment.

How it works...

The WordNetTagger class simply counts the number of each part-of-speech tag found in the Synsets
for a word. The most common tag is then mapped to a treebank tag using internal mapping. Here's
some sample usage code:

>>> from taggers import WordNetTagger
>>> wn_tagger = WordNetTagger()
>>> wn_tagger.evaluate(train_sents)
0.17914876598160262

So, it's not too accurate, but that's to be expected. We only have enough information to produce four
different kinds of tags, while there are 36 possible tags in treebank. There are many words that can
have different part-of-speech tags depending on their context. But if we put the WordNetTagger class
at the end of an NgramTagger backoff chain, then we can improve accuracy over the
DefaultTagger class.

>>> from tag_util import backoff_tagger
>>> from nltk.tag import UnigramTagger, BigramTagger, TrigramTagger

>>> tagger = backoff_tagger(train_sents, [UnigramTagger,
BigramTagger, TrigramTagger], backoff=wn_tagger)
>>> tagger.evaluate(test_sents)
0.8848262464925534

See also

The Looking up Synsets for a word in WordNet recipe in Chapter 1, Tokenizing Text and WordNet Basics,
details how to use the wordnet corpus and what kinds of part-of-speech tags it knows about. And in
the Combining taggers with backoff tagging and Training and combining ngram taggers recipes, we
went over backoff tagging with ngram taggers.

Tagging proper names
Using the included names corpus, we can create a simple tagger for tagging names as proper nouns.

How to do it...

The NamesTagger class is a subclass of SequentialBackoffTagger as it's probably only useful
near the end of a backoff chain. At initialization, we create a set of all names in the names corpus,
lower-casing each name to make lookup easier. Then, we implement the choose_tag() method,
which simply checks whether the current word is in the names_set list. If it is, we return the NNP tag
(which is the tag for proper nouns). If it isn't, we return None, so the next tagger in the chain can tag the
word. The following code can be found in taggers.py:

from nltk.tag import SequentialBackoffTagger
from nltk.corpus import names

class NamesTagger(SequentialBackoffTagger):
def __init__(self, *args, **kwargs):

SequentialBackoffTagger.__init__(self, *args, **kwargs)
self.name_set = set([n.lower() for n in names.words()])

def choose_tag(self, tokens, index, history):
word = tokens[index]

if word.lower() in self.name_set:
return 'NNP'

else:
return None

How it works...

The NamesTagger class should be pretty self-explanatory. The usage is also simple.

>>> from taggers import NamesTagger
>>> nt = NamesTagger()
>>> nt.tag(['Jacob'])
[('Jacob', 'NNP')]

It's probably best to use the NamesTagger class right before a DefaultTagger class, so it's at the
end of a backoff chain. But it could probably go anywhere in the chain since it's unlikely to mis-tag a
word.

See also

The Combining taggers with backoff tagging recipe goes over the details of using the
SequentialBackoffTagger subclasses.

Classifier-based tagging
The ClassifierBasedPOSTagger class uses classification to do part-of-speech tagging. Features
are extracted from words, and then passed to an internal classifier. The classifier classifies the features
and returns a label, in this case, a part-of-speech tag. Classification will be covered in detail in Chapter
7, Text Classification.

The ClassifierBasedPOSTagger class is a subclass of ClassifierBasedTagger that
implements a feature detector that combines many of the techniques of the previous taggers into a single
feature set. The feature detector finds multiple length suffixes, does some regular expression matching,
and looks at the unigram, bigram, and trigram history to produce a fairly complete set of features for
each word. The feature sets it produces are used to train the internal classifier, and are used for
classifying words into part-of-speech tags.

How to do it...

The basic usage of the ClassifierBasedPOSTagger class is much like any other
SequentialBackoffTaggger. You pass in training sentences, it trains an internal classifier, and
you get a very accurate tagger.

>>> from nltk.tag.sequential import ClassifierBasedPOSTagger
>>> tagger = ClassifierBasedPOSTagger(train=train_sents)
>>> tagger.evaluate(test_sents)
0.9309734513274336

Note

Notice a slight modification to initialization: train_sents must be passed in as the train keyword
argument.

How it works...

The ClassifierBasedPOSTagger class inherits from ClassifierBasedTagger and only
implements a feature_detector() method. All the training and tagging is done in
ClassifierBasedTagger. It defaults to training a NaiveBayesClassifier class with the
given training data. Once this classifier is trained, it is used to classify word features produced by the
feature_detector() method.

Note

The ClassifierBasedTagger class is often the most accurate tagger, but it's also one of the
slowest taggers. If speed is an issue, you should stick with a BrillTagger class based on a backoff
chain of NgramTagger subclasses and other simple taggers.

The ClassifierBasedTagger class also inherits from FeatursetTaggerI (which is just an
empty class), creating an inheritance tree that looks like this:

There's more...

You can use a different classifier instead of NaiveBayesClassifier by passing in your own
classifier_builder function. For example, to use a MaxentClassifier, you'd do the
following:

>>> from nltk.classify import MaxentClassifier
>>> me_tagger = ClassifierBasedPOSTagger(train=train_sents,
classifier_builder=MaxentClassifier.train)
>>> me_tagger.evaluate(test_sents)
0.9258363911072739

Note

The MaxentClassifier class takes even longer to train than NaiveBayesClassifier. If you
have SciPy and NumPy installed, training will be faster than normal, but still slower than
NaiveBayesClassifier.

Detecting features with a custom feature detector

If you want to do your own feature detection, there are two ways to do it:

1. Subclass ClassifierBasedTagger and implement a feature_detector() method.

2. Pass a function as the feature_detector keyword argument into
ClassifierBasedTagger at initialization.

Either way, you need a feature detection method that can take the same arguments as choose_tag():
tokens, index, history. But instead of returning a tag, you return a dict of key-value
features, where the key is the feature name and the value is the feature value. A very simple example
would be a unigram feature detector (found in tag_util.py).

def unigram_feature_detector(tokens, index, history):
return {'word': tokens[index]}

Then, using the second method, you'd pass this into ClassifierBasedTagger as
feature_detector.

>>> from nltk.tag.sequential import ClassifierBasedTagger
>>> from tag_util import unigram_feature_detector
>>> tagger = ClassifierBasedTagger(train=train_sents,
feature_detector=unigram_feature_detector)
>>> tagger.evaluate(test_sents)
0.8733865745737104

Setting a cutoff probability

Because a classifier will always return the best result it can, passing in a backoff tagger is useless unless
you also pass in a cutoff_prob argument to specify the probability threshold for classification. Then,
if the probability of the chosen tag is less than cutoff_prob, the backoff tagger will be used. Here's
an example using the DefaultTagger class as the backoff, and setting cutoff_prob to 0.3:

>>> default = DefaultTagger('NN')
>>> tagger = ClassifierBasedPOSTagger(train=train_sents,
backoff=default, cutoff_prob=0.3)
>>> tagger.evaluate(test_sents)
0.9311029570472696

So, we get a slight increase in accuracy if the ClassifierBasedPOSTagger class uses the
DefaultTagger class whenever its tag probability is less than 30%.

Using a pre-trained classifier

If you want to use a classifier that's already been trained, then you can pass that into
ClassifierBasedTagger or ClassifierBasedPOSTagger as the classifier. In this
case, the classifier_builder argument is ignored and no training takes place. However, you
must ensure that the classifier has been trained on and can classify feature sets produced by whatever
feature_detector() method you use.

See also

Chapter 7, Text Classification, will cover classification in depth.

Training a tagger with NLTK-Trainer
As you can tell from all the previous recipes in this chapter, there are many different ways to train
taggers, and it's impossible to know which methods and parameters will work best without doing
training experiments. But training experiments can be tedious, since they often involve many small code
changes (and lots of cut and paste) before you converge on an optimal tagger. In an effort to simplify the
process, and make my own work easier, I created a project called NLTK-Trainer.

NLTK-Trainer is a collection of scripts that give you the ability to run training experiments without
writing a single line of code. The project is available on GitHub at https://github.com/japerk/nltk-trainer
and has documentation at http://nltk-trainer.readthedocs.org/. This recipe will introduce the tagging
related scripts, and will show you how to combine many of the previous recipes into a single training
command. For download and installation instructions, please go to http://nltk-trainer.readthedocs.org/.

How to do it...

The simplest way to run train_tagger.py is with the name of an NLTK corpus. If we use the
treebank corpus, the command and output should look something like this:

$ python train_tagger.py treebank
loading treebank
3914 tagged sents, training on 3914
training AffixTagger with affix -3 and backoff <DefaultTagger:
tag=-None->
training <class 'nltk.tag.sequential.UnigramTagger'> tagger with
backoff <AffixTagger: size=2536>
training <class 'nltk.tag.sequential.BigramTagger'> tagger with
backoff <UnigramTagger: size=4933>
training <class 'nltk.tag.sequential.TrigramTagger'> tagger with
backoff <BigramTagger: size=2325>
evaluating TrigramTagger
accuracy: 0.992372
dumping TrigramTagger to /Users/jacob/nltk_data/taggers/
treebank_aubt.pickle

That's all it takes to train a tagger on treebank and have it dumped to a pickle file at
~/nltk_data/taggers/treebank_aubt.pickle. "Wow, and it's over 99% accurate!" I hear
you saying. But look closely at the second line of output: 3914 tagged sents, training on
3914. This means that the tagger was trained on the entire treebank corpus, and then tested against
those same training sentences. This is a very misleading way to evaluate any trained model. In the
previous recipes, we used the first 3000 sentences for training and the remaining 914 sentences for
testing, or about a 75% split. Here's how to do that with train_tagger.py, and also skip dumping a
pickle file:

$ python train_tagger.py treebank --fraction 0.75 --no-pickle
loading treebank

https://github.com/japerk/nltk-trainer
http://nltk-trainer.readthedocs.org/
http://nltk-trainer.readthedocs.org/

3914 tagged sents, training on 2936
training AffixTagger with affix -3 and backoff <DefaultTagger:
tag=-None->
training <class 'nltk.tag.sequential.UnigramTagger'> tagger with
backoff <AffixTagger: size=2287>
training <class 'nltk.tag.sequential.BigramTagger'> tagger with
backoff <UnigramTagger: size=4176>
training <class 'nltk.tag.sequential.TrigramTagger'> tagger with
backoff <BigramTagger: size=1836>
evaluating TrigramTagger
accuracy: 0.906082

How it works...

The train_tagger.py script roughly performers the following steps:

1. Construct training and testing sentences from corpus arguments.
2. Build tagger training function from tagger arguments.
3. Train a tagger on the training sentences using the training function.
4. Evaluate and/or save the tagger.

The first argument to the script is corpus. This could be the name of an NLTK corpus that can be
found in the nltk.corpus module, such as treebank or brown. It could also be the path to a
custom corpus directory. If it's a path to a custom corpus, then you'll also need to use the --reader
argument to specify the corpus reader class, such as
nltk.corpus.reader.tagged.TaggedCorpusReader.

The default training algorithm is aubt, which is shorthand for a sequential backoff tagger composed of
AffixTagger + UnigramTagger + BigramTagger + TrigramTagger. It's probably
easiest to understand by replicating many of the previous recipes using train_tagger.py. Let's start
with a default tagger.

$ python train_tagger.py treebank --no-pickle --default NN
--sequential ''
loading treebank
3914 tagged sents, training on 3914
evaluating DefaultTagger
accuracy: 0.130776

Using --default NN lets us assign a default tag of NN, while --sequential '' disables the
default aubt sequential backoff algorithm. The --fraction argument is omitted in this case because
there's not actually any training happening.

Now let's try a unigram tagger:

$ python train_tagger.py treebank --no-pickle --fraction 0.75
--sequential u

loading treebank
3914 tagged sents, training on 2936
training <class 'nltk.tag.sequential.UnigramTagger'> tagger with
backoff <DefaultTagger: tag=-None->
evaluating UnigramTagger
accuracy: 0.855603

Specifying --sequential u tells train_tagger.py to train with a unigram tagger. As we did
earlier, we can boost the accuracy a bit by using a default tagger:

$ python train_tagger.py treebank --no-pickle --default NN
--fraction 0.75 --sequential u
loading treebank
3914 tagged sents, training on 2936
training <class 'nltk.tag.sequential.UnigramTagger'> tagger with
backoff <DefaultTagger: tag=NN>
evaluating UnigramTagger
accuracy: 0.873462

Now, let's try adding a bigram tagger and trigram tagger:

$ python train_tagger.py treebank --no-pickle --default NN
--fraction 0.75 --sequential ubt
loading treebank
3914 tagged sents, training on 2936
training <class 'nltk.tag.sequential.UnigramTagger'> tagger with
backoff <DefaultTagger: tag=NN>
training <class 'nltk.tag.sequential.BigramTagger'> tagger with
backoff <UnigramTagger: size=8709>
training <class 'nltk.tag.sequential.TrigramTagger'> tagger with
backoff <BigramTagger: size=1836>
evaluating TrigramTagger
accuracy: 0.879012

Note

The PYTHONHASHSEED environment variable has been omitted for clarity. This means that when you
run train_tagger.py, your output and accuracy may vary. To get consistent accuracy values, run
train_tagger.py like this:

$ PYTHONHASHSEED=0 python train_tagger.py treebank …

The default training algorithm is --sequential aubt, and the default affix is -3. But you can
modify this with one or more -a arguments. So, if we want to use an affix of -2 as well as an affix of
-3, you can do the following:

$ python train_tagger.py treebank --no-pickle --default NN
--fraction 0.75 -a -3 -a -2
loading treebank
3914 tagged sents, training on 2936
training AffixTagger with affix -3 and backoff <DefaultTagger:
tag=NN>
training AffixTagger with affix -2 and backoff <AffixTagger:
size=2143>
training <class 'nltk.tag.sequential.UnigramTagger'> tagger with
backoff <AffixTagger: size=248>
training <class 'nltk.tag.sequential.BigramTagger'> tagger with
backoff <UnigramTagger: size=5204>
training <class 'nltk.tag.sequential.TrigramTagger'> tagger with
backoff <BigramTagger: size=1838>
evaluating TrigramTagger
accuracy: 0.908696

The order of multiple -a arguments matters, and if you switch the order, the results and accuracy will
change, because the backoff order changes:

$ python train_tagger.py treebank --no-pickle --default NN
--fraction 0.75 -a -2 -a -3
loading treebank
3914 tagged sents, training on 2936
training AffixTagger with affix -2 and backoff <DefaultTagger:
tag=NN>
training AffixTagger with affix -3 and backoff <AffixTagger:
size=606>
training <class 'nltk.tag.sequential.UnigramTagger'> tagger with
backoff <AffixTagger: size=1313>
training <class 'nltk.tag.sequential.BigramTagger'> tagger with
backoff <UnigramTagger: size=4169>
training <class 'nltk.tag.sequential.TrigramTagger'> tagger with
backoff <BigramTagger: size=1829>
evaluating TrigramTagger
accuracy: 0.914367

You can also train a Brill tagger using the --brill argument. The template bounds the default to (1,
1) but can be customized with the --template_bounds argument.

$ python train_tagger.py treebank --no-pickle --default NN
--fraction 0.75 --brill
loading treebank
3914 tagged sents, training on 2936
training AffixTagger with affix -3 and backoff <DefaultTagger:
tag=NN>
training <class 'nltk.tag.sequential.UnigramTagger'> tagger with

backoff <AffixTagger: size=2143>
training <class 'nltk.tag.sequential.BigramTagger'> tagger with
backoff <UnigramTagger: size=4179>
training <class 'nltk.tag.sequential.TrigramTagger'> tagger with
backoff <BigramTagger: size=1824>
Training Brill tagger on 2936 sentences...
Finding initial useful rules...

Found 1304 useful rules.
Selecting rules...
evaluating BrillTagger
accuracy: 0.909138

Finally, you can train a classifier-based tagger with the --classifier argument, which specifies the
name of a classifier. Be sure to also pass in --sequential '' because, as we learned previously,
training a sequential backoff tagger in addition to a classifier-based tagger is useless. The --default
argument is also useless, because the classifier will always guess something.

$ python train_tagger.py treebank --no-pickle --fraction 0.75
--sequential '' --classifier NaiveBayes
loading treebank
3914 tagged sents, training on 2936
training ['NaiveBayes'] ClassifierBasedPOSTagger
Constructing training corpus for classifier.
Training classifier (75814 instances)
training NaiveBayes classifier
evaluating ClassifierBasedPOSTagger
accuracy: 0.928646

There are a few other classifier algorithms available besides NaiveBayes, and even more if you have
NumPy and SciPy installed.

Note

While classifier-based taggers tend to be more accurate, they are also slower to train, and much slower at
tagging. If speed is important to you, I recommend sticking with sequential taggers.

There's more...

The train_tagger.py script supports many other arguments not shown here, all of which you can
see by running the script with --help. A few additional arguments are presented next, followed by an
introduction to two other tagging-related scripts available in NLTK-Trainer.

Saving a pickled tagger

Without the --no-pickle argument, train_tagger.py will save a pickled tagger at
~/nltk_data/taggers/NAME.pickle, where NAME is a combination of the corpus name and

training algorithm. You can specify a custom filename for your tagger using the --filename
argument like this:

$ python train_tagger.py treebank --filename path/to/tagger.pickle

Training on a custom corpus

If you have a custom corpus that you want to use for training a tagger, you can do that by passing in the
path to the corpus and the classname of a corpus reader in the --reader argument. The corpus path
can either be absolute or relative to a nltk_data directory. The corpus reader class must provide a
tagged_sents() method. Here's an example using a relative path to the treebank tagged corpus:

$ python train_tagger.py corpora/treebank/tagged --reader
nltk.corpus.reader.ChunkedCorpusReader --no-pickle --fraction 0.75
loading corpora/treebank/tagged
51002 tagged sents, training on 38252
training AffixTagger with affix -3 and backoff <DefaultTagger:
tag=-None->
training <class 'nltk.tag.sequential.UnigramTagger'> tagger with
backoff <AffixTagger: size=2092>
training <class 'nltk.tag.sequential.BigramTagger'> tagger with
backoff <UnigramTagger: size=4121>
training <class 'nltk.tag.sequential.TrigramTagger'> tagger with
backoff <BigramTagger: size=1627>
evaluating TrigramTagger
accuracy: 0.883175

Training with universal tags

You can train a tagger with the universal tagset using the --tagset argument as follows:

$ python train_tagger.py treebank --no-pickle --fraction 0.75
--tagset universal
loading treebank
using universal tagset
3914 tagged sents, training on 2936
training AffixTagger with affix -3 and backoff <DefaultTagger:
tag=-None->
training <class 'nltk.tag.sequential.UnigramTagger'> tagger with
backoff <AffixTagger: size=2287>
training <class 'nltk.tag.sequential.BigramTagger'> tagger with
backoff <UnigramTagger: size=2889>
training <class 'nltk.tag.sequential.TrigramTagger'> tagger with
backoff <BigramTagger: size=1014>
evaluating TrigramTagger
accuracy: 0.934800

Because the universal tagset has fewer tags, these taggers tend to be more accurate; this will only work
on a corpus that has universal tagset mappings. The universal tagset was covered in the Creating a part-
of-speech tagged word corpus recipe in Chapter 3, Creating Custom Corpora.

Analyzing a tagger against a tagged corpus

Every previous example in this chapter has been about training and evaluating a tagger on a single
corpus. But how do you know how well that tagger will perform on a different corpus? The
analyze_tagger_coverage.py script gives you a simple way to test the performance of a tagger
against another tagged corpus. Here's how to test NLTK's built-in tagger against the treebank corpus:

$ python analyze_tagger_coverage.py treebank --metrics

The output has been omitted for brevity, but I encourage you to run it yourself to see the results. It's
especially useful for evaluating a tagger's performance on a corpus that it was not trained on, such as
conll2000 or brown.

If you only provide a corpus argument, this script will use NLTK's built-in tagger. To evaluate your own
tagger, you can use the --tagger argument, which takes a path to a pickled tagger. The path can be
absolute or relative to a nltk_data directory. For example:

$ python analyze_tagger_coverage.py treebank --metrics --tagger path/
to/tagger.pickle

You can also use a custom corpus just like we did earlier with train_tagger.py, but if your corpus
is not tagged, then you must omit the --metrics argument. In that case, you will only get tag counts,
with no notion of accuracy, because there are no tags to compare to.

Analyzing a tagged corpus

Finally, there is a script called analyze_tagged_corpus.py, which, as the name implies, will
read in a tagged corpus and print out stats about the number of words and tags. You can run it as
follows:

$ python analyze_tagged_corpus.py treebank

The results are available in Appendix A, Penn Treebank Part-of-speech Tags. As with the other
commands, you can pass in a custom corpus path and reader to analyze your own tagged corpus.

See also

The previous recipes in this chapter cover the details of the classes and methods that power the
functionality of train_tagger.py. The Training a chunker with NLTK-Trainer recipe at the end of
Chapter 5, Extracting Chunks, will introduce NLTK-Trainer's chunking-related scripts, and
classification-related scripts will be covered in the Training a classifier with NLTK-Trainer recipe at the
end of Chapter 7, Text Classification.

Chapter 5. Extracting Chunks
In this chapter, we will cover the following recipes:

• Chunking and chinking with regular expressions
• Merging and splitting chunks with regular expressions
• Expanding and removing chunks with regular expressions
• Partial parsing with regular expressions
• Training a tagger-based chunker
• Classification-based chunking
• Extracting named entities
• Extracting proper noun chunks
• Extracting location chunks
• Training a named entity chunker
• Training a chunker with NLTK-Trainer

Introduction
Chunk extraction, or partial parsing, is the process of extracting short phrases from a part-of-speech
tagged sentence. This is different from full parsing in that we're interested in standalone chunks, or
phrases, instead of full parse trees (for more on parse trees, see https://en.wikipedia.org/wiki/
Parse_tree). The idea is that meaningful phrases can be extracted from a sentence by looking for
particular patterns of part-of-speech tags.

As in Chapter 4, Part-of-speech Tagging, we'll be using the Penn Treebank corpus for basic training
and testing chunk extraction. We'll also be using the CoNLL2000 corpus as it has a simpler and more
flexible format that supports multiple chunk types (for more details on the conll2000 corpus and IOB
tags, see the Creating a chunked phrase corpus recipe in Chapter 3, Creating Custom Corpora).

https://en.wikipedia.org/wiki/Parse_tree
https://en.wikipedia.org/wiki/Parse_tree

Chunking and chinking with regular expressions
Using modified regular expressions, we can define chunk patterns. These are patterns of part-of-speech
tags that define what kinds of words make up a chunk. We can also define patterns for what kinds of
words should not be in a chunk. These unchunked words are known as chinks.

A ChunkRule class specifies what to include in a chunk, while a ChinkRule class specifies what to
exclude from a chunk. In other words, chunking creates chunks, while chinking breaks up those chunks.

Getting ready

We first need to know how to define chunk patterns. These are modified regular expressions designed to
match sequences of part-of-speech tags. An individual tag is specified by surrounding angle brackets,
such as <NN> to match a noun tag. Multiple tags can then be combined, as in <DT><NN> to match a
determiner followed by a noun. Regular expression syntax can be used within the angle brackets to
match individual tag patterns, so you can do <NN.*> to match all nouns including NN and NNS. You
can also use regular expression syntax outside of the angle brackets to match patterns of tags.
<DT>?<NN.*>+ will match an optional determiner followed by one or more nouns. The chunk patterns
are internally converted to regular expressions using the tag_pattern2re_pattern() function.

>>> from nltk.chunk.regexp import tag_pattern2re_pattern
>>> tag_pattern2re_pattern('<DT>?<NN.*>+')
'(<(DT)>)?(<(NN[^\\{\\}<>]*)>)+'

You don't have to use this function to do chunking, but it might be useful or interesting to see how your
chunk patterns convert to regular expressions. This function is used by the RegexpParser class
(explained in the next section) to convert chunk patterns into regular expressions to match chunking
rules.

How to do it...

The pattern for specifying a chunk is to use surrounding curly braces, such as {<DT><NN>}. To specify
a chink, you flip the braces, such as }<VB>{. These rules can be combined into a grammar for a
particular phrase type. Here's a grammar for noun phrases that combines both a chunk and a chink
pattern, along with the result of parsing the sentence the book has many chapters:

>>> from nltk.chunk import RegexpParser
>>> chunker = RegexpParser(r'''
... NP:
... {<DT><NN.*><.*>*<NN.*>}
... }<VB.*>{
... ''')
>>> chunker.parse([('the', 'DT'), ('book', 'NN'), ('has', 'VBZ'),
('many', 'JJ'), ('chapters', 'NNS')])
Tree('S', [Tree('NP', [('the', 'DT'), ('book', 'NN')]), ('has',
'VBZ'), Tree('NP', [('many', 'JJ'), ('chapters', 'NNS')])])

The grammar tells the RegexpParser class that there are two rules for parsing NP chunks. The first
chunk pattern says that a chunk starts with a determiner followed by any kind of noun. Then, any
number of other words are allowed until a final noun is found. The second pattern says that verbs should
be chinked, thus separating any large chunks that contain a verb. The result is a tree with two noun-
phrase chunks: the book and many chapters.

Note

Tagged sentences are always parsed into a Tree (found in the nltk.tree module). The top label of
the Tree is S, which stands for sentence. Any chunks found will be subtrees whose labels will refer to
the chunk type. In this case, the chunk type is NP for noun-phrase chunks. Trees can be drawn calling
the draw() method using t.draw().

How it works...

Here's what happens, step-by-step:

1. The sentence is converted into a flat Tree:

2. The Tree is used to create a ChunkString.
3. The RegexpParser parses the grammar to create a NP RegexpChunkParser with the

given rules.
4. A ChunkRule is created and applied to the ChunkString, which matches the entire

sentence into a chunk:

5. A ChinkRule is created and applied to the same ChunkString, which splits the big chunk
into two smaller chunks with a verb between them:

6. The ChunkString is converted back to a Tree, now with two NP chunk subtrees:

You can do this yourself using the classes in nltk.chunk.regexp. The ChunkRule and
ChinkRule classes are both subclasses of RegexpChunkRule, and require two arguments: the
pattern and a description of the rule. ChunkString is an object that starts with a flat tree, which is
then modified by each rule when it is passed into the rule's apply() method. A ChunkString is
converted back to a Tree with the to_chunkstruct() method. Here's some code to demonstrate
this:

>>> from nltk.chunk.regexp import ChunkString, ChunkRule, ChinkRule
>>> from nltk.tree import Tree
>>> t = Tree('S', [('the', 'DT'), ('book', 'NN'), ('has', 'VBZ'),
'many', 'JJ'), ('chapters', 'NNS')])
>>> cs = ChunkString(t)
>>> cs
<ChunkString: '<DT><NN><VBZ><JJ><NNS>'>
>>> ur = ChunkRule('<DT><NN.*><.*>*<NN.*>', 'chunk determiners and
nouns')
>>> ur.apply(cs)
>>> cs
<ChunkString: '{<DT><NN><VBZ><JJ><NNS>}'>
>>> ir = ChinkRule('<VB.*>', 'chink verbs')
>>> ir.apply(cs)
>>> cs
<ChunkString: '{<DT><NN>}<VBZ>{<JJ><NNS>}'>

>>> cs.to_chunkstruct()
Tree('S', [Tree('CHUNK', [('the', 'DT'), ('book', 'NN')]), ('has',
'VBZ'), Tree('CHUNK', [('many', 'JJ'), ('chapters', 'NNS')])])

The tree diagrams shown earlier can be drawn at each step by calling
cs.to_chunkstruct().draw().

There's more...

You'll notice that the subtrees from the ChunkString class are tagged as CHUNK and not NP. That's
because the rules mentioned earlier are phrase agnostic; they create chunks without needing to know
what kind of chunks they are.

Internally, the RegexpParser class creates a RegexpChunkParser for each chunk phrase type.
So, if you're only chunking NP phrases, there will only be one RegexpChunkParser. The
RegexpChunkParser class gets all the rules for the specific chunk type, and handles applying the
rules in order and converting the CHUNK trees to the specific chunk type, such as NP.

Here's some code to illustrate the usage of RegexpChunkParser. We pass both the rules mentioned
earlier into the RegexpChunkParser class, and then parse the same sentence tree we created before.
The resulting tree is just like what we got from applying both rules in order, except that CHUNK has been
replaced with NP in both the subtrees. This is because RegexpChunkParser defaults to
chunk_label='NP'.

>>> from nltk.chunk import RegexpChunkParser
>>> chunker = RegexpChunkParser([ur, ir])
>>> chunker.parse(t)
Tree('S', [Tree('NP', [('the', 'DT'), ('book', 'NN')]), ('has',
'VBZ'), Tree('NP', [('many', 'JJ'), ('chapters', 'NNS')])])

Parsing different chunk types

If you wanted to parse a different chunk type, then you could pass that in as chunk_label to
RegexpChunkParser. Here's the same code that we saw in the previous section, but instead of NP
subtrees, we'll call them CP for custom phrase:

>>> from nltk.chunk import RegexpChunkParser
>>> chunker = RegexpChunkParser([ur, ir], chunk_label='CP')
>>> chunker.parse(t)
Tree('S', [Tree('CP', [('the', 'DT'), ('book', 'NN')]), ('has',
'VBZ'), Tree('CP', [('many', 'JJ'), ('chapters', 'NNS')])])

The RegexpParser class does this internally when you specify multiple phrase types. This will be
covered in the Partial parsing with regular expressions recipe.

Parsing alternative patterns

The same parsing results can be obtained using two chunk patterns in the grammar and discarding the
chink pattern:

>>> chunker = RegexpParser(r'''
... NP:
... {<DT><NN.*>}
... {<JJ><NN.*>}
... ''')
>>> chunker.parse(t)
Tree('S', [Tree('NP', [('the', 'DT'), ('book', 'NN')]), ('has',
'VBZ'), Tree('NP', [('many', 'JJ'), ('chapters', 'NNS')])])

In fact, you could reduce the two chunk patterns into a single pattern.

>>> chunker = RegexpParser(r'''
... NP:
... {(<DT>|<JJ>)<NN.*>}
... ''')
>>> chunker.parse(t)
Tree('S', [Tree('NP', [('the', 'DT'), ('book', 'NN')]), ('has',
'VBZ'), Tree('NP', [('many', 'JJ'), ('chapters', 'NNS')])])

How you create and combine patterns is really up to you. Pattern creation is a process of trial and error,
and entirely depends on what your data looks like and which patterns are easiest to express.

Chunk rule with context

You can also create chunk rules with a surrounding tag context. For example, if your pattern is
<DT>{<NN>}, that will be parsed into a ChunkRuleWithContext class. So, context in this case is
referring to the parts of the rule that are not chinks or chunks, such as <DT>. For example, in the phrase
the dog, the would be context to the noun dog. Any time there's a tag on either side of the curly
braces, you'll get a ChunkRuleWithContext class instead of a ChunkRule class. This can allow
you to be more specific about when to parse particular kinds of chunks.

Here's an example of using ChunkRuleWithContext directly. It takes four arguments: the left
context, the pattern to chunk, the right context, and a description:

>>> from nltk.chunk.regexp import ChunkRuleWithContext
>>> ctx = ChunkRuleWithContext('<DT>', '<NN.*>', '<.*>', 'chunk
nouns only after determiners')
>>> cs = ChunkString(t)
>>> cs
<ChunkString: '<DT><NN><VBZ><JJ><NNS>'>
>>> ctx.apply(cs)
>>> cs

<ChunkString: '<DT>{<NN>}<VBZ><JJ><NNS>'>
>>> cs.to_chunkstruct()
Tree('S', [('the', 'DT'), Tree('CHUNK', [('book', 'NN')]), ('has',
'VBZ'), ('many', 'JJ'), ('chapters', 'NNS')])

This example only chunks nouns that follow a determiner, therefore ignoring the noun that follows an
adjective. Here's how it would look using the RegexpParser class:

>>> chunker = RegexpParser(r'''
... NP:
... <DT>{<NN.*>}
... ''')
>>> chunker.parse(t)
Tree('S', [('the', 'DT'), Tree('NP', [('book', 'NN')]), ('has',
'VBZ'), ('many', 'JJ'), ('chapters', 'NNS')])

See also

In the next recipe, we'll cover merging and splitting chunks.

Merging and splitting chunks with regular
expressions
In this recipe, we'll cover two more rules for chunking. A MergeRule class can merge two chunks
together based on the end of the first chunk and the beginning of the second chunk. A SplitRule
class will split a chunk into two chunks based on the specified split pattern.

How to do it...

A SplitRule class is specified with two opposing curly braces surrounded by a pattern on either side.
To split a chunk after a noun, you would do <NN.*>}{<.*>. A MergeRule class is specified by
flipping the curly braces, and will join chunks where the end of the first chunk matches the left pattern
and the beginning of the next chunk matches the right pattern. To merge two chunks where the first ends
with a noun and the second begins with a noun, you'd use <NN.*>{}<NN.*>.

Note

Note that the order of rules is very important, and reordering can affect the results. The
RegexpParser class applies the rules one at a time from top to bottom, so each rule will be applied to
the ChunkString resulting from the previous rule.

An example of splitting and merging, starting with the sentence tree, is shown next:

The whole sentence is chunked, as shown in the following diagram:

The chunk is split into multiple chunks after every noun, as shown in the following tree:

Each chunk with a determiner is split into separate chunks, creating four chunks where there were three:

Chunks ending with a noun are merged with the next chunk if it begins with a noun, reducing the four
chunks back down to three, as shown in the following diagram:

Using the RegexpParser class, the code looks like this:

>>> chunker = RegexpParser(r'''
... NP:
... {<DT><.*>*<NN.*>}
... <NN.*>}{<.*>
... <.*>}{<DT>
... <NN.*>{}<NN.*>
... ''')
>>> sent = [('the', 'DT'), ('sushi', 'NN'), ('roll', 'NN'), ('was',
'VBD'), ('filled', 'VBN'), ('with', 'IN'), ('the', 'DT'), ('fish',
'NN')]

>>> chunker.parse(sent)
Tree('S', [Tree('NP', [('the', 'DT'), ('sushi', 'NN'), ('roll',
'NN')]), Tree('NP', [('was', 'VBD'), ('filled', 'VBN'), ('with',
'IN')]), Tree('NP', [('the', 'DT'), ('fish', 'NN')])])

And the final tree of NP chunks is shown in the following diagram:

How it works...

The MergeRule and SplitRule classes take two arguments: the left pattern and the right pattern.
The RegexpParser class takes care of splitting the original patterns on the curly braces to get the left
and right sides, but you can also create these manually. Here's a step-by-step walkthrough of how the
original sentence is modified by applying each rule:

>>> from nltk.chunk.regexp import MergeRule, SplitRule
>>> cs = ChunkString(Tree('S', sent))
>>> cs
<ChunkString: '<DT><NN><NN><VBD><VBN><IN><DT><NN>'>
>>> ur = ChunkRule('<DT><.*>*<NN.*>', 'chunk determiner to noun')
>>> ur.apply(cs)
>>> cs
<ChunkString: '{<DT><NN><NN><VBD><VBN><IN><DT><NN>}'>
>>> sr1 = SplitRule('<NN.*>', '<.*>', 'split after noun')
>>> sr1.apply(cs)
>>> cs
<ChunkString: '{<DT><NN>}{<NN>}{<VBD><VBN><IN><DT><NN>}'>
>>> sr2 = SplitRule('<.*>', '<DT>', 'split before determiner')
>>> sr2.apply(cs)
>>> cs
<ChunkString: '{<DT><NN>}{<NN>}{<VBD><VBN><IN>}{<DT><NN>}'>
>>> mr = MergeRule('<NN.*>', '<NN.*>', 'merge nouns')
>>> mr.apply(cs)
>>> cs
<ChunkString: '{<DT><NN><NN>}{<VBD><VBN><IN>}{<DT><NN>}'>
>>> cs.to_chunkstruct()
Tree('S', [Tree('CHUNK', [('the', 'DT'), ('sushi', 'NN'), ('roll',

'NN')]), Tree('CHUNK', [('was', 'VBD'), ('filled', 'VBN'), ('with',
'IN')]), Tree('CHUNK', [('the', 'DT'), ('fish', 'NN')])])

There's more...

The parsing of the rules and splitting of left and right patterns is done in the static parse() method of
the RegexpChunkRule superclass. This is called by the RegexpParser class to get the list of rules
to pass into the RegexpChunkParser class. Here are some examples of parsing the patterns we used
earlier:

>>> from nltk.chunk.regexp import RegexpChunkRule
>>> RegexpChunkRule.fromstring('{<DT><.*>*<NN.*>}')
<ChunkRule: '<DT><.*>*<NN.*>'>
>>> RegexpChunkRule.fromstring('<.*>}{<DT>')
<SplitRule: '<.*>', '<DT>'>
>>> RegexpChunkRule.fromstring('<NN.*>{}<NN.*>')
<MergeRule: '<NN.*>', '<NN.*>'>

Specifying rule descriptions

Descriptions for each rule can be specified with a comment string after the rule (a comment string must
start with #). If no comment string is found, the rule's description will be empty. Here's an example:

>>> RegexpChunkRule.fromstring('{<DT><.*>*<NN.*>} # chunk
everything').descr()
'chunk everything'
>>> RegexpChunkRule.fromstring('{<DT><.*>*<NN.*>}').descr()
''

Comment string descriptions can also be used within grammar strings that are passed to
RegexpParser.

See also

The previous recipe goes over how to use ChunkRule, and how rules are passed into
RegexpChunkParser.

Expanding and removing chunks with regular
expressions
There are three RegexpChunkRule subclasses that are not supported by
RegexpChunkRule.fromstring() or RegexpParser, and therefore must be created manually
if you want to use them. These rules are as follows:

• ExpandLeftRule: Add unchunked (chink) words to the left of a chunk
• ExpandRightRule: Add unchunked (chink) words to the right of a chunk
• UnChunkRule: Unchunk any matching chunk

How to do it...

ExpandLeftRule and ExpandRightRule both take two patterns along with a description as
arguments. For ExpandLeftRule, the first pattern is the chink we want to add to the beginning of the
chunk, while the right pattern will match the beginning of the chunk we want to expand. With
ExpandRightRule, the left pattern should match the end of the chunk we want to expand, and the
right pattern matches the chink we want to add to the end of the chunk. The idea is similar to the
MergeRule class, but in this case, we're merging chink words instead of other chunks.

UnChunkRule is the opposite of ChunkRule. Any chunk that exactly matches the UnChunkRule
pattern will be unchunked and become a chink. Here's some code demonstrating the usage with the
RegexpChunkParser class:

>>> from nltk.chunk.regexp import ChunkRule, ExpandLeftRule,
ExpandRightRule, UnChunkRule
>>> from nltk.chunk import RegexpChunkParser
>>> ur = ChunkRule('<NN>', 'single noun')
>>> el = ExpandLeftRule('<DT>', '<NN>', 'get left determiner')
>>> er = ExpandRightRule('<NN>', '<NNS>', 'get right plural noun')
>>> un = UnChunkRule('<DT><NN.*>*', 'unchunk everything')
>>> chunker = RegexpChunkParser([ur, el, er, un])
>>> sent = [('the', 'DT'), ('sushi', 'NN'), ('rolls', 'NNS')]
>>> chunker.parse(sent)
Tree('S', [('the', 'DT'), ('sushi', 'NN'), ('rolls', 'NNS')])

You'll notice that the end result is a flat sentence, which is exactly what we started with. That's because
the final UnChunkRule undid the chunk created by the previous rules. Read on to see what happened
step by step.

How it works...

The rules mentioned earlier were applied in the following order, starting with the sentence tree as
follows:

1. Make single nouns into a chunk:

2. Expand left determiners into chunks that begin with a noun:

3. Expand right plural nouns into chunks that end with a noun, chunking the whole sentence as
follows:

4. Unchunk every chunk that is a determiner + noun + plural noun, resulting in the original
sentence tree:

Here's the code showing each step:

>>> from nltk.chunk.regexp import ChunkString
>>> from nltk.tree import Tree
>>> cs = ChunkString(Tree('S', sent))
>>> cs
<ChunkString: '<DT><NN><NNS>'>
>>> ur.apply(cs)
>>> cs
<ChunkString: '<DT>{<NN>}<NNS>'>
>>> el.apply(cs)
>>> cs
<ChunkString: '{<DT><NN>}<NNS>'>
>>> er.apply(cs)
>>> cs
<ChunkString: '{<DT><NN><NNS>}'>
>>> un.apply(cs)
>>> cs
<ChunkString: '<DT><NN><NNS>'>

There's more...

In practice, you can probably get away with only using the previous four rules: ChunkRule,
ChinkRule, MergeRule, and SplitRule. But if you do need very fine-grained control over chunk
parsing and removing chunks, now you know how to do it with the expansion and unchunk rules.

See also

The previous two recipes covered the more common chunk rules that are supported by
RegexpChunkRule.fromstring() and RegexpParser.

Partial parsing with regular expressions
So far, we've only been parsing noun phrases. But RegexpParser supports grammars with multiple
phrase types, such as verb phrases and prepositional phrases. We can put the rules we've learned to use
and define a grammar that can be evaluated against the conll2000 corpus, which has NP, VP, and PP
phrases.

How to do it...

Now, we will define a grammar to parse three phrase types. For noun phrases, we have a ChunkRule
class that looks for an optional determiner followed by one or more nouns. We then have a MergeRule
class for adding an adjective to the front of a noun chunk. For prepositional phrases, we simply chunk
any IN word, such as in or on. For verb phrases, we chunk an optional modal word (such as should)
followed by a verb.

Note

Each grammar rule is followed by a # comment. This comment is passed into each rule as the
description. Comments are optional, but they can be helpful notes for understanding what the rule does,
and will be included in trace output.

>>> chunker = RegexpParser(r'''
... NP:
... {<DT>?<NN.*>+} # chunk optional determiner with nouns
... <JJ>{}<NN.*> # merge adjective with noun chunk
... PP:
... {<IN>} # chunk preposition
... VP:
... {<MD>?<VB.*>} # chunk optional modal with verb
... ''')
>>> from nltk.corpus import conll2000
>>> score = chunker.evaluate(conll2000.chunked_sents())
>>> score.accuracy()
0.6148573545757688

When we call evaluate() on the chunker argument, we give it a list of chunked sentences and get
back a ChunkScore object, which can give us the accuracy of the chunker along with a number of
other metrics.

How it works...

The RegexpParser class parses the grammar string into sets of rules, one set of rules for each phrase
type. These rules are used to create a RegexpChunkParser class. The rules are parsed using
RegexpChunkRule.fromstring(), which returns one of the five subclasses: ChunkRule,
ChinkRule, MergeRule, SplitRule, or ChunkRuleWithContext.

Now that the grammar has been translated into sets of rules, these rules are used to parse a tagged
sentence into a Tree structure. The RegexpParser class inherits from ChunkParserI, which
provides a parse() method to parse the tagged words. Whenever a part of the tagged tokens matches a
chunk rule, a subtree is constructed so that the tagged tokens become the leaves of a Tree whose label
is the chunk tag. The ChunkParserI interface also provides the evaluate() method, which
compares the given chunked sentences to the output of the parse() method to construct and return a
ChunkScore object.

There's more...

You can also evaluate this chunker argument on the treebank_chunk corpus:

>>> from nltk.corpus import treebank_chunk
>>> treebank_score = chunker.evaluate(treebank_chunk.chunked_sents())
>>> treebank_score.accuracy()
0.49033970276008493

The treebank_chunk corpus is a special version of the treebank corpus that provides a
chunked_sents() method. The regular treebank corpus cannot provide that method due to its
file format.

The ChunkScore metrics

The ChunkScore metrics provide a few other metrics besides accuracy. Of the chunks the chunker
argument was able to guess, precision tells you how many were correct and recall tells you how well
the chunker did at finding correct chunks compared to how many total chunks there were. For more
about precision and recall, see https://en.wikipedia.org/wiki/Precision_and_recall.

>>> score.precision()
0.60201948127375
>>> score.recall()
0.606072502505847

You can also get lists of chunks that were missed by the chunker, chunks that were incorrectly found,
correct chunks, and the total guessed chunks. These can be useful to figure out how to improve your
chunk grammar:

>>> len(score.missed())
47161
>>> len(score.incorrect())
47967
>>> len(score.correct())
119720
>>> len(score.guessed())
120526

https://en.wikipedia.org/wiki/Precision_and_recall

As you can see by the number of incorrect chunks, and by comparing guessed() and correct(),
our chunker guessed that there were more chunks than actually existed. And it also missed a good
number of correct chunks.

Looping and tracing chunk rules

If you want to apply the chunk rules in your grammar more than once, you can pass loop=2 into
RegexpParser at initialization. The default is loop=1, which will apply each rule once. Since a
chunk can change after every rule application, it may sometimes make sense to re-apply the same rules
multiple times.

To watch an internal trace of the chunking process, pass trace=1 into RegexpParser. To get even
more output, pass in trace=2. This will give you a printout of what the chunker is doing as it is
doing it. Rule comments/descriptions will be included in the trace output, giving you a good idea of
which rule is applied when.

See also

If coming up with regular expression chunk patterns seems like too much work, then read the next
recipes, where we'll cover how to train a chunker based on a corpus of chunked sentences.

Training a tagger-based chunker
Training a chunker can be a great alternative to manually specifying regular expression chunk patterns.
Instead of a pain-staking process of trial and error to get the exact right patterns, we can use existing
corpus data to train chunkers much like we did for part-of-speech tagging in the previous chapter.

How to do it...

As with the part-of-speech tagging, we'll use the treebank corpus data for training. But this time,
we'll use the treebank_chunk corpus, which is specifically formatted to produce chunked sentences
in the form of trees. These chunked_sents() methods will be used by a TagChunker class to
train a tagger-based chunker. The TagChunker class uses a helper function,
conll_tag_chunks(), to extract a list of (pos, iob) tuples from a list of Trees. These
(pos, iob) tuples are then used to train a tagger in the same way (word, pos) tuples were used
in Chapter 4, Part-of-speech Tagging, to train part-of-speech taggers. But instead of learning part-of-
speech tags for words, we're learning IOB tags for part-of-speech tags. Here's the code from
chunkers.py:

from nltk.chunk import ChunkParserI
from nltk.chunk.util import tree2conlltags, conlltags2tree
from nltk.tag import UnigramTagger, BigramTagger
from tag_util import backoff_tagger

def conll_tag_chunks(chunk_sents):
tagged_sents = [tree2conlltags(tree) for tree in chunk_sents]
return [[(t, c) for (w, t, c) in sent] for sent in tagged_sents]

class TagChunker(ChunkParserI):
def __init__(self, train_chunks, tagger_classes=[UnigramTagger,

BigramTagger]):
train_sents = conll_tag_chunks(train_chunks)
self.tagger = backoff_tagger(train_sents, tagger_classes)

def parse(self, tagged_sent):
if not tagged_sent: return None
(words, tags) = zip(*tagged_sent)
chunks = self.tagger.tag(tags)
wtc = zip(words, chunks)
return conlltags2tree([(w,t,c) for (w,(t,c)) in wtc])

Once we have our trained TagChunker, we can then evaluate the ChunkScore class the same way
we did for the RegexpParser class in the previous recipes:

>>> from chunkers import TagChunker
>>> from nltk.corpus import treebank_chunk
>>> train_chunks = treebank_chunk.chunked_sents()[:3000]

>>> test_chunks = treebank_chunk.chunked_sents()[3000:]
>>> chunker = TagChunker(train_chunks)
>>> score = chunker.evaluate(test_chunks)
>>> score.accuracy()
0.9732039335251428
>>> score.precision()
0.9166534370535006
>>> score.recall()
0.9465573770491803

Pretty darn accurate! Training a chunker is clearly a great alternative to manually specified grammars
and regular expressions.

How it works...

Recall from the Creating a chunked phrase corpus recipe in Chapter 3, Creating Custom Corpora, that
the conll2000 corpus defines chunks using IOB tags, which specify the type of chunk and where it
begins and ends. We can train a part-of-speech tagger on these IOB tag patterns and then use that to
power a ChunkerI subclass. But first, we need to transform a Tree that you'd get from the
chunked_sents() method of a corpus into a format usable by a part-of-speech tagger. This is what
conll_tag_chunks() does. It uses tree2conlltags() to convert a sentence Tree into a list
of three tuples of the form (word, pos, iob), where pos is the part-of-speech tag and iob is an
IOB tag, such as B-NP to mark the beginning of a noun-phrase, or I-NP to mark that the word is inside
the noun-phrase. The reverse of this method is conlltags2tree(). Here's some code to
demonstrate these nltk.chunk functions:

>>> from nltk.chunk.util import tree2conlltags, conlltags2tree
>>> from nltk.tree import Tree
>>> t = Tree('S', [Tree('NP', [('the', 'DT'), ('book', 'NN')])])
>>> tree2conlltags(t)
[('the', 'DT', 'B-NP'), ('book', 'NN', 'I-NP')]
>>> conlltags2tree([('the', 'DT', 'B-NP'), ('book', 'NN', 'I-NP')])
Tree('S', [Tree('NP', [('the', 'DT'), ('book', 'NN')])])

The next step is to convert these 3-tuples into 2-tuples that the tagger can recognize. Because the
RegexpParser class uses part-of-speech tags for chunk patterns, we'll do that here too and use part-
of-speech tags as if they were words to tag. By simply dropping the word from the 3-tuples (word,
pos, iob), the conll_tag_chunks() function returns a list of 2-tuples of the form (pos,
iob). When we consider the previous example Tree in a list, the results are in a format we can feed to
a tagger:

>>> conll_tag_chunks([t])
[[('DT', 'B-NP'), ('NN', 'I-NP')]]

The final step is a subclass of ChunkParserI called TagChunker. It trains on a list of chunk trees
using an internal tagger. This internal tagger is composed of a UnigramTagger and a

BigramTagger class in a backoff chain, using the backoff_tagger() method created in the
Training and combining ngram taggers recipe in Chapter 4, Part-of-speech Tagging.

Finally, ChunkerI subclasses must implement a parse() method that expects a part-of-speech
tagged sentence. We unzip that sentence into a list of words and part-of-speech tags. The tags are then
tagged by the tagger to get IOB tags, which are then recombined with the words and part-of-speech tags
to create 3-tuples we can pass to conlltags2tree() to return a final Tree.

There's more...

Since we've been talking about the conll IOB tags, let's see how the TagChunker class does on the
conll2000 corpus:

>>> from nltk.corpus import conll2000
>>> conll_train = conll2000.chunked_sents('train.txt')
>>> conll_test = conll2000.chunked_sents('test.txt')
>>> chunker = TagChunker(conll_train)
>>> score = chunker.evaluate(conll_test)
>>> score.accuracy()
0.8950545623403762
>>> score.precision()
0.8114841974355675
>>> score.recall()
0.8644191676944863

Not quite as good as on treebank_chunk, but conll2000 is a much larger corpus, so it's not too
surprising.

Using different taggers

If you want to use different tagger classes with the TagChunker class, you can pass them in as
tagger_classes. For example, here's the TagChunker class using just a UnigramTagger class:

>>> from nltk.tag import UnigramTagger
>>> uni_chunker = TagChunker(train_chunks,
tagger_classes=[UnigramTagger])
>>> score = uni_chunker.evaluate(test_chunks)
>>> score.accuracy()
0.9674925924335466

The tagger_classes argument will be passed directly into the backoff_tagger() function,
which means they must be subclasses of SequentialBackoffTagger. In testing, the default of
tagger_classes=[UnigramTagger, BigramTagger] generally produces the best results,
but it can vary depending on the corpus.

See also

The Training and combing ngram taggers recipe in Chapter 4, Part-of-speech Tagging, covers backoff
tagging with a UnigramTagger and BigramTagger class. The ChunkScore metrics returned by
the evaluate() method of a chunker are explained in the previous recipe.

Classification-based chunking
Unlike most part-of-speech taggers, the ClassifierBasedTagger class learns from features. That
means we can create a ClassifierChunker class that can learn from both the words and part-of-
speech tags, instead of only the part-of-speech tags as the TagChunker class does.

How to do it...

For the ClassifierChunker class, we don't want to discard the words from the training sentences
as we did in the previous recipe. Instead, to remain compatible with the 2-tuple (word, pos) format
required for training a ClassiferBasedTagger class, we convert the (word, pos, iob)
3-tuples from tree2conlltags() into ((word, pos), iob) 2-tuples using the
chunk_trees2train_chunks() function. This code can be found in chunkers.py:

from nltk.chunk import ChunkParserI
from nltk.chunk.util import tree2conlltags, conlltags2tree
from nltk.tag import ClassifierBasedTagger

def chunk_trees2train_chunks(chunk_sents):
tag_sents = [tree2conlltags(sent) for sent in chunk_sents]
return [[((w,t),c) for (w,t,c) in sent] for sent in tag_sents]

Next, we need a feature detector function to pass into ClassifierBasedTagger. Our default
feature detector function, prev_next_pos_iob(), knows that the list of tokens is really a list of
(word, pos) tuples, and can use that to return a feature set suitable for a classifier. In fact, any
feature detector function used with the ClassifierChunker class (defined next) should recognize
that tokens are a list of (word, pos) tuples, and have the same function signature as
prev_next_pos_iob(). To give the classifier as much information as we can, this feature set
contains the current, previous, and next word and part-of-speech tag, along with the previous IOB tag:

def prev_next_pos_iob(tokens, index, history):
word, pos = tokens[index]

if index == 0:
prevword, prevpos, previob = ('<START>',)*3

else:
prevword, prevpos = tokens[index-1]
previob = history[index-1]

if index == len(tokens) - 1:
nextword, nextpos = ('<END>',)*2

else:
nextword, nextpos = tokens[index+1]

feats = {

'word': word,
'pos': pos,
'nextword': nextword,
'nextpos': nextpos,
'prevword': prevword,
'prevpos': prevpos,
'previob': previob

}
return feats

Now, we can define the ClassifierChunker class, which uses an internal
ClassifierBasedTagger with features extracted using prev_next_pos_iob() and training
sentences from chunk_trees2train_chunks(). As a subclass of ChunkerParserI, it
implements the parse() method, which converts the ((w, t), c) tuples produced by the internal
tagger into Trees using conlltags2tree():

class ClassifierChunker(ChunkParserI):
def __init__(self, train_sents,

feature_detector=prev_next_pos_iob, **kwargs):
if not feature_detector:

feature_detector = self.feature_detector

train_chunks = chunk_trees2train_chunks(train_sents)
self.tagger = ClassifierBasedTagger(train=train_chunks,

feature_detector=feature_detector, **kwargs)

def parse(self, tagged_sent):
if not tagged_sent: return None
chunks = self.tagger.tag(tagged_sent)
return conlltags2tree([(w,t,c) for ((w,t),c) in chunks])

Using the same train_chunks and test_chunks from the treebank_chunk corpus in the
previous recipe, we can evaluate this code from chunkers.py:

>>> from chunkers import ClassifierChunker
>>> chunker = ClassifierChunker(train_chunks)
>>> score = chunker.evaluate(test_chunks)
>>> score.accuracy()
0.9721733155838022
>>> score.precision()
0.9258838793383068
>>> score.recall()
0.9359016393442623

Compared to the TagChunker class, all the scores have gone up a bit. Let's see how it does on
conll2000:

>>> chunker = ClassifierChunker(conll_train)
>>> score = chunker.evaluate(conll_test)
>>> score.accuracy()
0.9264622074002153
>>> score.precision()
0.8737924310910219
>>> score.recall()
0.9007354620620346

This is much improved over the TagChunker class.

How it works...

Like the TagChunker class in the previous recipe, we are training a part-of-speech tagger for IOB
tagging. But in this case, we want to include the word as a feature to power a classifier. By creating
nested 2-tuples of the form ((word, pos), iob), we can pass the word through the tagger into our
feature detector function. The chunk_trees2train_chunks() method produces these nested
2-tuples, and prev_next_pos_iob() is aware of them and uses each element as a feature. The
following features are extracted:

• The current word and part-of-speech tag
• The previous word, part-of-speech tag, and IOB tag
• The next word and part-of-speech tag

The arguments to prev_next_pos_iob() look the same as the feature_detector() method
of the ClassifierBasedTagger class: tokens, index, and history. But this time, tokens
will be a list of (word, pos) two tuples, and history will be a list of IOB tags. The special feature
values <START> and <END> are used if there are no previous or next tokens.

The ClassifierChunker class uses an internal ClassifierBasedTagger and
prev_next_pos_iob() as its default feature_detector. The results from the tagger, which
are in the same nested 2-tuple form, are then reformated into 3-tuples to return a final Tree using
conlltags2tree().

There's more...

You can use your own feature detector function by passing it into the ClassifierChunker class as
feature_detector. The tokens argument will contain a list of (word, tag) tuples, and
history will be a list of the previous IOB tags found.

Using a different classifier builder

The ClassifierBasedTagger class defaults to using NaiveBayesClassifier.train as its
classifier_builder. But you can use any classifier you want by overriding the
classifier_builder keyword argument. Here's an example using
MaxentClassifier.train:

>>> from nltk.classify import MaxentClassifier
>>> builder = lambda toks: MaxentClassifier.train(toks, trace=0,
max_iter=10, min_lldelta=0.01)
>>> me_chunker = ClassifierChunker(train_chunks,
classifier_builder=builder)
>>> score = me_chunker.evaluate(test_chunks)
>>> score.accuracy()
0.9743204362949285
>>> score.precision()
0.9334423548650859
>>> score.recall()
0.9357377049180328

Instead of using MaxentClassifier.train directly, I wrapped it in a lambda argument so that
its output is quite similar to (trace=0) and it finishes in a reasonable amount of time. As you can see,
the scores are slightly different compared to using the NaiveBayesClassifier class.

Note

The MaxentClassifier score values mentioned earlier were computed with the environment
variable PYTHONHASHSEED=0. If you use a different value, or do not set this environment variable,
your score values may differ.

See also

The previous recipe, Training a tagger-based chunker, introduced the idea of using a part-of-speech
tagger for training a chunker. The Classifier-based tagging recipe in Chapter 4, Part-of-speech Tagging,
describes ClassifierBasedPOSTagger, which is a subclass of ClassifierBasedTagger.
And in Chapter 7, Text Classification, we'll cover classification in detail.

Extracting named entities
Named entity recognition is a specific kind of chunk extraction that uses entity tags instead of, or in
addition to, chunk tags. Common entity tags include PERSON, ORGANIZATION, and LOCATION. Part-
of-speech tagged sentences are parsed into chunk trees as with normal chunking, but the labels of the
trees can be entity tags instead of chunk phrase tags.

How to do it...

NLTK comes with a pre-trained named entity chunker. This chunker has been trained on data from the
ACE program, National Institute of Standards and Technology (NIST) sponsored program for
Automatic Content Extraction, which you can read more about at http://www.itl.nist.gov/iad/894.01/
tests/ace/. Unfortunately, this data is not included in the NLTK corpora, but the trained chunker is. This
chunker can be used through the ne_chunk() method in the nltk.chunk module. The
ne_chunk() method will chunk a single sentence into a Tree. The following is an example using
ne_chunk() on the first tagged sentence of the treebank_chunk corpus:

>>> from nltk.chunk import ne_chunk
>>> ne_chunk(treebank_chunk.tagged_sents()[0])
Tree('S', [Tree('PERSON', [('Pierre', 'NNP')]), Tree('ORGANIZATION',
[('Vinken', 'NNP')]), (',', ','), ('61', 'CD'), ('years', 'NNS'),
('old', 'JJ'), (',', ','), ('will', 'MD'), ('join', 'VB'), ('the',
'DT'), ('board', 'NN'), ('as', 'IN'), ('a', 'DT'), ('nonexecutive',
'JJ'), ('director', 'NN'), ('Nov.', 'NNP'), ('29', 'CD'), ('.',
'.')])

You can see that two entity tags are found: PERSON and ORGANIZATION. Each of these subtrees
contains a list of the words that are recognized as a PERSON or ORGANIZATION. To extract these
named entities, we can write a simple helper method that will get the leaves of all the subtrees we are
interested in:

def sub_leaves(tree, label):
return [t.leaves() for t in tree.subtrees(lambda s: label() ==

label)]

Then, we can call this method to get all the PERSON or ORGANIZATION leaves from a tree:

>>> tree = ne_chunk(treebank_chunk.tagged_sents()[0])
>>> from chunkers import sub_leaves
>>> sub_leaves(tree, 'PERSON')
[[('Pierre', 'NNP')]]
>>> sub_leaves(tree, 'ORGANIZATION')
[[('Vinken', 'NNP')]]

http://www.itl.nist.gov/iad/894.01/tests/ace/
http://www.itl.nist.gov/iad/894.01/tests/ace/

You will notice that the chunker has mistakenly separated Vinken into its own ORGANIZATION
Tree instead of including it with the PERSON Tree containing Pierre. Such is the case with
statistical natural language processing—you can't always expect perfection.

How it works...

The pre-trained named entity chunker is much like any other chunker, and in fact uses a
MaxentClassifier powered ClassifierBasedTagger to determine IOB tags. But instead of
B-NP and I-NP IOB tags, it uses B-PERSON, I-PERSON, B-ORGANIZATION, I-
ORGANIZATION, and more. It also uses the O tag to mark words that are not part of a named entity
(and thus are outside the named entity subtrees).

There's more...

To process multiple sentences at a time, you can use chunk_ne_sents(). Here's an example where
we process the first 10 sentences from treebank_chunk.tagged_sents() and get
ORGANIZATION sub_leaves():

>>> from nltk.chunk import chunk_ne_sents
>>> trees = chunk_ne_sents(treebank_chunk.tagged_sents()[:10])
>>> [sub_leaves(t, 'ORGANIZATION') for t in trees]
[[[('Vinken', 'NNP')]], [[('Elsevier', 'NNP')]], [[('Consolidated',
'NNP'), ('Gold', 'NNP'), ('Fields', 'NNP')]], [], [], [[('Inc.',
'NNP')], [('Micronite', 'NN')]], [[('New', 'NNP'), ('England',
'NNP'), ('Journal', 'NNP')]], [[('Lorillard', 'NNP')]], [], []]

You can see that there are a couple of multiword ORGANIZATION chunks, such as New England
Journal. There were also a few sentences that had no ORGANIZATION chunks, as indicated by the
empty lists [].

Binary named entity extraction

If you don't care about the particular kind of named entity to extract, you can pass binary=True into
ne_chunk() or chunk_ne_sents(). Now, all named entities will be tagged with NE:

>>> ne_chunk(treebank_chunk.tagged_sents()[0], binary=True)
Tree('S', [Tree('NE', [('Pierre', 'NNP'), ('Vinken', 'NNP')]), (',',
','), ('61', 'CD'), ('years', 'NNS'), ('old', 'JJ'), (',', ','),
('will', 'MD'), ('join', 'VB'), ('the', 'DT'), ('board', 'NN'),
('as', 'IN'), ('a', 'DT'), ('nonexecutive', 'JJ'), ('director',
'NN'), ('Nov.', 'NNP'), ('29', 'CD'), ('.', '.')])

So, binary in this case means that an arbitrary chunk either is or is not a named entity. If we get the
sub_leaves() , we can see that Pierre Vinken is correctly combined into a single named entity:

>>> subleaves(ne_chunk(treebank_chunk.tagged_sents()[0],
binary=True), 'NE')
[[('Pierre', 'NNP'), ('Vinken', 'NNP')]]

See also

In the next recipe, we'll create our own simple named entity chunker.

Extracting proper noun chunks
A simple way to do named entity extraction is to chunk all proper nouns (tagged with NNP). We can tag
these chunks as NAME, since the definition of a proper noun is the name of a person, place, or thing.

How to do it...

Using the RegexpParser class, we can create a very simple grammar that combines all proper nouns
into a NAME chunk. Then, we can test this on the first tagged sentence of treebank_chunk to
compare the results with the previous recipe:

>>> chunker = RegexpParser(r'''
... NAME:
... {<NNP>+}
... ''')
>>> sub_leaves(chunker.parse(treebank_chunk.tagged_sents()[0]),
'NAME')
[[('Pierre', 'NNP'), ('Vinken', 'NNP')], [('Nov.', 'NNP')]]

Although we get Nov. as a NAME chunk, this isn't a wrong result, as Nov. is the name of a month.

How it works...

The NAME chunker is a simple usage of the RegexpParser class, covered in the Chunking and
chinking with regular expressions, Merging and splitting chunks with regular expressions, and Partial
parsing with regular expressions recipes. All sequences of NNP tagged words are combined into NAME
chunks.

There's more...

If we wanted to be sure to only chunk the names of people, then we can build a PersonChunker class
that uses the names corpus for chunking. This class can be found in chunkers.py:

from nltk.chunk import ChunkParserI
from nltk.chunk.util import conlltags2tree
from nltk.corpus import names

class PersonChunker(ChunkParserI):
def __init__(self):

self.name_set = set(names.words())

def parse(self, tagged_sent):
iobs = []
in_person = False

for word, tag in tagged_sent:

if word in self.name_set and in_person:
iobs.append((word, tag, 'I-PERSON'))

elif word in self.name_set:
iobs.append((word, tag, 'B-PERSON'))
in_person = True

else:
iobs.append((word, tag, 'O'))
in_person = False

return conlltags2tree(iobs)

The PersonChunker class iterates over the tagged sentence, checking whether each word is in its
names_set (constructed from the names corpus). If the current word is in the names_set, then it
uses either the B-PERSON or I-PERSON IOB tags, depending on whether the previous word was also
in the names_set. Any word that's not in the names_set argument gets the O IOB tag. When
complete, the list of IOB tags is converted to a Tree using conlltags2tree(). Using it on the
same tagged sentence as before, we get the following result:

>>> from chunkers import PersonChunker
>>> chunker = PersonChunker()
>>> sub_leaves(chunker.parse(treebank_chunk.tagged_sents()[0]),
'PERSON')
[[('Pierre', 'NNP')]]

We no longer get Nov., but we've also lost Vinken, as it is not found in the names corpus. This
recipe highlights some of the difficulties of chunk extraction and natural language processing in general:

• If you use general patterns, you'll get general results
• If you're looking for specific results, you must use specific data
• If your specific data is incomplete, your results will be incomplete too

See also

The previous recipe defines the sub_leaves() function used to show the found chunks. In the next
recipe, we'll cover how to find LOCATION chunks based on the gazetteers corpus.

Extracting location chunks
To identify LOCATION chunks, we can make a different kind of ChunkParserI subclass that uses the
gazetteers corpus to identify location words. The gazetteers corpus is a
WordListCorpusReader class that contains the following location words:

• Country names
• U.S. states and abbreviations
• Major U.S. cities
• Canadian provinces
• Mexican states

How to do it...

The LocationChunker class, found in chunkers.py, iterates over a tagged sentence looking for
words that are found in the gazetteers corpus. When it finds one or more location words, it creates a
LOCATION chunk using IOB tags. The helper method iob_locations() is where the IOB
LOCATION tags are produced, and the parse() method converts these IOB tags into a Tree:

from nltk.chunk import ChunkParserI
from nltk.chunk.util import conlltags2tree
from nltk.corpus import gazetteers

class LocationChunker(ChunkParserI):
def __init__(self):

self.locations = set(gazetteers.words())
self.lookahead = 0

for loc in self.locations:
nwords = loc.count(' ')

if nwords > self.lookahead:
self.lookahead = nwords

def iob_locations(self, tagged_sent):
i = 0
l = len(tagged_sent)
inside = False

while i < l:
word, tag = tagged_sent[i]
j = i + 1
k = j + self.lookahead
nextwords, nexttags = [], []
loc = False

while j < k:

if ' '.join([word] + nextwords) in self.locations:
if inside:

yield word, tag, 'I-LOCATION'
else:

yield word, tag, 'B-LOCATION'

for nword, ntag in zip(nextwords, nexttags):
yield nword, ntag, 'I-LOCATION'

loc, inside = True, True
i = j
break

if j < l:
nextword, nexttag = tagged_sent[j]
nextwords.append(nextword)
nexttags.append(nexttag)
j += 1

else:
break

if not loc:
inside = False
i += 1
yield word, tag, 'O'

def parse(self, tagged_sent):
iobs = self.iob_locations(tagged_sent)
return conlltags2tree(iobs)

We can use the LocationChunker class to parse the following sentence into two locations—San
Francisco CA is cold compared to San Jose CA:

>>> from chunkers import LocationChunker
>>> t = loc.parse([('San', 'NNP'), ('Francisco', 'NNP'), ('CA',
'NNP'), ('is', 'BE'), ('cold', 'JJ'), ('compared', 'VBD'), ('to',
'TO'), ('San', 'NNP'), ('Jose', 'NNP'), ('CA', 'NNP')])
>>> sub_leaves(t, 'LOCATION')
[[('San', 'NNP'), ('Francisco', 'NNP'), ('CA', 'NNP')], [('San',
'NNP'), ('Jose', 'NNP'), ('CA', 'NNP')]]

And the result is that we get two LOCATION chunks, just as expected.

How it works...

The LocationChunker class starts by constructing a set of all locations in the gazetteers corpus.
Then, it finds the maximum number of words in a single location string so it knows how many words it
must look ahead when parsing a tagged sentence.

The parse() method calls a helper method, iob_locations(), which generates 3-tuples of the
form (word, pos, iob), where iob is either O if the word is not a location, or B-LOCATION or
I-LOCATION for LOCATION chunks. The iob_locations() method finds location chunks by
looking at the current word and the next words to check if the combined word is in the locations set.
Multiple location words that are next to each other are then put into the same LOCATION chunk, such as
in the previous example with San Francisco and CA.

Like in the previous recipe, it's simpler and more convenient to construct a list of (word, pos,
iob) tuples to pass into conlltags2tree() to return a Tree. The alternative is to construct a
Tree manually, but that requires keeping track of children, subtrees, and where you currently are in the
Tree.

There's more...

One of the nice aspects of this LocationChunker class is that it doesn't care about the part-of-speech
tags. As long as the location words are found in the location's set, any part-of-speech tag will do.

See also

In the next recipe, we'll cover how to train a named entity chunker using the ieer corpus.

Training a named entity chunker
You can train your own named entity chunker using the ieer corpus, which stands for Information
Extraction: Entity Recognition. It takes a bit of extra work, though, because the ieer corpus has
chunk trees but no part-of-speech tags for words.

How to do it...

Using the ieertree2conlltags() and ieer_chunked_sents() functions in
chunkers.py, we can create named entity chunk trees from the ieer corpus to train the
ClassifierChunker class created in the Classification-based chunking recipe:

import nltk.tag
from nltk.chunk.util import conlltags2tree
from nltk.corpus import ieer

def ieertree2conlltags(tree, tag=nltk.tag.pos_tag):
words, ents = zip(*tree.pos())
iobs = []
prev = None

for ent in ents:
if ent == tree.label():

iobs.append('O')
prev = None

elif prev == ent:
iobs.append('I-%s' % ent)

else:
iobs.append('B-%s' % ent)
prev = ent

words, tags = zip(*tag(words))
return zip(words, tags, iobs)

def ieer_chunked_sents(tag=nltk.tag.pos_tag):
for doc in ieer.parsed_docs():

tagged = ieertree2conlltags(doc.text, tag)
yield conlltags2tree(tagged)

We'll use 80 out of 94 sentences for training, and the rest for testing. Then, we can see how it does on
the first sentence of the treebank_chunk corpus:

>>> from chunkers import ieer_chunked_sents, ClassifierChunker
>>> from nltk.corpus import treebank_chunk
>>> ieer_chunks = list(ieer_chunked_sents())
>>> len(ieer_chunks)

94
>>> chunker = ClassifierChunker(ieer_chunks[:80])
>>> chunker.parse(treebank_chunk.tagged_sents()[0])
Tree('S', [Tree('LOCATION', [('Pierre', 'NNP'), ('Vinken', 'NNP')]),
(',', ','), Tree('DURATION', [('61', 'CD'), ('years', 'NNS')]),
Tree('MEASURE', [('old', 'JJ')]), (',', ','), ('will', 'MD'),
('join', 'VB'), ('the', 'DT'), ('board', 'NN'), ('as', 'IN'), ('a',
'DT'), ('nonexecutive', 'JJ'), ('director', 'NN'), Tree('DATE',
[('Nov.', 'NNP'), ('29', 'CD')]), ('.', '.')])

So, it found a correct DURATION and DATE, but tagged Pierre Vinken as a LOCATION. Let's see
how it scores against the rest of the ieer chunk trees:

>>> score = chunker.evaluate(ieer_chunks[80:])
>>> score.accuracy()
0.8829018388070625
>>> score.precision()
0.4088717454194793
>>> score.recall()
0.5053635280095352

Accuracy is pretty good, but precision and recall are very low. That means lots of false negatives and
false positives.

How it works...

The truth is, we're not working with ideal training data. The ieer trees generated by
ieer_chunked_sents() are not entirely accurate. First, there are no explicit sentence breaks, so
each document is a single tree. Second, the words are not explicitly tagged, so we have to guess using
nltk.tag.pos_tag().

The ieer corpus provides a parsed_docs() method that returns a list of documents with a text
attribute. This text attribute is a document Tree that is converted to a list of 3-tuples of the form
(word, pos, iob). To get these final 3-tuples, we must first flatten the Tree using
tree.pos(), which returns a list of 2-tuples of the form (word, entity), where entity is
either the entity tag or the top tag of the tree. Any words whose entity is the top tag are outside the
named entity chunks and get the IOB tag O. All words that have unique entity tags are either the
beginning of or inside a named entity chunk. Once we have all the IOB tags, then we can get the part-of-
speech tags of all the words and join the words, part-of-speech tags, and IOB tags into 3-tuples using
zip().

There's more...

Despite the non-ideal training data, the ieer corpus provides a good place to start for training a named
entity chunker. The data comes from New York Times and AP Newswire reports. Each doc from
ieer.parsed_docs() also contains a headline attribute that is a Tree:

>>> from nltk.corpus import ieer
>>> ieer.parsed_docs()[0].headline
Tree('DOCUMENT', ['Kenyans', 'protest', 'tax', 'hikes'])

See also

The Extracting named entities recipe covers the pre-trained named entity chunker that comes included
with NLTK.

Training a chunker with NLTK-Trainer
At the end of the previous chapter, Chapter 4, Part-of-speech Tagging, we introduced NLTK-Trainer and
the train_tagger.py script. In this recipe, we will cover the script for training chunkers:
train_chunker.py.

Note

You can find NLTK-Trainer at https://github.com/japerk/nltk-trainer and the online documentation at
http://nltk-trainer.readthedocs.org/.

How to do it...

As with train_tagger.py, the only required argument to train_chunker.py is the name of a
corpus. In this case, we need a corpus that provides a chunked_sents() method, such as
treebank_chunk. Here's an example of running train_chunker.py on treebank_chunk:

$ python train_chunker.py treebank_chunk
loading treebank_chunk
4009 chunks, training on 4009
training ub TagChunker
evaluating TagChunker
ChunkParse score:

IOB Accuracy: 97.0%
Precision: 90.8%
Recall: 93.9%
F-Measure: 92.3%

dumping TagChunker to /Users/jacob/nltk_data/chunkers/
treebank_chunk_ub.pickle

Just like with train_tagger.py, we can use the --no-pickle argument to skip saving a pickled
chunker, and the --fraction argument to limit the training set and evaluate the chunker against a test
set:

$ python train_chunker.py treebank_chunk --no-pickle --fraction 0.75
loading treebank_chunk
4009 chunks, training on 3007
training ub TagChunker
evaluating TagChunker
ChunkParse score:

IOB Accuracy: 97.3%
Precision: 91.6%
Recall: 94.6%
F-Measure: 93.1%

https://github.com/japerk/nltk-trainer
http://nltk-trainer.readthedocs.org/

The score output you see is what you get when you print a ChunkScore object. This ChunkScore is
the result of calling the chunker's evaluate() method, and has been explained in more detail earlier
in this chapter in the Partial parsing with regular expressions recipe. Surprisingly, the chunker's scores
actually increase slightly when using a smaller training set. This may indicate that the chunker training
algorithm is susceptible to over-fitting, meaning that too many training examples can cause the chunker
to over-value incorrect or noisy data.

Note

The PYTHONHASHSEED environment variable has been omitted for clarity. This means that when you
run train_chunker.py, your score values may vary. To get consistent score values, run
train_chunker.py like this:

$ PYTHONHASHSEED=0 python train_chunker.py treebank_chunk …

How it works...

The default training algorithm for train_chunker.py is to use a tagger-based chunker composed of
a BigramTagger and UnigramTagger class. This is what is meant by the output line training
ub TagChunker. The details for how to train a tag chunker have been covered earlier in this chapter
in the Training a tagger-based chunker recipe. You can modify this algorithm using the --
sequential argument. Here's how to train a UnigramTagger based chunker:

$ python train_chunker.py treebank_chunk --no-pickle --fraction 0.75
--sequential u
loading treebank_chunk
4009 chunks, training on 3007
training u TagChunker
evaluating TagChunker
ChunkParse score:

IOB Accuracy: 96.7%
Precision: 89.7%
Recall: 93.1%
F-Measure: 91.3%

And here's how to twith additional BigramTagger and TrigramTagger classes:

$ python train_chunker.py treebank_chunk --no-pickle --fraction 0.75
--sequential ubt
loading treebank_chunk
4009 chunks, training on 3007
training ubt TagChunker
evaluating TagChunker
ChunkParse score:

IOB Accuracy: 97.2%
Precision: 91.6%

Recall: 94.4%
F-Measure: 93.0%

You can also train a classifier-based chunker, which was covered in the previous recipe, Classification-
based chunking.

$ python train_chunker.py treebank_chunk --no-pickle --fraction 0.75
--sequential '' --classifier NaiveBayes
loading treebank_chunk
4009 chunks, training on 3007
training ClassifierChunker with ['NaiveBayes'] classifier
Constructing training corpus for classifier.
Training classifier (71088 instances)
training NaiveBayes classifier
evaluating ClassifierChunker
ChunkParse score:

IOB Accuracy: 97.2%
Precision: 92.6%
Recall: 93.6%
F-Measure: 93.1%

There's more...

The train_chunker.py script supports many other arguments not shown here, all of which you can
see by running the script with --help. A few additional arguments are presented next, followed by an
introduction to two other chunking-related scripts available in nltk-trainer.

Saving a pickled chunker

Without the --no-pickle argument, train_chunker.py will save a pickled chunker at
~/nltk_data/chunkers/NAME.pickle, where NAME is a combination of the corpus name and
training algorithm. You can specify a custom filename for your chunker using the --filename
argument like this:

$ python train_chunker.py treebank_chunker --filename path/to/
tagger.pickle

Training a named entity chunker

We can use train_chunker.py to replicate the chunker we trained on the ieer corpus in the
Training a named entity chunker recipe. This is possible because the special handling required for
training on ieer is built-in to NLTK-Trainer.

$ python train_chunker.py ieer --no-pickle --fraction 0.85
--sequential '' --classifier NaiveBayes
loading ieer
converting ieer parsed docs to chunked sentences
94 chunks, training on 80

training ClassifierChunker with ['NaiveBayes'] classifier
Constructing training corpus for classifier.
Training classifier (47000 instances)
training NaiveBayes classifier
evaluating ClassifierChunker
ChunkParse score:

IOB Accuracy: 88.3%
Precision: 40.9%
Recall: 50.5%
F-Measure: 45.2%

Training on a custom corpus

If you have a custom corpus that you want to use for training a chunker, you can do that by passing in
the path to the corpus and the classname of a corpus reader in the --reader argument. The corpus
path can either be absolute or relative to a nltk_data directory. The corpus reader class must provide
a chunked_sents() method. Here's an example using a relative path to the treebank chunked
corpus:

$ python train_chunker.py corpora/treebank/tagged --reader
nltk.corpus.reader.ChunkedCorpusReader --no-pickle --fraction 0.75
loading corpora/treebank/tagged
51002 chunks, training on 38252
training ub TagChunker
evaluating TagChunker
ChunkParse score:

IOB Accuracy: 98.4%
Precision: 97.7%
Recall: 98.9%
F-Measure: 98.3%

Training on parse trees

The train_chunker.py script supports two arguments that allow it to train on full parse trees from
a corpus reader's parsed_sents() method instead of using chunked sentences. A parse tree differs
from a chunk tree in that it can be much deeper, with subphrases and even subphrases of those
subphrases. But the chunking algorithms we've covered so far cannot learn from deep parse trees, so we
need to flatten them somehow. The first argument is --flatten-deep-tree, which trains chunks
from the leaf labels of a parse tree.

$ python train_chunker.py treebank --no-pickle --fraction 0.75
--flatten-deep-tree
loading treebank
flattening deep trees from treebank
3914 chunks, training on 2936
training ub TagChunker
evaluating TagChunker
ChunkParse score:

IOB Accuracy: 72.4%
Precision: 51.6%
Recall: 52.2%
F-Measure: 51.9%

We use the treebank corpus instead of treebank_chunk, because it has full parse trees accessible
with the parsed_sents() method. The other parse tree argument is --shallow-tree, which
trains chunks from the top-level labels of a parse tree.

$ python train_chunker.py treebank --no-pickle --fraction 0.75
--shallow-tree
loading treebank
creating shallow trees from treebank
3914 chunks, training on 2936
training ub TagChunker
evaluating TagChunker
ChunkParse score:

IOB Accuracy: 73.1%
Precision: 60.0%
Recall: 56.2%
F-Measure: 58.0%

These options are more useful for corpora that don't provide chunked sentences, such as cess_cat and
cess_esp.

Analyzing a chunker against a chunked corpus

So how do you know how well a chunker will perform on a different corpus that you didn't train it on?
The analyze_chunker_coverage.py script gives you a simple way to test the performance of a
chunker against another chunked corpus. Here's how to test NLTK's built-in chunker against the
treebank_chunk corpus:

$ python analyze_chunker_coverage.py treebank_chunk --score
loading tagger taggers/maxent_treebank_pos_tagger/english.pickle
loading chunker chunkers/maxent_ne_chunker/
english_ace_multiclass.pickle
evaluating chunker score

ChunkParse score:
IOB Accuracy: 45.4%
Precision: 0.0%
Recall: 0.0%
F-Measure: 0.0%

analyzing chunker coverage of treebank_chunk with NEChunkParser

IOB Found
============ =========
FACILITY 56
GPE 1874
GSP 38
LOCATION 34
ORGANIZATION 1572
PERSON 2108
============ =========

As you can see, NLTK's default chunker does not do well against the treebank_chunk corpus. This
is because the default chunker is looking for named entities, not NP phrases. This is shown by the
coverage analysis of IOB tags that were found. These results do not necessarily mean that the default
chunker is bad, just that it was not trained for finding noun phrases, and thus cannot be accurately
evaluated against the treebank_chunk corpus.

While the analyze_chunker_coverage.py script defaults to using NLTK's built-in tagger and
chunker, you can evaluate on your own tagger and/or chunker using the --tagger and/or --
chunker arguments, both of which accept a path to a pickled tagger or chunker. Consider the
following code:

$ python train_chunker.py treebank_chunker --tagger path/to/
tagger.pickle --chunker path/to/chunker.pickle

You can also use a custom corpus just like we did earlier with train_chunker.py; however, if your
corpus is not chunked, then you must omit the --score argument, because you have nothing to
compare the results to. In that case, you will only get IOB tag counts with no scores, because there are
no chunks to compare to.

Analyzing a chunked corpus

Finally, there is a script called analyze_chunked_corpus.py, which as the name implies, will
read in a chunked corpus and print out stats about the number of words and tags. You can run it like this:

$ python analyze_chunked_corpus.py treebank_chunk

The results are very similar to analyze_tagged_corpus.py, with additional columns for each
IOB tag. Each IOB tag column shows the counts for each part-of-speech tag that was present in chunks
for that IOB tag. For example, NN words (nouns) may occur 300 times in total, and for 280 of those
times, the NN words occurred with a NP IOB tag, meaning that most nouns occur within noun phrases.

As with the other commands, you can pass in a custom corpus path and reader to analyze your own
chunked corpus.

See also
• The Training a tagger-based chunker, the Classification-based chunking, and the Training a

named entity chunker recipes cover many of the ideas that went into the train_chunker.py
script

• In Chapter 4, Part-of-speech Tagging, we showed how to use NLTK-Trainer for training a
tagger in the Training a tagger with NLTK-Trainer recipe

Chapter 6. Transforming Chunks and Trees
In this chapter, we will cover the following recipes:

• Filtering insignificant words from a sentence
• Correcting verb forms
• Swapping verb phrases
• Swapping noun cardinals
• Swapping infinitive phrases
• Singularizing plural nouns
• Chaining chunk transformations
• Converting a chunk tree to text
• Flattening a deep tree
• Creating a shallow tree
• Converting tree labels

Introduction
Now that you know how to get chunks/phrases from a sentence, what do you do with them? This chapter
will show you how to do various transforms on both chunks and trees. The chunk transforms are for
grammatical correction and rearranging phrases without loss of meaning. The tree transforms give you
ways to modify and flatten deep parse trees. The functions detailed in these recipes modify data, as
opposed to learning from it. This means it's not safe to apply them indiscriminately. A thorough
knowledge of the data you want to transform, along with a few experiments, should help you decide
which functions to apply and when.

Whenever the term chunk is used in this chapter, it could refer to an actual chunk extracted by a
chunker, or it could simply refer to a short phrase or sentence in the form of a list of tagged words.
What's important in this chapter is what you can do with a chunk, not where it came from.

Filtering insignificant words from a sentence
Many of the most commonly used words are insignificant when it comes to discerning the meaning of a
phrase. For example, in the phrase the movie was terrible, the most significant words are movie and
terrible, while the and was are almost useless. You could get the same meaning if you took them out,
that is, movie terrible or terrible movie. Either way, the sentiment is the same. In this recipe, we'll learn
how to remove the insignificant words and keep the significant ones by looking at their part-of-speech
tags.

Getting ready

First, we need to decide which part-of-speech tags are significant and which are not. Looking through
the treebank corpus for stopwords yields the following table of insignificant words and tags:

Word Tag

a DT

all PDT

an DT

and CC

or CC

that WDT

the DT

Other than CC, all the tags end with DT. This means we can filter out insignificant words by looking at
the tag's suffix. Refer to Appendix A, Penn Treebank Part-of-speech Tags, for details on tag meanings.

How to do it...

In transforms.py is a function called filter_insignificant(). It takes a single chunk,
which should be a list of tagged words, and returns a new chunk without any insignificant tagged words.
It defaults to filtering out any tags that end with DT or CC:

def filter_insignificant(chunk, tag_suffixes=['DT', 'CC']):
good = []

for word, tag in chunk:
ok = True

for suffix in tag_suffixes:
if tag.endswith(suffix):

ok = False
break

if ok:
good.append((word, tag))

return good

And now we can use it on the part-of-speech tagged version of the terrible movie:

>>> from transforms import filter_insignificant
>>> filter_insignificant([('the', 'DT'), ('terrible', 'JJ'),
('movie', 'NN')])
[('terrible', 'JJ'), ('movie', 'NN')]

As you can see, the word the is eliminated from the chunk.

How it works...

The filter_insignificant() function iterates over the tagged words in the chunk. For each tag,
it checks whether that tag ends with any of the tag_suffixes. If it does, then the tagged word is
skipped. But if the tag is ok, then the tagged word is appended to a new good chunk that is returned.

There's more...

The way filter_insignificant() is defined, you can pass in your own tag suffixes if DT and
CC are not enough, or are incorrect for your case. For example, you might decide that possessive words
and pronouns such as you, your, their, and theirs are no good, but DT and CC words are ok. The tag
suffixes would then be PRP and PRP$:

>>> filter_insignificant([('your', 'PRP$'), ('book', 'NN'), ('is',
'VBZ'), ('great', 'JJ')], tag_suffixes=['PRP', 'PRP$'])
[('book', 'NN'), ('is', 'VBZ'), ('great', 'JJ')]

Filtering insignificant words can be a good complement to stopword filtering for purposes such as
search engine indexing and querying and text classification.

See also

This recipe is analogous to the Filtering stopwords in a tokenized sentence recipe in Chapter 1,
Tokenizing Text and WordNet Basics.

Correcting verb forms
It's fairly common to find incorrect verb forms in real-world language. For example, the correct form of
is our children learning? is are our children learning? The verb is should only be used with singular
nouns, while are is for plural nouns, such as children. We can correct these mistakes by creating verb
correction mappings that are used depending on whether there's a plural or singular noun in the chunk.

Getting ready

We first need to define the verb correction mappings in transforms.py. We'll create two mappings,
one for plural to singular and another for singular to plural:

plural_verb_forms = {
('is', 'VBZ'): ('are', 'VBP'),
('was', 'VBD'): ('were', 'VBD')

}

singular_verb_forms = {
('are', 'VBP'): ('is', 'VBZ'),
('were', 'VBD'): ('was', 'VBD')

}

Each mapping has a tagged verb that maps to another tagged verb. These initial mappings cover the
basics of mapping is to are, was to were, and vice versa.

How to do it...

In transforms.py is a function called correct_verbs(). Pass it a chunk with incorrect verb
forms and you'll get a corrected chunk back. It uses a helper function, first_chunk_index(), to
search the chunk for the position of the first tagged word where pred returns True. The pred
argument should be a callable function that takes a (word, tag) tuple and returns True or False.
Here's first_chunk_index():

def first_chunk_index(chunk, pred, start=0, step=1):
l = len(chunk)
end = l if step > 0 else -1

for i in range(start, end, step):
if pred(chunk[i]):

return i

return None

For first_chunk_index() to be useful, we need to use a predicate function. In the case of
correct_verbs(), the predicate function we need should return True if the tag in the (word,
tag) argument starts with a given tag prefix, and False otherwise.

def tag_startswith(prefix):
def f(wt):

return wt[1].startswith(prefix)
return f

The tag_startswith() function takes a tag prefix, such as NN, and returns a predicate function that
will take a (word, tag) tuple and return True if the tag starts with the given prefix. A function that
returns another function is called a higher order function. This is not as complicated as it might
sound—just as you can use a function to generate and return new variables and values, some
programming languages (such as Python) let you generate functions inside of other functions. In this
case, we want a function that takes a single argument: (word, tag). But we also want this function
to have access to a prefix variable. Since we cannot add arguments to the function definition, we instead
generate a higher order function that has access to the prefix variable, while preserving the single
(word, tag) argument.

Now that we have defined first_chunk_index() and tag_startswith(), we can actually
implement correct_verbs(). This may seem like overkill for a single function, but we will be
using first_chunk_index() and tag_startswith() in subsequent recipes.

def correct_verbs(chunk):
vbidx = first_chunk_index(chunk, tag_startswith('VB'))
if no verb found, do nothing
if vbidx is None:

return chunk

verb, vbtag = chunk[vbidx]
nnpred = tag_startswith('NN')
find nearest noun to the right of verb
nnidx = first_chunk_index(chunk, nnpred, start=vbidx+1)
if no noun found to right, look to the left
if nnidx is None:

nnidx = first_chunk_index(chunk, nnpred, start=vbidx-1, step=-1)
if no noun found, do nothing
if nnidx is None:

return chunk

noun, nntag = chunk[nnidx]
get correct verb form and insert into chunk
if nntag.endswith('S'):

chunk[vbidx] = plural_verb_forms.get((verb, vbtag), (verb,
vbtag))

else:
chunk[vbidx] = singular_verb_forms.get((verb, vbtag), (verb,

vbtag))

return chunk

When we call the preceding function on a part-of-speech tagged is our children learning
chunk, we get back the correct form, are our children learning.

>>> from transforms import correct_verbs
>>> correct_verbs([('is', 'VBZ'), ('our', 'PRP$'), ('children',
'NNS'), ('learning', 'VBG')])
[('are', 'VBP'), ('our', 'PRP$'), ('children', 'NNS'), ('learning',
'VBG')]

We can also try this with a singular noun and an incorrect plural verb:

>>> correct_verbs([('our', 'PRP$'), ('child', 'NN'), ('were',
'VBD'), ('learning', 'VBG')])
[('our', 'PRP$'), ('child', 'NN'), ('was', 'VBD'), ('learning',
'VBG')]

In this case, were becomes was because child is a singular noun.

How it works...

The correct_verbs() function starts by looking for a verb in the chunk. If no verb is found, the
chunk is returned with no changes. Once a verb is found, we keep the verb, its tag, and its index in the
chunk. Then, we look on either side of the verb to find the nearest noun, starting on the right and looking
to the left only if no noun is found on the right. If no noun is found at all, the chunk is returned as is. But
if a noun is found, then we look up the correct verb form depending on whether or not the noun is plural.

Recall from Chapter 4, Part-of-speech Tagging, that plural nouns are tagged with NNS, while singular
nouns are tagged with NN. That means we can check the plurality of a noun by looking to see whether its
tag ends with S. Once we get the corrected verb form, it is inserted into the chunk to replace the original
verb form.

See also

The next four recipes all make use of first_chunk_index() to perform chunk transformations.

Swapping verb phrases
Swapping the words around a verb can eliminate the passive voice from particular phrases. For example,
the book was great can be transformed into the great book. This kind of normalization
can also help with frequency analysis, by counting two apparently different phrases as the same phrase.

How to do it...

In transforms.py is a function called swap_verb_phrase(). It swaps the right-hand side of the
chunk with the left-hand side, using the verb as the pivot point. It uses the first_chunk_index()
function defined in the previous recipe to find the verb to pivot around.

def swap_verb_phrase(chunk):
def vbpred(wt):

word, tag = wt
return tag != 'VBG' and tag.startswith('VB') and len(tag) > 2

vbidx = first_chunk_index(chunk, vbpred)

if vbidx is None:
return chunk

return chunk[vbidx+1:] + chunk[:vbidx]

Now we can see how it works on the part-of-speech tagged phrase the book was great:

>>> swap_verb_phrase([('the', 'DT'), ('book', 'NN'), ('was', 'VBD'),
('great', 'JJ')])
[('great', 'JJ'), ('the', 'DT'), ('book', 'NN')]

And the result is great the book. This phrase clearly isn't grammatically correct, so read on to
learn how to fix it.

How it works...

Using first_chunk_index() from the previous recipe with the vbpred() function defined
inline, we start by finding the first matching verb that is not a gerund (a word that ends in ing) tagged
with VBG. Once we've found the verb, we return the chunk with the right side before the left, and
remove the verb.

The reason we don't want to pivot around a gerund is that gerunds are commonly used to describe nouns,
and pivoting around one would remove that description. Here's an example where you can see how not
pivoting around a gerund is a good thing:

>>> swap_verb_phrase([('this', 'DT'), ('gripping', 'VBG'), ('book',
'NN'), ('is', 'VBZ'), ('fantastic', 'JJ')])

[('fantastic', 'JJ'), ('this', 'DT'), ('gripping', 'VBG'), ('book',
'NN')]

If we had pivoted around the gerund, the result would be book is fantastic this, and we'd
lose the gerund gripping.

There's more...

Filtering insignificant words makes the final result more readable. By filtering either before or after
swap_verb_phrase(), we get fantastic gripping book instead of fantastic this
gripping book:

>>> from transforms import swap_verb_phrase, filter_insignificant
>>> swap_verb_phrase(filter_insignificant([('this', 'DT'),
('gripping', 'VBG'), ('book', 'NN'), ('is', 'VBZ'), ('fantastic',
'JJ')]))
[('fantastic', 'JJ'), ('gripping', 'VBG'), ('book', 'NN')]
>>> filter_insignificant(swap_verb_phrase([('this', 'DT'),
('gripping', 'VBG'), ('book', 'NN'), ('is', 'VBZ'), ('fantastic',
'JJ')]))
[('fantastic', 'JJ'), ('gripping', 'VBG'), ('book', 'NN')]

Either way, we get a shorter grammatical chunk with no loss of meaning.

See also

The previous recipe, Correcting verb forms, defines first_chunk_index(), which is used to find
the verb in the chunk.

Swapping noun cardinals
In a chunk, a cardinal word, tagged as CD, refers to a number, such as 10. These cardinals often occur
before or after a noun. For normalization purposes, it can be useful to always put the cardinal before the
noun.

How to do it...

The swap_noun_cardinal() function is defined in transforms.py. It swaps any cardinal that
occurs immediately after a noun with the noun so that the cardinal occurs immediately before the noun.
It uses a helper function, tag_equals(), which is similar to tag_startswith(), but in this case,
the function it returns does an equality comparison with the given tag:

def tag_equals(tag):
def f(wt):

return wt[1] == tag
return f

Now we can define swap_noun_cardinal():

def swap_noun_cardinal(chunk):
cdidx = first_chunk_index(chunk, tag_equals('CD'))
cdidx must be > 0 and there must be a noun immediately before it
if not cdidx or not chunk[cdidx-1][1].startswith('NN'):

return chunk

noun, nntag = chunk[cdidx-1]
chunk[cdidx-1] = chunk[cdidx]
chunk[cdidx] = noun, nntag
return chunk

Let's try it on a date, such as Dec 10, and another common phrase, the top 10.

>>> swap_noun_cardinal([('Dec.', 'NNP'), ('10', 'CD')])
[('10', 'CD'), ('Dec.', 'NNP')]
>>> swap_noun_cardinal([('the', 'DT'), ('top', 'NN'), ('10', 'CD')])
[('the', 'DT'), ('10', 'CD'), ('top', 'NN')]

The result is that the numbers are now in front of the noun, creating 10 Dec and the 10 top.

How it works...

We start by looking for a CD tag in the chunk. If no CD is found, or if the CD is at the beginning of the
chunk, then the chunk is returned as is. There must also be a noun immediately before the CD. If we do
find a CD with a noun preceding it, then we swap the noun and cardinal.

See also

The Correcting verb forms recipe defines the first_chunk_index() function used to find tagged
words in a chunk.

Swapping infinitive phrases
An infinitive phrase has the form A of B, such as book of recipes. These can often be transformed into a
new form while retaining the same meaning, such as recipes book.

How to do it...

An infinitive phrase can be found by looking for a word tagged with IN. The
swap_infinitive_phrase() function, defined in transforms.py, will return a chunk that
swaps the portion of the phrase after the IN word with the portion before the IN word:

def swap_infinitive_phrase(chunk):
def inpred(wt):

word, tag = wt
return tag == 'IN' and word != 'like'

inidx = first_chunk_index(chunk, inpred)

if inidx is None:
return chunk

nnidx = first_chunk_index(chunk, tag_startswith('NN'),
start=inidx, step=-1) or 0

return chunk[:nnidx] + chunk[inidx+1:] + chunk[nnidx:inidx]

The function can now be used to transform book of recipes into recipes book:

>>> from transforms import swap_infinitive_phrase
>>> swap_infinitive_phrase([('book', 'NN'), ('of', 'IN'),
('recipes', 'NNS')])
[('recipes', 'NNS'), ('book', 'NN')]

How it works...

This function is similar to the swap_verb_phrase() function described in the Swapping verb
phrases recipe. The inpred function is passed to first_chunk_index() to look for a word
whose tag is IN. Next, we find the first noun that occurs before the IN word, so we can insert the
portion of the chunk after the IN word between the noun and the beginning of the chunk. A more
complicated example should demonstrate this:

>>> swap_infinitive_phrase([('delicious', 'JJ'), ('book', 'NN'),
('of', 'IN'), ('recipes', 'NNS')])
[('delicious', 'JJ'), ('recipes', 'NNS'), ('book', 'NN')]

We don't want the result to be recipes delicious book. Instead, we want to insert recipes
before the noun book but after the adjective delicious, hence the need to find the nnidx occurring
before the inidx.

There's more...

You'll notice that the inpred function checks to make sure the word is not like. That's because like
phrases must be treated differently, as transforming them the same way will result in an ungrammatical
phrase. For example, tastes like chicken should not be transformed into chicken tastes.

>>> swap_infinitive_phrase([('tastes', 'VBZ'), ('like', 'IN'),
('chicken', 'NN')])
[('tastes', 'VBZ'), ('like', 'IN'), ('chicken', 'NN')]

See also

In the next recipe, we'll learn how to transform recipes book into the more normal form recipe
book.

Singularizing plural nouns
As we saw in the previous recipe, the transformation process can result in phrases such as recipes
book. This is a NNS followed by a NN, when a more proper version of the phrase would be recipe
book, which is a NN followed by another NN. We can do another transform to correct these improper
plural nouns.

How to do it...

The transforms.py script defines a function called singularize_plural_noun() which will
depluralize a plural noun (tagged with NNS) that is followed by another noun:

def singularize_plural_noun(chunk):
nnsidx = first_chunk_index(chunk, tag_equals('NNS'))

if nnsidx is not None and nnsidx+1 < len(chunk) and
chunk[nnsidx+1][1][:2] == 'NN':

noun, nnstag = chunk[nnsidx]
chunk[nnsidx] = (noun.rstrip('s'), nnstag.rstrip('S'))

return chunk

And using it on recipes book, we get the more correct form, recipe book.

>>> singularize_plural_noun([('recipes', 'NNS'), ('book', 'NN')])
[('recipe', 'NN'), ('book', 'NN')]

How it works...

We start by looking for a plural noun with the tag NNS. If found, and if the next word is a noun
(determined by making sure the tag starts with NN), then we depluralize the plural noun by removing s
from the right side of both the tag and the word. The tag is assumed to be capitalized, so an uppercase S
is removed from the right-hand side of the tag, while a lowercase s is removed from the right-hand side
of the word.

See also

The previous recipe shows how a transformation can result in a plural noun followed by a singular noun,
though this could also occur naturally in real-world text.

Chaining chunk transformations
The transform functions defined in the previous recipes can be chained together to normalize chunks.
The resulting chunks are often shorter with no loss of meaning.

How to do it...

In transforms.py is the function transform_chunk(). It takes a single chunk and an optional
list of transform functions. It calls each transform function on the chunk, one at a time, and returns the
final chunk:

def transform_chunk(chunk, chain=[filter_insignificant,
swap_verb_phrase, swap_infinitive_phrase, singularize_plural_noun],
trace=0):

for f in chain:
chunk = f(chunk)

if trace:
print f.__name__, ':', chunk

return chunk

Using it on the phrase the book of recipes is delicious, we get delicious recipe
book:

>>> from transforms import transform_chunk
>>> transform_chunk([('the', 'DT'), ('book', 'NN'), ('of', 'IN'),
('recipes', 'NNS'), ('is', 'VBZ'), ('delicious', 'JJ')])
[('delicious', 'JJ'), ('recipe', 'NN'), ('book', 'NN')]

How it works...

The transform_chunk() function defaults to chaining the following functions in the given order:

• filter_insignificant()
• swap_verb_phrase()
• swap_infinitive_phrase()
• singularize_plural_noun()

Each function transforms the chunk that results from the previous function, starting with the original
chunk.

Note

The order in which you apply transform functions can be significant. Experiment with your own data to
determine which transforms are best, and in which order they should be applied.

There's more...

You can pass trace=1 into transform_chunk() to get an output at each step:

>>> from transforms import transform_chunk
>>> transform_chunk([('the', 'DT'), ('book', 'NN'), ('of', 'IN'),
('recipes', 'NNS'), ('is', 'VBZ'), ('delicious', 'JJ')], trace=1)
filter_insignificant : [('book', 'NN'), ('of', 'IN'), ('recipes',
'NNS'), ('is', 'VBZ'), ('delicious', 'JJ')]
swap_verb_phrase : [('delicious', 'JJ'), ('book', 'NN'), ('of',
'IN'), ('recipes', 'NNS')]
swap_infinitive_phrase : [('delicious', 'JJ'), ('recipes', 'NNS'),
('book', 'NN')]
singularize_plural_noun : [('delicious', 'JJ'), ('recipe', 'NN'),
('book', 'NN')]
[('delicious', 'JJ'), ('recipe', 'NN'), ('book', 'NN')]

This shows you the result of each transform function, which is then passed in to the next transform until
a final chunk is returned.

See also

The transform functions used were defined in the previous recipes of this chapter.

Converting a chunk tree to text
At some point, you may want to convert a Tree or subtree back to a sentence or chunk string. This is
mostly straightforward, except when it comes to properly outputting punctuation.

How to do it...

We'll use the first tree of the treebank_chunk corpus as our example. The obvious first step is to
join all the words in the tree with a space:

>>> from nltk.corpus import treebank_chunk
>>> tree = treebank_chunk.chunked_sents()[0]
>>> ' '.join([w for w, t in tree.leaves()])
'Pierre Vinken , 61 years old , will join the board as a
nonexecutive director Nov. 29 .'

But as you can see, the punctuation isn't quite right. The commas and period are treated as individual
words, and so get the surrounding spaces as well. But we can fix this using regular expression
substitution. This is implemented in the chunk_tree_to_sent() function found in
transforms.py:

import re
punct_re = re.compile(r'\s([,\.;\?])')

def chunk_tree_to_sent(tree, concat=' '):
s = concat.join([w for w, t in tree.leaves()])
return re.sub(punct_re, r'\g<1>', s)

Using chunk_tree_to_sent() results in a cleaner sentence, with no space before each punctuation
mark:

>>> from transforms import chunk_tree_to_sent
>>> chunk_tree_to_sent(tree)
'Pierre Vinken, 61 years old, will join the board as a nonexecutive
director Nov. 29.'

How it works...

To correct the extra spaces in front of the punctuation, we create a regular expression, punct_re, that
will match a space followed by any of the known punctuation characters. We have to escape both '.'
and '?' with a '\' since they are special characters. The punctuation is surrounded by parentheses so
we can use the matched group for substitution.

Once we have our regular expression, we define chunk_tree_to_sent(), whose first step is to
join the words by a concatenation character that defaults to a space. Then, we can call re.sub() to

replace all the punctuation matches with just the punctuation group. This eliminates the space in front of
the punctuation characters, resulting in a more correct string.

There's more...

We can simplify this function a little using nltk.tag.untag() to get words from the tree's leaves,
instead of using our own list comprehension:

import nltk.tag, re
punct_re = re.compile(r'\s([,\.;\?])')

def chunk_tree_to_sent(tree, concat=' '):
s = concat.join(nltk.tag.untag(tree.leaves()))
return re.sub(punct_re, r'\g<1>', s)

See also

The nltk.tag.untag() function is covered at the end of the Default tagging recipe in Chapter 4,
Part-of-speech Tagging.

Flattening a deep tree
Some of the included corpora contain parsed sentences, which are often deep trees of nested phrases.
Unfortunately, these trees are too deep to use for training a chunker, since IOB tag parsing is not
designed for nested chunks. To make these trees usable for chunker training, we must flatten them.

Getting ready

We're going to use the first parsed sentence of the treebank corpus as our example. Here's a diagram
showing how deeply nested this tree is:

You may notice that the part-of-speech tags are part of the tree structure instead of being included with
the word. This will be handled later using the Tree.pos() method, which was designed specifically
for combining words with preterminal Tree labels such as part-of-speech tags.

How to do it...

In transforms.py is a function named flatten_deeptree(). It takes a single Tree and will
return a new Tree that keeps only the lowest-level trees. It uses a helper function,
flatten_childtrees(), to do most of the work:

from nltk.tree import Tree

def flatten_childtrees(trees):
children = []

for t in trees:
if t.height() < 3:

children.extend(t.pos())
elif t.height() == 3:

children.append(Tree(t.label(), t.pos()))
else:

children.extend(flatten_childtrees([c for c in t]))

return children

def flatten_deeptree(tree):
return Tree(tree.label(), flatten_childtrees([c for c in tree]))

We can use it on the first parsed sentence of the treebank corpus to get a flatter tree:

>>> from nltk.corpus import treebank
>>> from transforms import flatten_deeptree
>>> flatten_deeptree(treebank.parsed_sents()[0])
Tree('S', [Tree('NP', [('Pierre', 'NNP'), ('Vinken', 'NNP')]), (',',
','), Tree('NP', [('61', 'CD'), ('years', 'NNS')]), ('old', 'JJ'),
(',', ','), ('will', 'MD'), ('join', 'VB'), Tree('NP', [('the',
'DT'), ('board', 'NN')]), ('as', 'IN'), Tree('NP', [('a', 'DT'),
('nonexecutive', 'JJ'), ('director', 'NN')]), Tree('NP-TMP',
[('Nov.', 'NNP'), ('29', 'CD')]), ('.', '.')])

The result is a much flatter Tree that only includes NP phrases. Words that are not part of an NP phrase
are separated. This flatter tree is shown in the following diagram:

This Tree is quite similar to the first chunk Tree from the treebank_chunk corpus. The main
difference is that the rightmost NP Tree is separated into two subtrees above, one of them named NP-
TMP.

The first tree from treebank_chunk is shown in the following diagram for comparison. The main
difference is the right side of the tree, which has only one NP subtree instead of two subtrees:

How it works...

The solution is composed of two functions: flatten_deeptree() returns a new Tree from the
given tree by calling flatten_childtrees() on each of the given tree's children.

The flatten_childtrees() function is a recursive function that drills down into the Tree until it
finds child trees whose height() is equal to or less than 3. A Tree whose height() is less than 3
looks like this:

>>> from nltk.tree import Tree
>>> Tree('NNP', ['Pierre']).height()2

These short trees are converted into lists of tuples using the pos() function.

>>> Tree('NNP', ['Pierre']).pos()
[('Pierre', 'NNP')]

Trees whose height() is equal to 3 are the lowest level trees that we're interested in keeping. These
trees look like this:

>>> Tree('NP', [Tree('NNP', ['Pierre']), Tree('NNP',
['Vinken'])]).height()
3

And when we call pos() on that tree, we get:

>>> Tree('NP', [Tree('NNP', ['Pierre']), Tree('NNP',
['Vinken'])]).pos()
[('Pierre', 'NNP'), ('Vinken', 'NNP')]

The recursive nature of flatten_childtrees() eliminates all trees whose height is greater than 3.

There's more...

Flattening a deep Tree allows us to call nltk.chunk.util.tree2conlltags() on the
flattened Tree, a necessary step to train a chunker. If you try to call this function before flattening the
Tree, you get a ValueError exception:

>>> from nltk.chunk.util import tree2conlltags
>>> tree2conlltags(treebank.parsed_sents()[0])
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "/usr/local/lib/python2.6/dist-packages/nltk/chunk/util.py",

line 417, in tree2conlltags
raise ValueError, "Tree is too deeply nested to be printed in

CoNLL format"
ValueError: Tree is too deeply nested to be printed in CoNLL format

But after flattening, there's no problem:

>>> tree2conlltags(flatten_deeptree(treebank.parsed_sents()[0]))
[('Pierre', 'NNP', 'B-NP'), ('Vinken', 'NNP', 'I-NP'), (',', ',',
'O'), ('61', 'CD', 'B-NP'), ('years', 'NNS', 'I-NP'), ('old', 'JJ',
'O'), (',', ',', 'O'), ('will', 'MD', 'O'), ('join', 'VB', 'O'),
('the', 'DT', 'B-NP'), ('board', 'NN', 'I-NP'), ('as', 'IN', 'O'),
('a', 'DT', 'B-NP'), ('nonexecutive', 'JJ', 'I-NP'), ('director',
'NN', 'I-NP'), ('Nov.', 'NNP', 'B-NP-TMP'), ('29', 'CD',
'I-NP-TMP'), ('.', '.', 'O')]

Being able to flatten trees opens up the possibility of training a chunker on corpora consisting of deep
parse trees.

The cess_esp and cess_cat treebank

The cess_esp and cess_cat corpora are Spanish and Catalan corpora that have parsed sentences
but no chunked sentences. In other words, they have deep trees that must be flattened in order to train a
chunker. In fact, the trees are so deep that a diagram would be overwhelming, but the flattening can be
demonstrated by showing the height() of the tree before and after flattening:

>>> from nltk.corpus import cess_esp
>>> cess_esp.parsed_sents()[0].height()
22
>>> flatten_deeptree(cess_esp.parsed_sents()[0]).height()
3

See also

The Training a tagger-based chunker recipe in Chapter 5, Extracting Chunks, covers training a chunker
using IOB tags.

Creating a shallow tree
In the previous recipe, we flattened a deep Tree by only keeping the lowest level subtrees. In this
recipe, we'll keep only the highest level subtrees instead.

How to do it...

We'll be using the first parsed sentence from the treebank corpus as our example. Recall from the
previous recipe that the sentence Tree looks like this:

The shallow_tree() function defined in transforms.py eliminates all the nested subtrees,
keeping only the top subtree labels:

from nltk.tree import Tree

def shallow_tree(tree):
children = []

for t in tree:
if t.height() < 3:

children.extend(t.pos())
else:

children.append(Tree(t.label(), t.pos()))

return Tree(tree.label(), children)

Using it on the first parsed sentence in treebank results in a Tree with only two subtrees:

>>> from transforms import shallow_tree
>>> shallow_tree(treebank.parsed_sents()[0])
Tree('S', [Tree('NP-SBJ', [('Pierre', 'NNP'), ('Vinken', 'NNP'),
(',', ','), ('61', 'CD'), ('years', 'NNS'), ('old', 'JJ'), (',',
',')]), Tree('VP', [('will', 'MD'), ('join', 'VB'), ('the', 'DT'),

('board', 'NN'), ('as', 'IN'), ('a', 'DT'), ('nonexecutive', 'JJ'),
('director', 'NN'), ('Nov.', 'NNP'), ('29', 'CD')]), ('.', '.')])

We can visually and programmatically see the difference in the following diagram:

>>> treebank.parsed_sents()[0].height()
7
>>> shallow_tree(treebank.parsed_sents()[0]).height()
3

As in the previous recipe, the height of the new tree is 3 so it can be used for training a chunker.

How it works...

The shallow_tree() function iterates over each of the top-level subtrees in order to create new
child trees. If the height() of a subtree is less than 3, then that subtree is replaced by a list of its part-
of-speech tagged children. All other subtrees are replaced by a new Tree whose children are the part-
of-speech tagged leaves. This eliminates all nested subtrees while retaining the top-level subtrees.

This function is an alternative to flatten_deeptree() from the previous recipe, for when you
want to keep the higher-level tree labels and ignore the lower-level labels.

See also

The previous recipe covers how to flatten a Tree and keep the lowest-level subtrees, as opposed to
keeping the highest-level subtrees.

Converting tree labels
As you've seen in previous recipes, parse trees often have a variety of Tree label types that are not
present in chunk trees. If you want to use parse trees to train a chunker, then you'll probably want to
reduce this variety by converting some of these tree labels to more common label types.

Getting ready

First, we have to decide which Tree labels need to be converted. Let's take a look at that first Tree
again:

Immediately, you can see that there are two alternative NP subtrees: NP-SBJ and NP-TMP. Let's
convert both of those to NP. The mapping will be as follows:

Original Label New Label

NP-SBJ NP

NP-TMP NP

How to do it...

In transforms.py is the function convert_tree_labels(). It takes two arguments: the Tree
to convert and a label conversion mapping. It returns a new Tree with all matching labels replaced
based on the values in the mapping:

from nltk.tree import Tree

def convert_tree_labels(tree, mapping):
children = []

for t in tree:
if isinstance(t, Tree):

children.append(convert_tree_labels(t, mapping))
else:

children.append(t)

label = mapping.get(tree.label(), tree.label())
return Tree(label, children)

Using the mapping table we saw earlier, we can pass it in as a dict to convert_tree_labels()
and convert the first parsed sentence from treebank:

>>> from transforms import convert_tree_labels
>>> mapping = {'NP-SBJ': 'NP', 'NP-TMP': 'NP'}
>>> convert_tree_labels(treebank.parsed_sents()[0], mapping)
Tree('S', [Tree('NP', [Tree('NP', [Tree('NNP', ['Pierre']),
Tree('NNP', ['Vinken'])]), Tree(',', [',']), Tree('ADJP',
[Tree('NP', [Tree('CD', ['61']), Tree('NNS', ['years'])]),
Tree('JJ', ['old'])]), Tree(',', [','])]), Tree('VP', [Tree('MD',
['will']), Tree('VP', [Tree('VB', ['join']), Tree('NP', [Tree('DT',
['the']), Tree('NN', ['board'])]), Tree('PP-CLR', [Tree('IN',
['as']), Tree('NP', [Tree('DT', ['a']), Tree('JJ',
['nonexecutive']), Tree('NN', ['director'])])]), Tree('NP',
[Tree('NNP', ['Nov.']), Tree('CD', ['29'])])])]), Tree('.', ['.'])])

As you can see in the following diagram, the NP-* subtrees have been replaced with NP subtrees:

How it works...

The convert_tree_labels() function recursively converts every child subtree using the
mapping. The Tree is then rebuilt with the converted labels and children until the entire Tree has been
converted.

The result is a brand new Tree instance with new subtrees whose labels have been converted.

See also

The previous two recipes cover different methods of flattening a parse Tree, both of which can produce
subtrees that may require mapping before using them to train a chunker. Chunker training is covered in
the Training a tagger-based chunker recipe in Chapter 5, Extracting Chunks.

Chapter 7. Text Classification
In this chapter, we will cover the following recipes:

• Bag of words feature extraction
• Training a Naive Bayes classifier
• Training a decision tree classifier
• Training a maximum entropy classifier
• Training scikit-learn classifiers
• Measuring precision and recall of a classifier
• Calculating high information words
• Combining classifiers with voting
• Classifying with multiple binary classifiers
• Training a classifier with NLTK-Trainer

Introduction
Text classification is a way to categorize documents or pieces of text. By examining the word usage in a
piece of text, classifiers can decide what class label to assign to it. A binary classifier decides between
two labels, such as positive or negative. The text can either be one label or another, but not both,
whereas a multi-label classifier can assign one or more labels to a piece of text.

Classification works by learning from labeled feature sets, or training data, to later classify an
unlabeled feature set. A labeled feature set is simply a tuple that looks like (feat, label), while
an unlabeled feature set is a feat by itself. A feature set is basically a key-value mapping of feature
names to feature values. In the case of text classification, the feature names are usually words, and the
values are all True. As the documents may have unknown words, and the number of possible words
may be very large, words that don't occur in the text are omitted, instead of including them in a feature
set with the value False.

An instance is another term for a feature set. It represents a single occurrence of a combination of
features. I will use instance and feature set interchangeably. A labeled feature set is an instance with a
known class label that we can use for training or evaluation. To summarize, (feat, label) is a
labeled feature set, or labeled instance. feat is a feature set, normally represented as a key-value
dictionary. When feat does not have an associated label, it is also called an unlabeled feature set, or
instance.

Bag of words feature extraction
Text feature extraction is the process of transforming what is essentially a list of words into a feature
set that is usable by a classifier. The NLTK classifiers expect dict style feature sets, so we must
therefore transform our text into a dict. The bag of words model is the simplest method; it constructs
a word presence feature set from all the words of an instance. This method doesn't care about the order
of the words, or how many times a word occurs, all that matters is whether the word is present in a list of
words.

How to do it...

The idea is to convert a list of words into a dict, where each word becomes a key with the value
True. The bag_of_words() function in featx.py looks like this:

def bag_of_words(words):
return dict([(word, True) for word in words])

We can use it with a list of words; in this case, the tokenized sentence the quick brown fox:

>>> from featx import bag_of_words
>>> bag_of_words(['the', 'quick', 'brown', 'fox'])
{'quick': True, 'brown': True, 'the': True, 'fox': True}

The resulting dict is known as a bag of words because the words are not in order, and it doesn't matter
where in the list of words they occurred, or how many times they occurred. All that matters is that the
word is found at least once.

Tip

You can use different values than True, but it is important to keep in mind that the NLTK classifiers
learn from the unique combination of (key, value). That means that ('fox', 1) is treated as a
different feature than ('fox', 2).

How it works...

The bag_of_words() function is a very simple list comprehension that constructs a dict from the
given words, where every word gets the value True.

Since we have to assign a value to each word in order to create a dict, True is a logical choice for the
value to indicate word presence. If we knew the universe of all possible words, we could assign the
value False to all the words that are not in the given list of words. But most of the time, we don't know
all the possible words beforehand. Plus, the dict that would result from assigning False to every
possible word would be very large (assuming all words in the English language are possible). So instead,
to keep feature extraction simple and use less memory, we stick to assigning the value True to all
words that occur at least once. We don't assign the value False to any word since we don't know what
the set of possible words are; we only know about the words we are given.

There's more...

In the default bag of words model, all words are treated equally. But that's not always a good idea. As
we already know, some words are so common that they are practically meaningless. If you have a set of
words that you want to exclude, you can use the bag_of_words_not_in_set() function in
featx.py:

def bag_of_words_not_in_set(words, badwords):
return bag_of_words(set(words) - set(badwords))

This function can be used, among other things, to filter stopwords. Here's an example where we filter the
word the from the quick brown fox:

>>> from featx import bag_of_words_not_in_set
>>> bag_of_words_not_in_set(['the', 'quick', 'brown', 'fox'],
['the'])
{'quick': True, 'brown': True, 'fox': True}

As expected, the resulting dict has quick, brown, and fox, but not the.

Filtering stopwords

Stopwords are words that are often useless in NLP, in that they don't convey much meaning, such as the
word the. Here's an example of using the bag_of_words_not_in_set() function to filter all
English stopwords:

from nltk.corpus import stopwords

def bag_of_non_stopwords(words, stopfile='english'):
badwords = stopwords.words(stopfile)
return bag_of_words_not_in_set(words, badwords)

You can pass a different language filename as the stopfile keyword argument if you are using a
language other than English. Using this function produces the same result as the previous example:

>>> from featx import bag_of_non_stopwords
>>> bag_of_non_stopwords(['the', 'quick', 'brown', 'fox'])
{'quick': True, 'brown': True, 'fox': True}

Here, the is a stopword, so it is not present in the returned dict.

Including significant bigrams

In addition to single words, it often helps to include significant bigrams. As significant bigrams are less
common than most individual words, including them in the bag of words model can help the classifier
make better decisions. We can use the BigramCollocationFinder class covered in the
Discovering word collocations recipe of Chapter 1, Tokenizing Text and WordNet Basics, to find

significant bigrams. The bag_of_bigrams_words() function found in featx.py will return a
dict of all words along with the 200 most significant bigrams:

from nltk.collocations import BigramCollocationFinder
from nltk.metrics import BigramAssocMeasures

def bag_of_bigrams_words(words, score_fn=BigramAssocMeasures.chi_sq,
n=200):

bigram_finder = BigramCollocationFinder.from_words(words)
bigrams = bigram_finder.nbest(score_fn, n)
return bag_of_words(words + bigrams)

The bigrams will be present in the returned dict as (word1, word2) and will have the value as
True. Using the same example words as we did earlier, we get all words plus every bigram:

>>> from featx import bag_of_bigrams_words
>>> bag_of_bigrams_words(['the', 'quick', 'brown', 'fox'])
{'brown': True, ('brown', 'fox'): True, ('the', 'quick'):
True, 'fox': True, ('quick', 'brown'): True, 'quick': True, 'the':
True}

You can change the maximum number of bigrams found by altering the keyword argument n.

See also

The Discovering word collocations recipe of Chapter 1, Tokenizing Text and WordNet Basics, covers the
BigramCollocationFinder class in more detail. In the next recipe, we will train a
NaiveBayesClassifier class using feature sets created with the bag of words model.

Training a Naive Bayes classifier
Now that we can extract features from text, we can train a classifier. The easiest classifier to get started
with is the NaiveBayesClassifier class. It uses the Bayes theorem to predict the probability that
a given feature set belongs to a particular label. The formula is:

P(label | features) = P(label) * P(features | label) / P(features)

The following list describes the various parameters from the previous formula:

• P(label): This is the prior probability of the label occurring, which is the likelihood that a
random feature set will have the label. This is based on the number of training instances with the
label compared to the total number of training instances. For example, if 60/100 training
instances have the label, the prior probability of the label is 60%.

• P(features | label): This is the prior probability of a given feature set being classified
as that label. This is based on which features have occurred with each label in the training data.

• P(features): This is the prior probability of a given feature set occurring. This is the
likelihood of a random feature set being the same as the given feature set, and is based on the
observed feature sets in the training data. For example, if the given feature set occurs twice in
100 training instances, the prior probability is 2%.

• P(label | features): This tells us the probability that the given features should have
that label. If this value is high, then we can be reasonably confident that the label is correct for
the given features.

Getting ready

We are going to be using the movie_reviews corpus for our initial classification examples. This
corpus contains two categories of text: pos and neg. These categories are exclusive, which makes a
classifier trained on them a binary classifier. Binary classifiers have only two classification labels, and
will always choose one or the other.

Each file in the movie_reviews corpus is composed of either positive or negative movie reviews. We
will be using each file as a single instance for both training and testing the classifier. Because of the
nature of the text and its categories, the classification we will be doing is a form of sentiment analysis. If
the classifier returns pos, then the text expresses a positive sentiment, whereas if we get neg, then the
text expresses a negative sentiment.

How to do it...

For training, we need to first create a list of labeled feature sets. This list should be of the form
[(featureset, label)], where the featureset variable is a dict and label is the known
class label for the featureset. The label_feats_from_corpus() function in featx.py
takes a corpus, such as movie_reviews, and a feature_detector function, which defaults to
bag_of_words. It then constructs and returns a mapping of the form {label: [featureset]}.
We can use this mapping to create a list of labeled training instances and testing instances. The reason to
do it this way is to get a fair sample from each label. It is important to get a fair sample, because parts of

the corpus may be (unintentionally) biased towards one label or the other. Getting a fair sample should
eliminate this possible bias:

import collections

def label_feats_from_corpus(corp, feature_detector=bag_of_words):
label_feats = collections.defaultdict(list)
for label in corp.categories():

for fileid in corp.fileids(categories=[label]):
feats = feature_detector(corp.words(fileids=[fileid]))
label_feats[label].append(feats)

return label_feats

Once we can get a mapping of label | feature sets, we want to construct a list of labeled
training instances and testing instances. The split_label_feats() function in featx.py takes a
mapping returned from label_feats_from_corpus() and splits each list of feature sets into
labeled training and testing instances:

def split_label_feats(lfeats, split=0.75):
train_feats = []
test_feats = []
for label, feats in lfeats.items():

cutoff = int(len(feats) * split)
train_feats.extend([(feat, label) for feat in feats[:cutoff]])
test_feats.extend([(feat, label) for feat in feats[cutoff:]])

return train_feats, test_feats

Using these functions with the movie_reviews corpus gives us the lists of labeled feature sets we
need to train and test a classifier:

>>> from nltk.corpus import movie_reviews
>>> from featx import label_feats_from_corpus, split_label_feats
>>> movie_reviews.categories()
['neg', 'pos']
>>> lfeats = label_feats_from_corpus(movie_reviews)
>>> lfeats.keys()
dict_keys(['neg', 'pos'])
>>> train_feats, test_feats = split_label_feats(lfeats, split=0.75)
>>> len(train_feats)
1500
>>> len(test_feats)
500

So there are 1000 pos files, 1000 neg files, and we end up with 1500 labeled training instances and
500 labeled testing instances, each composed of equal parts of pos and neg. If we were using a
different dataset, where the classes were not balanced, our training and testing data would have the same
imbalance.

Now we can train a NaiveBayesClassifier class using its train() class method:

>>> from nltk.classify import NaiveBayesClassifier
>>> nb_classifier = NaiveBayesClassifier.train(train_feats)
>>> nb_classifier.labels()
['neg', 'pos']

Let's test the classifier on a couple of made up reviews. The classify() method takes a single
argument, which should be a feature set. We can use the same bag_of_words() feature detector on a
list of words to get our feature set:

>>> from featx import bag_of_words
>>> negfeat = bag_of_words(['the', 'plot', 'was', 'ludicrous'])
>>> nb_classifier.classify(negfeat)
'neg'
>>> posfeat = bag_of_words(['kate', 'winslet', 'is', 'accessible'])
>>> nb_classifier.classify(posfeat)
'pos'

How it works...

The label_feats_from_corpus() function assumes that the corpus is categorized, and that a
single file represents a single instance for feature extraction. It iterates over each category label, and
extracts features from each file in that category using the feature_detector() function, which
defaults to bag_of_words(). It returns a dict whose keys are the category labels, and the values
are lists of instances for that category.

If we had label_feats_from_corpus() return a list of labeled feature sets instead of a dict, it
would be much harder to get balanced training data. The list would be ordered by label, and if you took
a slice of it, you would almost certainly be getting far more of one label than another. By returning a
dict, you can take slices from the feature sets of each label, in the same proportion that exists in the
data.

Now we need to split the labeled feature sets into training and testing instances using
split_label_feats(). This function allows us to take a fair sample of labeled feature sets from
each label, using the split keyword argument to determine the size of the sample. The split
argument defaults to 0.75, which means the first 75% of the labeled feature sets for each label will be
used for training, and the remaining 25% will be used for testing.

Once we have gotten our training and testing feats split up, we train a classifier using the
NaiveBayesClassifier.train() method. This class method builds two probability
distributions for calculating prior probabilities. These are passed into the NaiveBayesClassifier
constructor. The label_probdist constructor contains the prior probability for each label, or
P(label). The feature_probdist constructor contains P(feature name = feature
value | label). In our case, it will store P(word=True | label). Both are calculated based
on the frequency of occurrence of each label and each feature name and value in the training data.

The NaiveBayesClassifier class inherits from ClassifierI, which requires subclasses to
provide a labels() method, and at least one of the classify() or prob_classify() methods.
The following diagram shows other methods, which will be covered shortly:

There's more...

We can test the accuracy of the classifier using nltk.classify.util.accuracy() and the
test_feats variable created previously:

>>> from nltk.classify.util import accuracy
>>> accuracy(nb_classifier, test_feats)
0.728

This tells us that the classifier correctly guessed the label of nearly 73% of the test feature sets.

Tip

The code in this chapter is run with the PYTHONHASHSEED=0 environment variable so that accuracy
calculations are consistent. If you run the code with a different value for PYTHONHASHSEED, or
without setting this environment variable, your accuracy values may differ.

Classification probability

While the classify() method returns only a single label, you can use the prob_classify()
method to get the classification probability of each label. This can be useful if you want to use
probability thresholds for classification:

>>> probs = nb_classifier.prob_classify(test_feats[0][0])
>>> probs.samples()
dict_keys(['neg', 'pos'])
>>> probs.max()
'pos'
>>> probs.prob('pos')
0.9999999646430913
>>> probs.prob('neg')
3.535688969240647e-08

In this case, the classifier says that the first test instance is nearly 100% likely to be pos. Other
instances may have more mixed probabilities. For example, if the classifier says an instance is 60% pos
and 40% neg, that means the classifier is 60% sure the instance is pos, but there is a 40% chance that it
is neg. It can be useful to know this for situations where you only want to use strongly classified
instances, with a threshold of 80% or greater.

Most informative features

The NaiveBayesClassifier class has two methods that are quite useful for learning about your
data. Both methods take a keyword argument n to control how many results to show. The
most_informative_features() method returns a list of the form [(feature name,
feature value)] ordered by most informative to least informative. In our case, the feature value
will always be True:

>>> nb_classifier.most_informative_features(n=5)
[('magnificent', True), ('outstanding', True), ('insulting', True),
('vulnerable', True), ('ludicrous', True)]

The show_most_informative_features() method will print out the results from
most_informative_features() and will also include the probability of a feature pair belonging
to each label:

>>> nb_classifier.show_most_informative_features(n=5)
Most Informative Features

magnificent = True pos : neg = 15.0 : 1.0
outstanding = True pos : neg = 13.6 : 1.0
insulting = True neg : pos = 13.0 : 1.0
vulnerable = True pos : neg = 12.3 : 1.0
ludicrous = True neg : pos = 11.8 : 1.0

The informativeness, or information gain, of each feature pair is based on the prior probability of the
feature pair occurring for each label. More informative features are those that occur primarily in one
label and not on the other. The less informative features are those that occur frequently with both labels.
Another way to state this is that the entropy of the classifier decreases more when using a more
informative feature. See https://en.wikipedia.org/wiki/Information_gain_in_decision_trees for more on
information gain and entropy (while it specifically mentions decision trees, the same concepts are
applicable to all classifiers).

Training estimator

During training, the NaiveBayesClassifier class constructs probability distributions for each
feature using an estimator parameter, which defaults to nltk.probability.ELEProbDist.
The estimator is used to calculate the probability of a label parameter given a specific feature. In
ELEProbDist, ELE stands for Expected Likelihood Estimate, and the formula for calculating the
label probabilities for a given feature is (c+0.5)/(N+B/2). Here, c is the count of times a single feature
occurs, N

is the total number of feature outcomes observed, and B is the number of bins or unique features in the
feature set. In cases where the feature values are all True, N == B. In other cases, where the number of
times a feature occurs is recorded, then N >= B.

You can use any estimator parameter you want, and there are quite a few to choose from. The only
constraints are that it must inherit from nltk.probability.ProbDistI and its constructor must
take a bins keyword argument. Here's an example using the LaplaceProdDist class, which uses
the formula (c+1)/(N+B):

>>> from nltk.probability import LaplaceProbDist
>>> nb_classifier = NaiveBayesClassifier.train(train_feats,
estimator=LaplaceProbDist)
>>> accuracy(nb_classifier, test_feats)
0.716

As you can see, accuracy is slightly lower, so choose your estimator parameter carefully.

You cannot use nltk.probability.MLEProbDist as the estimator, or any ProbDistI subclass
that does not take the bins keyword argument. Training will fail with TypeError: __init__()
got an unexpected keyword argument 'bins'.

Manual training

You don't have to use the train() class method to construct a NaiveBayesClassifier. You can
instead create the label_probdist and feature_probdist variables manually. The
label_probdist variable should be an instance of ProbDistI, and should contain the prior
probabilities for each label. The feature_probdist variable should be a dict whose keys are
tuples of the form (label, feature name) and whose values are instances of ProbDistI that
have the probabilities for each feature value. In our case, each ProbDistI should have only one value,
True=1. Here's a very simple example using a manually constructed DictionaryProbDist class:

https://en.wikipedia.org/wiki/Information_gain_in_decision_trees

>>> from nltk.probability import DictionaryProbDist
>>> label_probdist = DictionaryProbDist({'pos': 0.5, 'neg': 0.5})
>>> true_probdist = DictionaryProbDist({True: 1})
>>> feature_probdist = {('pos', 'yes'): true_probdist, ('neg',
'no'): true_probdist}
>>> classifier = NaiveBayesClassifier(label_probdist,
feature_probdist)
>>> classifier.classify({'yes': True})
'pos'
>>> classifier.classify({'no': True})
'neg'

See also

In the next recipes, we will train two more classifiers, DecisionTreeClassifier and
MaxentClassifier. In the Measuring precision and recall of a classifier recipe in this chapter, we
will use precision and recall instead of accuracy to evaluate the classifiers. And then in the Calculating
high information words recipe, we will see how using only the most informative features can improve
classifier performance.

The movie_reviews corpus is an instance of CategorizedPlaintextCorpusReader, which
is covered in the Creating a categorized text corpus recipe in Chapter 3, Creating Custom Corpora.

Training a decision tree classifier
The DecisionTreeClassifier class works by creating a tree structure, where each node
corresponds to a feature name and the branches correspond to the feature values. Tracing down the
branches, you get to the leaves of the tree, which are the classification labels.

How to do it...

Using the same train_feats and test_feats variables we created from the movie_reviews
corpus in the previous recipe, we can call the DecisionTreeClassifier.train() class method
to get a trained classifier. We pass binary=True because all of our features are binary: either the
word is present or it's not. For other classification use cases where you have multivalued features, you
will want to stick to the default binary=False.

Tip

In this context, binary refers to feature values, and is not to be confused with a binary classifier. Our
word features are binary because the value is either True or the word is not present. If our features
could take more than two values, we would have to use binary=False. A binary classifier, on the
other hand, is a classifier that only chooses between two labels. In our case, we are training a binary
DecisionTreeClassifier on binary features. But it's also possible to have a binary classifier with
non-binary features, or a non-binary classifier with binary features.

The following is the code for training and evaluating the accuracy of a DecisionTreeClassifier
class:

>>> from nltk.classify import DecisionTreeClassifier
>>> dt_classifier = DecisionTreeClassifier.train(train_feats,
binary=True, entropy_cutoff=0.8, depth_cutoff=5, support_cutoff=30)
>>> accuracy(dt_classifier, test_feats)
0.688

The DecisionTreeClassifier class can take much longer to train than the
NaiveBayesClassifier class. For that reason, I have overridden the default parameters so it trains
faster. These parameters will be explained later.

How it works...

The DecisionTreeClassifier class, like the NaiveBayesClassifier class, is also an
instance of ClassifierI, as shown in the following diagram:

During training, the DecisionTreeClassifier class creates a tree where the child nodes are also
instances of DecisionTreeClassifier. The leaf nodes contain only a single label, while the
intermediate child nodes contain decision mappings for each feature. These decisions map each feature
value to another DecisionTreeClassifier, which itself may contain decisions for another
feature, or it may be a final leaf node with a classification label. The train() class method builds this
tree from the ground up, starting with the leaf nodes. It then refines itself to minimize the number of
decisions needed to get to a label by putting the most informative features at the top.

To classify, the DecisionTreeClassifier class looks at the given feature set and traces down the
tree, using known feature names and values to make decisions. Because we are creating a binary tree,
each DecisionTreeClassifier instance also has a default decision tree, which it uses when a
known feature is not present in the feature set being classified. This is a common occurrence in text-
based feature sets, and indicates that a known word was not in the text being classified. This also
contributes information towards a classification decision.

There's more...

The parameters passed into DecisionTreeClassifier.train() can be tweaked to improve
accuracy or decrease training time. Generally, if you want to improve accuracy, you must accept a longer
training time and if you want to decrease the training time, the accuracy will most likely decrease as
well. But be careful not to optimize for accuracy too much. A really high accuracy may indicate
overfitting, which means the classifier will be excellent at classifying the training data, but not so good
on data it has never seen. See https://en.wikipedia.org/wiki/Over_fitting for more on this concept.

https://en.wikipedia.org/wiki/Over_fitting

Controlling uncertainty with entropy_cutoff

Entropy is the uncertainty of the outcome. As entropy approaches 1.0, uncertainty increases.
Conversely, as entropy approaches 0.0, uncertainty decreases. In other words, when you have similar
probabilities, the entropy will be high as each probability has a similar likelihood (or uncertainty of
occurrence). But the more the probabilities differ, the lower the entropy will be.

The entropy_cutoff value is used during the tree refinement process. The tree refinement process
is how the decision tree decides to create new branches. If the entropy of the probability distribution of
label choices in the tree is greater than the entropy_cutoff value, then the tree is refined further by
creating more branches. But if the entropy is lower than the entropy_cutoff value, then tree
refinement is halted.

Entropy is calculated by giving nltk.probability.entropy() a MLEProbDist value created
from a FreqDist of label counts. Here's an example showing the entropy of various FreqDist
values. The value of 'pos' is kept at 30, while the value of 'neg' is manipulated to show that when
'neg' is close to 'pos', entropy increases, but when it is closer to 1, entropy decreases:

>>> from nltk.probability import FreqDist, MLEProbDist, entropy
>>> fd = FreqDist({'pos': 30, 'neg': 10})
>>> entropy(MLEProbDist(fd))
0.8112781244591328
>>> fd['neg'] = 25
>>> entropy(MLEProbDist(fd))
0.9940302114769565
>>> fd['neg'] = 30
>>> entropy(MLEProbDist(fd))
1.0
>>> fd['neg'] = 1
>>> entropy(MLEProbDist(fd))
0.20559250818508304

What this all means is that if the label occurrence is very skewed one way or the other, the tree doesn't
need to be refined because entropy/uncertainty is low. But when the entropy is greater than
entropy_cutoff, then the tree must be refined with further decisions to reduce the uncertainty.
Higher values of entropy_cutoff will decrease both accuracy and training time.

Controlling tree depth with depth_cutoff

The depth_cutoff value is also used during refinement to control the depth of the tree. The final
decision tree will never be deeper than the depth_cutoff value. The default value is 100, which
means that classification may require up to 100 decisions before reaching a leaf node. Decreasing the
depth_cutoff value will decrease the training time and most likely decrease the accuracy as well.

Controlling decisions with support_cutoff

The support_cutoff value controls how many labeled feature sets are required to refine the tree. As
the DecisionTreeClassifier class refines itself, labeled feature sets are eliminated once they no
longer provide value to the training process. When the number of labeled feature sets is less than or
equal to support_cutoff, refinement stops, at least for that section of the tree.

Another way to look at it is that support_cutoff specifies the minimum number of instances that
are required to make a decision about a feature. If support_cutoff is 20, and you have less than 20
labeled feature sets with a given feature, then you don't have enough instances to make a good decision,
and refinement around that feature must come to a stop.

See also

The previous recipe covered the creation of training and test feature sets from the movie_reviews
corpus. In the next recipe, we will cover training a MaxentClassifier class, and in the Measuring
precision and recall of a classifier recipe in this chapter, we will use precision and recall to evaluate all
the classifiers.

Training a maximum entropy classifier
The third classifier we will cover is the MaxentClassifier class, also known as a conditional
exponential classifier or logistic regression classifier. The maximum entropy classifier converts
labeled feature sets to vectors using encoding. This encoded vector is then used to calculate weights for
each feature that can then be combined to determine the most likely label for a feature set. For more
details on the math behind this, see https://en.wikipedia.org/wiki/Maximum_entropy_classifier.

Getting ready

The MaxentClassifier class requires the NumPy package. This is because the feature encodings
use NumPy arrays. You can find installation details at the following link:

http://www.scipy.org/Installing_SciPy

Tip

The MaxentClassifier class algorithms can be quite memory hungry, so you may want to quit all
your other programs while training a MaxentClassifier class, just to be safe.

How to do it...

We will use the same train_feats and test_feats variables from the movie_reviews corpus
that we constructed before, and call the MaxentClassifier.train() class method. Like the
DecisionTreeClassifier class, MaxentClassifier.train() has its own specific
parameters that I have tweaked to speed up training. These parameters will be explained in more detail
later:

>>> from nltk.classify import MaxentClassifier
>>> me_classifier = MaxentClassifier.train(train_feats, trace=0,
max_iter=1, min_lldelta=0.5)
>>> accuracy(me_classifier, test_feats)
0.5

The reason this classifier has such a low accuracy is because I set the parameters such that it is unable to
learn a more accurate model. This is due to the time required to train a suitable model using the default
iis algorithm. A better algorithm is gis, which can be trained like this:

>>> me_classifier = MaxentClassifier.train(train_feats,
algorithm='gis', trace=0, max_iter=10, min_lldelta=0.5)
>>> accuracy(me_classifier, test_feats)
0.722

The gis algorithm is a bit faster and generally more accurate than the default iis algorithm, and can
be allowed to run for up to 10 iterations in a reasonable amount of time. Both iis and gis will be
explained in more detail in the next section.

https://en.wikipedia.org/wiki/Maximum_entropy_classifier
http://www.scipy.org/Installing_SciPy

Tip

If training is taking a long time, you can usually cut it off manually by hitting Ctrl + C. This should stop
the current iteration and still return a classifier based on whatever state the model is in.

How it works...

Like the previous classifiers, MaxentClassifier inherits from ClassifierI, as shown in the
following diagram:

Depending on the algorithm, MaxentClassifier.train() calls one of the training functions in
the nltk.classify.maxent module. The default algorithm is iis, and the function used is
train_maxent_classifier_with_iis(). The other algorithm that's included is gis, which
uses the train_maxent_classifier_with_gis() function. GIS stands for General Iterative
Scaling, while IIS stands for Improved Iterative Scaling. The only difference between these two
algorithms that really matters is that gis is much faster than iis.

If megam is installed and you specify the megam algorithm, then
train_maxent_classifier_with_megam() is used (megam is covered in more detail in the
next section).

Note

Previous versions of NLTK provided additional algorithms if SciPy was installed. These algorithms
have been removed, but many other algorithms can be used in conjunction with scikit-learn,
which we will cover in the next recipe, Training scikit-learn classifiers.

The basic idea behind the maximum entropy model is to build some probability distributions that fit the
observed data and then choose whichever probability distribution has the highest entropy. The gis and
iis algorithms do so by iteratively improving the weights used to classify features. This is where the
max_iter and min_lldelta parameters come into play.

The max_iter variable specifies the maximum number of iterations to go through and update the
weights. More iterations will generally improve accuracy, but only up to a point. Eventually, the changes
from one iteration to the next will hit a plateau and further iterations are useless.

The min_lldelta variable specifies the minimum change in the log likelihood required to continue
iteratively improving the weights. Before beginning training iterations, an instance of
nltk.classify.util.CutoffChecker is created. When its check() method is called, it uses
functions such as nltk.classify.util.log_likelihood() to decide whether the cutoff
limits have been reached. The log likelihood is the log (using math.log()) of the average label
probability of the training data (which is the log of the average likelihood of a label). As the log
likelihood increases, the model improves. But it too will reach a plateau where further increases are so
small that there is no point in continuing. Specifying the min_lldelta variable allows you to control
how much each iteration must increase the log likelihood before stopping the iterations.

There's more...

Like the NaiveBayesClassifier class, you can see the most informative features by calling the
show_most_informative_features() method:

>>> me_classifier.show_most_informative_features(n=4)
-0.740 worst==True and label is 'pos'

0.740 worst==True and label is 'neg'

0.715 bad==True and label is 'neg'

-0.715 bad==True and label is 'pos'

The numbers shown are the weights for each feature. This tells us that the word worst is negatively
weighted towards the pos label, and positively weighted towards the neg label. In other words, if the
word worst is found in the feature set, then there's a strong possibility that the text should be classified
neg.

Megam algorithm

If you have installed the megam package, then you can use the megam algorithm. It's faster than the
included algorithms and much more accurate, but it can also be difficult to install. Installation
instructions and information can be found at the following link:

http://www.umiacs.umd.edu/~hal/megam/

The nltk.classify.megam.config_megam() function can be used to specify where the
megam executable is found. Or, if megam can be found in the standard executable paths, NLTK will
configure it automatically:

>>> me_classifier = MaxentClassifier.train(train_feats,
algorithm='megam', trace=0, max_iter=10)
[Found megam: /usr/local/bin/megam]
>>> accuracy(me_classifier, test_feats)
0.86799999999999999

See also

The Bag of words feature extraction and the Training a Naive Bayes classifier recipes in this chapter
show how to construct the training and testing features from the movie_reviews corpus. The next
recipe shows how to train even more accurate classifiers with scikit-learn. After that, we will
cover how and why to evaluate a classifier using precision and recall instead of accuracy, in the
Measuring precision and recall of a classifier recipe.

http://www.umiacs.umd.edu/~hal/megam/

Training scikit-learn classifiers
Scikit-learn is one of the best machine learning libraries available in any programming language. It
contains all sorts of machine learning algorithms for many different purposes, but they all follow the
same fit/predict design pattern:

• Fit the model to the data
• Use the model to make predictions

We won't be accessing the scikit-learn models directly in this recipe. Instead, we'll be using
NLTK's SklearnClassifier class, which is a wrapper class around a scikit-learn model to
make it conform to NLTK's ClassifierI interface. This means that the SklearnClassifier
class can be trained and used much like the classifiers we've used in the previous recipes in this chapter.

Note

I may use the terms scikit-learn and sklearn interchangeably in this recipe.

Getting ready

To use the SklearnClassifier class, you must have scikit-learn installed. Instructions are
available online at http://scikit-learn.org/stable/install.html. If you have all the dependencies installed,
such as NumPy and SciPy, you should be able to install scikit-learn with pip:

$ pip install scikit-learn

To test if everything is installed correctly, try to import the SklearnClassifier class:

>>> from nltk.classify import scikitlearn

If the import fails, then you are still missing scikit-learn and its dependencies.

How to do it...

Training an SklearnClassifier class has a slightly different series of steps than classifiers covered
in the previous recipes of this chapter:

1. Create training features (covered in the previous recipes).
2. Choose and import an sklearn algorithm.
3. Construct an SklearnClassifier class with the chosen algorithm.
4. Train the SklearnClassifier class with your training features.

The main difference with NLTK classifiers is that steps 3 and 4 are usually combined. Let's put this into
practice using the MultinomialNB classifier from sklearn. Refer to the earlier recipe, Training a
Naive Bayes classifier, for details on constructing train_feats and test_feats:

http://scikit-learn.org/stable/install.html

>>> from nltk.classify.scikitlearn import SklearnClassifier
>>> from sklearn.naive_bayes import MultinomialNB
>>> sk_classifier = SklearnClassifier(MultinomialNB())
>>> sk_classifier.train(train_feats)
<SklearnClassifier(MultinomialNB(alpha=1.0, class_prior=None,
fit_prior=True))>

Now that we have a trained classifier, we can evaluate the accuracy:

>>> accuracy(sk_classifier, test_feats)
0.83

How it works...

The SklearnClassifier class is a small wrapper class whose main job is to convert NLTK feature
dictionaries into sklearn compatible feature vectors. Here's the complete class code, minus all
comments, docstrings, and most imports:

from sklearn.feature_extraction import DictVectorizer
from sklearn.preprocessing import LabelEncoder

class SklearnClassifier(ClassifierI):
def __init__(self, estimator, dtype=float, sparse=True):

self._clf = estimator
self._encoder = LabelEncoder()
self._vectorizer = DictVectorizer(dtype=dtype, sparse=sparse)

def batch_classify(self, featuresets):
X = self._vectorizer.transform(featuresets)
classes = self._encoder.classes_
return [classes[i] for i in self._clf.predict(X)]

def batch_prob_classify(self, featuresets):
X = self._vectorizer.transform(featuresets)
y_proba_list = self._clf.predict_proba(X)
return [self._make_probdist(y_proba) for y_proba in

y_proba_list]

def labels(self):
return list(self._encoder.classes_)

def train(self, labeled_featuresets):
X, y = list(compat.izip(*labeled_featuresets))
X = self._vectorizer.fit_transform(X)
y = self._encoder.fit_transform(y)
self._clf.fit(X, y)
return self

def _make_probdist(self, y_proba):
classes = self._encoder.classes_
return DictionaryProbDist(dict((classes[i], p) for i, p in

enumerate(y_proba)))

The class is initialized with an estimator, which is the algorithm we pass in, such as MultinomialNB.
It then creates a LabelEncoder and DictVectorizer object. The LabelEncoder object
transforms label strings to numbers. For example, the pos class may be encoded as 1, and the neg class
may be encoded as 0. The DictVectorizer object is for transforming the NLTK feature dictionaries
into sklearn compatible feature vectors.

In the train() method, the labeled feature sets are first encoded and transformed using the
LabelEncoder and DictVectorizer objects. Then, the model we gave as an estimator, such as
MultinomialNB, is fit to the data. Because the sk_classifier class is created before it is trained,
you might forget to train it before you try to do any classification. Luckily, this will produce an
exception with the message 'DictVectorizer' object has no attribute
'vocabulary_'. Since Python dictionaries are unordered (unlike vectors), the DictVectorizer
object must maintain a vocabulary in order to know where in the vector a feature value belongs. This
ensures that new feature dictionaries are vectorized in a manner consistent with the training features.

To classify a feature set, it is transformed to a vector and then passed to the trained model's
predict() method. This is done in the batch_classify() method.

There's more...

The scikit-learn model contains many different algorithms for classification, and this recipe
covers only a few. But not all the classification algorithms are compatible with the
SklearnClassifier class, because it uses sparse vectors. Sparse vectors are more efficient because
they only store the data they need, using a kind of data compression. However, some algorithms, such as
sklearn's DecisionTreeClassifier, require dense vectors, which store every entry in the vector,
even if it has no value. If you try a different algorithm with the SklearnClassifier class and get
an exception, this is probably why.

Comparing Naive Bayes algorithms

As you saw earlier, the MultinomialNB algorithm got an accuracy of 83%. This is much higher than
the 72.8% accuracy we got from NLTK's NaiveBayesClassifier class. The big difference
between these two algorithms is that MultinomialNB can work with discrete feature values, such as
word frequencies, whereas NaiveBayesClassifier class assumes a small set of feature values,
such as strings or Booleans. There is another sklearn Naive Bayes algorithm, BernoulliNB, which
can also work with discrete values by binarizing those values, so that the final values are 1 or 0. Our
features are actually already binarized, because the feature values are True or False:

>>> from sklearn.naive_bayes import BernoulliNB
>>> sk_classifier = SklearnClassifier(BernoulliNB())

>>> sk_classifier.train(train_feats)
<SklearnClassifier(BernoulliNB(alpha=1.0, binarize=0.0,
class_prior=None, fit_prior=True))>
>>> accuracy(sk_classifier, test_feats)
0.812

Clearly, the sklearn algorithm performs better than NLTK's Naive Bayes implementation. The sklearn
classifiers also have a much smaller memory footprint, and will produce much smaller pickle files on
disk. Their classification speed is often slightly slower than the NaiveBayesClassifier class, but
I think the accuracy and memory gains are quite worth it.

Training with logistic regression

Earlier in this chapter, we covered the maximum entropy classifier. This algorithm is also known as
logistic regression, and scikit-learn provides a corresponding implementation.

>>> from sklearn.linear_model import LogisticRegression
>>> sk_classifier = SklearnClassifier(LogisticRegression())
<SklearnClassifier(LogisticRegression(C=1.0, class_weight=None,
dual=False, fit_intercept=True,

intercept_scaling=1, penalty='l2', random_state=None,
tol=0.0001))>
>>> sk_classifier.train(train_feats)
>>> accuracy(sk_classifier, test_feats)
0.892

Again, we see that the sklearn algorithm has better performance than NLTK's MaxentClassifier,
which only had 72.2% accuracy. The logistic regression algorithm also has a much faster training time
than the IIS or GIS algorithms, even when those algorithms have a limited number of iterations. This
can be explained by sklearn's focus on optimized numeric processing using NumPy.

Training with LinearSVC

A third family of algorithms that NLTK does not support directly is Support Vector Machines, or
SVM. These algorithms have been shown to be effective at learning on high-dimensional data, such as
text classification, where every word feature counts as a dimension. You can learn more about support
vector machines at https://en.wikipedia.org/wiki/Support_vector_machine. Here are some examples of
using the sklearn implementations:

>>> from sklearn.svm import SVC
>>> sk_classifier = SklearnClassifier(svm.SVC())
>>> sk_classifier.train(train_feats)
<SklearnClassifier(SVC(C=1.0, cache_size=200, class_weight=None,
coef0=0.0, degree=3, gamma=0.0,

kernel='rbf', max_iter=-1, probability=False, random_state=None,
shrinking=True, tol=0.001, verbose=False))>

>>> accuracy(sk_classifier, test_feats)
0.69

https://en.wikipedia.org/wiki/Support_vector_machine

>>> from sklearn.svm import LinearSVC
>>> sk_classifier = SklearnClassifier(LinearSVC())
>>> sk_classifier.train(train_feats)
<SklearnClassifier(LinearSVC(C=1.0, class_weight=None, dual=True,
fit_intercept=True,

intercept_scaling=1, loss='l2', multi_class='ovr',
penalty='l2',

random_state=None, tol=0.0001, verbose=0))>
>>> accuracy(sk_classifier, test_feats)
0.864

>>> from sklearn.svm import NuSVC
>>> sk_classifier = SklearnClassifier(svm.NuSVC())
>>> sk_classifier.train(train_feats)
/Users/jacob/py3env/lib/python3.3/site-packages/scipy/sparse/
compressed.py:119: UserWarning: indptr array has non-integer dtype
(float64)

% self.indptr.dtype.name)
<SklearnClassifier(NuSVC(cache_size=200, coef0=0.0, degree=3,
gamma=0.0, kernel='rbf',

max_iter=-1, nu=0.5, probability=False, random_state=None,
shrinking=True, tol=0.001, verbose=False))>

>>> accuracy(sk_classifier, test_feats)
0.882

You can see that in this case, NuSVC is the most accurate SVM classifier, just above LinearSVC,
while SVC is much less accurate than either. These accuracy differences are a result of the different
algorithm implementations and the default parameters. You can learn more about these specific
implementations at the following link:

http://scikit-learn.org/stable/modules/svm.html

See also

If you are interested in exploring more aspects of machine learning with Python, the scikit-learn
documentation is a great place to start:

http://scikit-learn.org/stable/documentation.html

Earlier in this chapter, we covered the Training a Naive Bayes classifier and Training a maximum
entropy classifier recipes. We will use the LinearSVC and NuSVC classifiers again in the following
recipes.

http://scikit-learn.org/stable/modules/svm.html
http://scikit-learn.org/stable/documentation.html

Measuring precision and recall of a classifier
In addition to accuracy, there are a number of other metrics used to evaluate classifiers. Two of the most
common are precision and recall. To understand these two metrics, we must first understand false
positives and false negatives. False positives happen when a classifier classifies a feature set with a
label it shouldn't have gotten. False negatives happen when a classifier doesn't assign a label to a feature
set that should have it. In a binary classifier, these errors happen at the same time.

Here's an example: the classifier classifies a movie review as pos when it should have been neg. This
counts as a false positive for the pos label, and a false negative for the neg label. If the classifier had
correctly guessed neg, then it would count as a true positive for the neg label, and a true negative for
the pos label.

How does this apply to precision and recall? Precision is the lack of false positives, and recall is the lack
of false negatives. As you will see, these two metrics are often in competition: the more precise a
classifier is, the lower the recall, and vice versa.

How to do it...

Let's calculate the precision and recall of the NaiveBayesClassifier class we trained in the
Training a Naive Bayes classifier recipe. The precision_recall() function in
classification.py looks like this:

import collections
from nltk import metrics

def precision_recall(classifier, testfeats):
refsets = collections.defaultdict(set)
testsets = collections.defaultdict(set)

for i, (feats, label) in enumerate(testfeats):
refsets[label].add(i)
observed = classifier.classify(feats)
testsets[observed].add(i)

precisions = {}
recalls = {}

for label in classifier.labels():
precisions[label] = metrics.precision(refsets[label],

testsets[label])
recalls[label] = metrics.recall(refsets[label], testsets[label])

return precisions, recalls

This function takes two arguments:

• The trained classifier
• Labeled test features, also known as a gold standard

These are the same arguments you pass to accuracy(). The precision_recall() function
returns two dictionaries; the first holds the precision for each label, and the second holds the recall for
each label. Here's an example usage with nb_classifier and test_feats we created in the
Training a Naive Bayes classifier recipe earlier:

>>> from classification import precision_recall
>>> nb_precisions, nb_recalls = precision_recall(nb_classifier,
test_feats)
>>> nb_precisions['pos']
0.6413612565445026
>>> nb_precisions['neg']
0.9576271186440678
>>> nb_recalls['pos']
0.98
>>> nb_recalls['neg']
0.452

This tells us that while the NaiveBayesClassifier class can correctly identify most of the pos
feature sets (high recall), it also classifies many of the neg feature sets as pos (low precision). This
behavior contributes to high precision but low recall for the neg label—as the neg label isn't given
often (low recall), when it is, it's very likely to be correct (high precision). The conclusion could be that
there are certain common words that are biased towards the pos label, but occur frequently enough in
the neg feature sets to cause mis-classifications. To correct this behavior, we will use only the most
informative words in the next recipe, Calculating high information words.

How it works...

To calculate precision and recall, we must build two sets for each label. The first set is known as the
reference set, and contains all the correct values. The second set is called the test set, and contains the
values guessed by the classifier. These two sets are compared to calculate the precision or recall for each
label.

Precision is defined as the size of the intersection of both sets divided by the size of the test set. In other
words, the percentage of the test set that was guessed correctly. In Python, the code is
float(len(reference.intersection(test))) / len(test).

Recall is the size of the intersection of both sets divided by the size of the reference set, or the
percentage of the reference set that was guessed correctly. The Python code is
float(len(reference.intersection(test))) / len(reference).

The precision_recall() function in classification.py iterates over the labeled test
features and classifies each one. We store the numeric index of the feature set (starting with 0) in the
reference set for the known training label, and also store the index in the test set for the guessed label. If

the classifier guesses pos but the training label is neg, then the index is stored in the reference set for
neg and the test set for pos.

Note

We use the numeric index because the feature sets aren't hashable, and we need a unique value for each
feature set.

The nltk.metrics package contains functions for calculating both precision and recall, so all we
really have to do is build the sets and then call the appropriate function.

There's more...

Let's try it with the MaxentClassifier class of GIS, which we trained in the Training a maximum
entropy classifier recipe:

>>> me_precisions, me_recalls = precision_recall(me_classifier,
test_feats)
>>> me_precisions['pos']
0.6456692913385826
>>> me_precisions['neg']
0.9663865546218487
>>> me_recalls['pos']
0.984
>>> me_recalls['neg']
0.46

This classifier is just as biased as the NaiveBayesClassifier class. Chances are it would be less
biased if allowed to train for more iterations and/or approach a smaller log likelihood change. Now, let's
try the SklearnClassifier class of NuSVC from the previous recipe, Training scikit-learn
classifiers:

>>> sk_precisions, sk_recalls = precision_recall(sk_classifier,
test_feats)
>>> sk_precisions['pos']
0.9063829787234042
>>> sk_precisions['neg']
0.8603773584905661
>>> sk_recalls['pos']
0.852
>>> sk_recalls['neg']
0.912

In this case, the label bias is much less significant, and the reason is that the SklearnClassifier
class of NuSVC weighs its features according to its own internal model. This is also true for logistic
regression and many of the other scikit-learn algorithms. Words that are more significant are

those that occur primarily in a single label, and will get higher weights in the model. Words that are
common to both labels will get lower weights, as they are less significant.

F-measure

The F-measure is defined as the weighted harmonic mean of precision and recall. If p is the precision,
and r is the recall, the formula is:

1/(alpha/p + (1-alpha)/r)

Here, alpha is a weighing constant that defaults to 0.5. You can use
nltk.metrics.f_measure() to get the F-measure. It takes the same arguments as for the
precision() and recall() functions: a reference set and a test set. It's often used instead of
accuracy to measure a classifier, because if either precision or recall are very low, it will be reflected in
the F-measure, but not necessarily in the accuracy. However, I find precision and recall to be much more
useful metrics by themselves, as the F-measure can obscure the kinds of imbalances we saw with the
NaiveBayesClassifier class.

See also

In the Training a Naive Bayes classifier recipe, we collected training and testing feature sets and trained
the NaiveBayesClassifier class. The MaxentClassifier class was trained in the Training a
maximum entropy classifier recipe, and the SklearnClassifier class was trained in the Training
scikit-learn classifiers recipe. In the next recipe, we will explore eliminating the less significant words,
and use only the high information words to create our feature sets.

Calculating high information words
A high information word is a word that is strongly biased towards a single classification label. These
are the kinds of words we saw when we called the show_most_informative_features()
method on both the NaiveBayesClassifier class and the MaxentClassifier class.
Somewhat surprisingly, the top words are different for both classifiers. This discrepancy is due to how
each classifier calculates the significance of each feature, and it's actually beneficial to have these
different methods as they can be combined to improve accuracy, as we will see in the next recipe,
Combining classifiers with voting.

The low information words are words that are common to all labels. It may be counter-intuitive, but
eliminating these words from the training data can actually improve accuracy, precision, and recall. The
reason this works is that using only high information words reduces the noise and confusion of a
classifier's internal model. If all the words/features are highly biased one way or the other, it's much
easier for the classifier to make a correct guess.

How to do it...

First, we need to calculate the high information words in the movie_review corpus. We can do this
using the high_information_words() function in featx.py:

from nltk.metrics import BigramAssocMeasures
from nltk.probability import FreqDist, ConditionalFreqDist

def high_information_words(labelled_words,
score_fn=BigramAssocMeasures.chi_sq, min_score=5):

word_fd = FreqDist()
label_word_fd = ConditionalFreqDist()

for label, words in labelled_words:
for word in words:

word_fd[word] += 1
label_word_fd[label][word] += 1

n_xx = label_word_fd.N()
high_info_words = set()

for label in label_word_fd.conditions():
n_xi = label_word_fd[label].N()
word_scores = collections.defaultdict(int)

for word, n_ii in label_word_fd[label].items():
n_ix = word_fd[word]
score = score_fn(n_ii, (n_ix, n_xi), n_xx)
word_scores[word] = score

bestwords = [word for word, score in word_scores.items() if
score >= min_score]

high_info_words |= set(bestwords)
return high_info_words

It takes one argument from a list of two tuples of the form [(label, words)] where label is the
classification label, and words is a list of words that occur under that label. It returns a set of the high
information words.

Once we have the high information words, we use the feature detector function
bag_of_words_in_set(), also found in featx.py, which will let us filter out all low
information words.

def bag_of_words_in_set(words, goodwords):
return bag_of_words(set(words) & set(goodwords))

With this new feature detector, we can call label_feats_from_corpus() and get a new
train_feats and test_feats function using split_label_feats(). These two functions
were covered in the Training a Naive Bayes classifier recipe earlier in this chapter.

>>> from featx import high_information_words, bag_of_words_in_set
>>> labels = movie_reviews.categories()
>>> labeled_words = [(l, movie_reviews.words(categories=[l])) for l
in labels]
>>> high_info_words = set(high_information_words(labeled_words))
>>> feat_det = lambda words: bag_of_words_in_set(words,
high_info_words)
>>> lfeats = label_feats_from_corpus(movie_reviews,
feature_detector=feat_det)
>>> train_feats, test_feats = split_label_feats(lfeats)

Now that we have new training and testing feature sets, let's train and evaluate a
NaiveBayesClassifier class:

>>> nb_classifier = NaiveBayesClassifier.train(train_feats)
>>> accuracy(nb_classifier, test_feats)
0.91
>>> nb_precisions, nb_recalls = precision_recall(nb_classifier,
test_feats)
>>> nb_precisions['pos']
0.8988326848249028
>>> nb_precisions['neg']
0.9218106995884774
>>> nb_recalls['pos']
0.924
>>> nb_recalls['neg']
0.896

While the neg precision and pos recall have both decreased somewhat, neg recall and pos precision
have increased drastically. Accuracy is now a little higher than the MaxentClassifier class.

How it works...

The high_information_words() function starts by counting the frequency of every word, as
well as the conditional frequency for each word within each label. This is why we need the words to be
labeled, so we know how often each word occurs for each label.

Once we have the FreqDist and ConditionalFreqDist variables, we can score each word on a
per-label basis.

The default score_fn is nltk.metrics.BigramAssocMeasures.chi_sq(), which
calculates the chi-square score for each word using the following parameters:

• n_ii: This is the frequency of the word for the label
• n_ix: This is the total frequency of the word across all labels
• n_xi: This is the total frequency of all words that occurred for the label
• n_xx: This is the total frequency for all words in all labels

The formula is n_xx * nltk.metrics.BigramAssocMeasures.phi_sq. The phi_sq()
function is the squared Pearson correlation coefficient, which you can read more about at
https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient.

The simplest way to think about these numbers is that the closer n_ii is to n_ix, the higher the score.
Or, the more often a word occurs in a label, relative to its overall occurrence, the higher the score.

Once we have the scores for each word in each label, we can filter out all words whose score is below
the min_score threshold. We keep the words that meet or exceed the threshold and return all high
scoring words in each label.

Tip

It is recommended to experiment with different values of min_score to see what happens. In some
cases, less words may improve the metrics even more, while in other cases more words is better.

There's more...

There are a number of other scoring functions available in the BigramAssocMeasures class, such as
phi_sq() for phi-square, pmi() for pointwise mutual information, and jaccard() for using the
Jaccard index. They all take the same arguments, and so can be used interchangeably with chi_sq().
These functions are all documented in http://www.nltk.org/_modules/nltk/metrics/association.html with
links to the source code of the formulas.

The MaxentClassifier class with high information words

Let's evaluate the MaxentClassifier class using the high information words feature sets:

https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
http://www.nltk.org/_modules/nltk/metrics/association.html

>>> me_classifier = MaxentClassifier.train(train_feats,
algorithm='gis', trace=0, max_iter=10, min_lldelta=0.5)
>>> accuracy(me_classifier, test_feats)
0.912
>>> me_precisions, me_recalls = precision_recall(me_classifier,
test_feats)
>>> me_precisions['pos']
0.8992248062015504
>>> me_precisions['neg']
0.9256198347107438
>>> me_recalls['pos']
0.928
>>> me_recalls['neg']
0.896

This also led to significant improvements for MaxentClassifier. But as we'll see, not all
algorithms will benefit from high information word filtering, and in some cases, accuracy will decrease.

The DecisionTreeClassifier class with high information words

Now, let's evaluate the DecisionTreeClassifier class:

>>> dt_classifier = DecisionTreeClassifier.train(train_feats,
binary=True, depth_cutoff=20, support_cutoff=20, entropy_cutoff=0.01)
>>> accuracy(dt_classifier, test_feats)
0.68600000000000005
>>> dt_precisions, dt_recalls = precision_recall(dt_classifier,
test_feats)
>>> dt_precisions['pos']
0.6741573033707865
>>> dt_precisions['neg']
0.69957081545064381
>>> dt_recalls['pos']
0.71999999999999997
>>> dt_recalls['neg']
0.65200000000000002

The accuracy is about the same, even with a larger depth_cutoff, and smaller support_cutoff
and entropy_cutoff. These results lead me to believe that the DecisionTreeClassifier
class was already putting the high information features at the top of the tree, and it will only improve if
we increase the depth significantly. But that could make training time prohibitively long and risk over-
fitting the tree.

The SklearnClassifier class with high information words

Let's evaluate the LinearSVC SklearnClassifier with the same train_feats function:

>>> sk_classifier = SklearnClassifier(LinearSVC()).train(train_feats)
>>> accuracy(sk_classifier, test_feats)
0.86
>>> sk_precisions, sk_recalls = precision_recall(sk_classifier,
test_feats)
>>> sk_precisions['pos']
0.871900826446281
>>> sk_precisions['neg']
0.8488372093023255
>>> sk_recalls['pos']
0.844
>>> sk_recalls['neg']
0.876

Its accuracy before was 86.4%, so we actually got a very slight decrease. In general, support vector
machine and logistic regression-based algorithms will benefit less, or perhaps even be harmed, by pre-
filtering the training features. This is because these algorithms are able to learn feature weights that
correspond to the significance of each feature, whereas Naive Bayes algorithms do not.

See also

We started this chapter with the Bag of words feature extraction recipe. The
NaiveBayesClassifier class was originally trained in the Training a Naive Bayes classifier
recipe, and the MaxentClassifier class was trained in the Training a maximum entropy classifier
recipe. Details on precision and recall can be found in the Measuring precision and recall of a classifier
recipe. We will be using only high information words in the next two recipes, where we combine
classifiers.

Combining classifiers with voting
One way to improve classification performance is to combine classifiers. The simplest way to combine
multiple classifiers is to use voting, and choose whichever label gets the most votes. For this style of
voting, it's best to have an odd number of classifiers so that there are no ties. This means combining at
least three classifiers together. The individual classifiers should also use different algorithms; the idea is
that multiple algorithms are better than one, and the combination of many can compensate for individual
bias. However, combining a poorly performing classifier with better performing classifiers is generally
not a good idea, because the poor performance of one classifier can bring the total accuracy down.

Getting ready

As we need to have at least three trained classifiers to combine, we are going to use a
NaiveBayesClassifier class, a DecisionTreeClassifier class, and a
MaxentClassifier class, all trained on the highest information words of the movie_reviews
corpus. These were all trained in the previous recipe, so we will combine these three classifiers with
voting.

How to do it...

In the classification.py module, there is a MaxVoteClassifier class:

import itertools
from nltk.classify import ClassifierI
from nltk.probability import FreqDist

class MaxVoteClassifier(ClassifierI):
def __init__(self, *classifiers):

self._classifiers = classifiers
self._labels = sorted(set(itertools.chain(*[c.labels() for c in

classifiers])))

def labels(self):
return self._labels

def classify(self, feats):
counts = FreqDist()

for classifier in self._classifiers:
counts[classifier.classify(feats)] += 1

return counts.max()

To create it, you pass in a list of classifiers that you want to combine. Once created, it works just like
any other classifier. Though it may take about three times longer to classify, it should generally be at
least as accurate as any individual classifier.

>>> from classification import MaxVoteClassifier
>>> mv_classifier = MaxVoteClassifier(nb_classifier, dt_classifier,
me_classifier, sk_classifier)
>>> mv_classifier.labels()
['neg', 'pos']
>>> accuracy(mv_classifier, test_feats)
0.894
>>> mv_precisions, mv_recalls = precision_recall(mv_classifier,
test_feats)
>>> mv_precisions['pos']
0.9156118143459916
>>> mv_precisions['neg']
0.8745247148288974
>>> mv_recalls['pos']
0.868
>>> mv_recalls['neg']
0.92

These metrics are about on-par with the best sklearn classifiers, as well as the MaxentClassifier
and NaiveBayesClassifier classes with high information features. Some numbers are slightly
better, some worse. It's likely that a significant improvement to the DecisionTreeClassifier
class could produce better numbers.

How it works...

The MaxVoteClassifier class extends the nltk.classify.ClassifierI interface, which
requires the implementation of at least two methods:

• The labels() method must return a list of possible labels. This will be the union of the
labels() method of each classifier passed in at initialization.

• The classify() method takes a single feature set and returns a label. The
MaxVoteClassifier class iterates over its classifiers and calls classify() on each of
them, recording their label as a vote in a FreqDist variable. The label with the most votes is
returned using FreqDist.max().

The following is the inheritance diagram:

While it doesn't check for this, the MaxVoteClassifier class assumes that all the classifiers passed
in at initialization use the same labels. Breaking this assumption may lead to odd behavior.

See also

In the previous recipe, we trained a NaiveBayesClassifier class, a MaxentClassifier class,
and a DecisionTreeClassifier class using only the highest information words. In the next
recipe, we will use the reuters corpus and combine many binary classifiers in order to create a multi-
label classifier.

Classifying with multiple binary classifiers
So far we have focused on binary classifiers, which classify with one of two possible labels. The same
techniques for training a binary classifier can also be used to create a multi-class classifier, which is a
classifier that can classify with one of the many possible labels. But there are also cases where you need
to be able to classify with multiple labels. A classifier that can return more than one label is a multi-
label classifier.

A common technique for creating a multi-label classifier is to combine many binary classifiers, one for
each label. You train each binary classifier so that it either returns a known label or returns something
else to signal that the label does not apply. Then, you can run all the binary classifiers on your feature set
to collect all the applicable labels.

Getting ready

The reuters corpus contains multi-labeled text that we can use for training and evaluation:

>>> from nltk.corpus import reuters
>>> len(reuters.categories())
90

We will train one binary classifier per label, which means we will end up with 90 binary classifiers.

How to do it...

First, we should calculate the high information words in the reuters corpus. This is done with the
reuters_high_info_words() function in featx.py:

from nltk.corpus import reuters

def reuters_high_info_words(score_fn=BigramAssocMeasures.chi_sq):
labeled_words = []

for label in reuters.categories():
labeled_words.append((label, reuters.words(categories=[label])))

return high_information_words(labeled_words, score_fn=score_fn)

Then, we need to get training and test feature sets based on those high information words. This is done
with the reuters_train_test_feats() function, also found in featx.py. It defaults to using
bag_of_words() as its feature_detector, but we will be overriding this using
bag_of_words_in_set() to use only the high information words:

def reuters_train_test_feats(feature_detector=bag_of_words):
train_feats = []
test_feats = []

for fileid in reuters.fileids():
if fileid.startswith('training'):

featlist = train_feats
else: # fileid.startswith('test')

featlist = test_feats
feats = feature_detector(reuters.words(fileid))
labels = reuters.categories(fileid)
featlist.append((feats, labels))

return train_feats, test_feats

We can use these two functions to get a list of multi-labeled training and testing feature sets.

>>> from featx import reuters_high_info_words,
reuters_train_test_feats
>>> rwords = reuters_high_info_words()
>>> featdet = lambda words: bag_of_words_in_set(words, rwords)
>>> multi_train_feats, multi_test_feats =
reuters_train_test_feats(featdet)

The multi_train_feats and multi_test_feats functions are multi-labeled feature sets. That
means they have a list of labels instead of a single label, and they look like [(featureset,
[label])], as each feature set can have one or more labels. With this training data, we can train
multiple binary classifiers. The train_binary_classifiers() function in
classification.py takes a training function, a list of multi-label feature sets, and a set of possible
labels to return a dict of label : binary classifier:

def train_binary_classifiers(trainf, labelled_feats, labelset):
pos_feats = collections.defaultdict(list)
neg_feats = collections.defaultdict(list)
classifiers = {}

for feat, labels in labelled_feats:
for label in labels:

pos_feats[label].append(feat)

for label in labelset - set(labels):
neg_feats[label].append(feat)

for label in labelset:
postrain = [(feat, label) for feat in pos_feats[label]]
negtrain = [(feat, '!%s' % label) for feat in neg_feats[label]]
classifiers[label] = trainf(postrain + negtrain)

return classifiers

To use this function, we need to provide a training function that takes a single argument, which is the
training data. This will be a simple lambda wrapper around a sklearn logistic regression
SklearnClassifier class.

>>> from classification import train_binary_classifiers
>>> trainf = lambda train_feats:
SklearnClassifier(LogisticRegression()).train(train_feats)
>>> labelset = set(reuters.categories())
>>> classifiers = train_binary_classifiers(trainf,
multi_train_feats, labelset)
>>> len(classifiers)
90

Also in classification.py, we can define a MultiBinaryClassifier class, which takes a
list of labeled classifiers of the form [(label, classifier)], where the classifier is
assumed to be a binary classifier that either returns the label or something else if the label doesn't
apply.

from nltk.classify import MultiClassifierI

class MultiBinaryClassifier(MultiClassifierI):
def __init__(self, *label_classifiers):

self._label_classifiers = dict(label_classifiers)
self._labels = sorted(self._label_classifiers.keys())

def labels(self):
return self._labels

def classify(self, feats):
lbls = set()

for label, classifier in self._label_classifiers.items():
if classifier.classify(feats) == label:

lbls.add(label)

return lbls

Now we can construct this class using the binary classifiers we just created:

>>> from classification import MultiBinaryClassifier
>>> multi_classifier = MultiBinaryClassifier(*classifiers.items())

To evaluate this classifier, we can use precision and recall, but not accuracy. That's because the accuracy
function assumes single values, and doesn't take into account partial matches. For example, if the
multi_classifier returns three labels for a feature set, and two of them are correct but the third is
not, then the accuracy() function would mark that as incorrect. So, instead of using accuracy, we

will use masi distance, which measures the partial overlap between two sets using the formula from this
paper:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.113.3752

If the masi distance is close to 0, the better the match. But if the masi distance is close to 1, there is little
or no overlap. A lower average masi distance, therefore, means more accurate partial matches. The
multi_metrics() function in classification.py calculates the precision and recall of each
label, along with the average masi distance.

import collections
from nltk import metrics

def multi_metrics(multi_classifier, test_feats):
mds = []
refsets = collections.defaultdict(set)
testsets = collections.defaultdict(set)

for i, (feat, labels) in enumerate(test_feats):
for label in labels:

refsets[label].add(i)

guessed = multi_classifier.classify(feat)

for label in guessed:
testsets[label].add(i)

mds.append(metrics.masi_distance(set(labels), guessed))

avg_md = sum(mds) / float(len(mds))
precisions = {}
recalls = {}

for label in multi_classifier.labels():
precisions[label] = metrics.precision(refsets[label],

testsets[label])
recalls[label] = metrics.recall(refsets[label], testsets[label])

return precisions, recalls, avg_md

Using this with the multi_classifier function we just created gives us the following results:

>>> from classification import multi_metrics
>>> multi_precisions, multi_recalls, avg_md =
multi_metrics(multi_classifier, multi_test_feats)
>>> avg_md
0.23310715863026216

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.113.3752

So our average masi distance isn't too bad. Lower is better, which means our multi-label classifier is
only partially accurate. Let's take a look at a few precisions and recalls:

>>> multi_precisions['soybean']
0.7857142857142857
>>> multi_recalls['soybean']
0.3333333333333333
>>> len(reuters.fileids(categories=['soybean']))
111

>>> multi_precisions['sunseed']
1.0
>>> multi_recalls['sunseed']
2.0
>>> len(reuters.fileids(categories=['crude']))
16

In general, the labels that have more feature sets will have higher precision and recall, and those with
less feature sets will have lower performance. Many of the categories have 0 values, because when there
are not a lot of feature sets for a classifier to learn from, you can't expect it to perform well.

How it works...

The reuters_high_info_words() function is fairly simple; it constructs a list of [(label,
words)] for each category of the reuters corpus, then passes it into the
high_information_words() function to return a list of the most informative words in the
reuters corpus.

With the resulting set of words, we create a feature detector function using the
bag_of_words_in_set() function. This is then passed into the
reuters_train_test_feats() function, which returns two lists, the first containing [(feats,
labels)] for all the training files, and the second list has the same for all the test files.

Next, we train a binary classifier for each label using the train_binary_classifiers()
function. This function constructs two lists for each label, one containing positive training feature sets
and the other containing negative training feature sets. The positive feature sets are those feature sets
that classify for the label. The negative feature sets for a label comes from the positive feature sets for
all other labels. For example, a feature set that is positive for zinc and sunseed is a negative example
for all the other 88 labels. Once we have positive and negative feature sets for each label, we can train a
binary classifier for each label using the given training function.

With the resulting dictionary of binary classifiers, we create an instance of the
MultiBinaryClassifier class. This class extends the
nltk.classify.MultiClassifierI interface, which requires at least two functions:

• The labels() function must return a list of possible labels.

• The classify() function takes a single feature set and returns a set of labels. To create this
set, we iterate over the binary classifiers, and any time a call to the classify() function
returns its label, we add it to the set. If it returns something else, we continue.

The following is the inheritance diagram:

Finally, we evaluate the multi-label classifier using the multi_metrics() function. It is similar to
the precision_recall() function from the Measuring precision and recall of a classifier recipe,
but in this case, we know that the classifier is an instance of the MultiClassifierI interface and it
can therefore return multiple labels. It also keeps track of the masi distance for each set of classification
labels using the nltk.metrics.masi_distance() function. The multi_metrics() function
returns three values:

• A dictionary of precisions for each label
• A dictionary of recalls for each label
• The average masi distance for each feature set

There's more...

The nature of the reuters corpus introduces the class-imbalance problem. This problem occurs
when some labels have very few feature sets, and other labels have many. The binary classifiers that
have few positive instances to train on, end up with far more negative instances, and are therefore
strongly biased towards the negative label. There's nothing inherently wrong about this, as the bias
reflects the data, but the negative instances can overwhelm the classifier to the point where it's nearly
impossible to get a positive result. There are a number of advanced techniques for overcoming this
problem, but they are out of the scope of this book. The paper available at http://www.ijetae.com/files/
Volume2Issue4/IJETAE_0412_07.pdf provides a good starting reference of techniques to overcome this
problem.

http://www.ijetae.com/files/Volume2Issue4/IJETAE_0412_07.pdf
http://www.ijetae.com/files/Volume2Issue4/IJETAE_0412_07.pdf

See also

The SklearnClassifier class is covered in the Training scikit-learn classifiers recipe in this
chapter. The Measuring precision and recall of a classifier recipe shows how to evaluate a classifier,
while the Calculating high information words recipe describes how to use only the best features.

Training a classifier with NLTK-Trainer
In this recipe, we'll cover the train_classifier.py script from NLTK-Trainer, which lets you
train NLTK classifiers from the command line. NLTK-Trainer was previously introduced at the end of
Chapter 4, Part-of-speech Tagging, and again at the end of Chapter 5, Extracting Chunks.

Note

You can find NLTK-Trainer at https://github.com/japerk/nltk-trainer and the online documentation at
http://nltk-trainer.readthedocs.org/.

How to do it...

Like train_tagger.py and train_chunker.py, the only required argument for
train_classifier.py is the name of a corpus. The corpus must have a categories() method,
because text classification is all about learning to classify categories. Here's an example of running
train_classifier.py on the movie_reviews corpus:

$ python train_classifier.py movie_reviews
loading movie_reviews
2 labels: ['neg', 'pos']
using bag of words feature extraction
2000 training feats, 2000 testing feats
training NaiveBayes classifier
accuracy: 0.967000
neg precision: 1.000000
neg recall: 0.934000
neg f-measure: 0.965874
pos precision: 0.938086
pos recall: 1.000000
pos f-measure: 0.968054
dumping NaiveBayesClassifier to ~/nltk_data/classifiers/
movie_reviews_NaiveBayes.pickle

We can use the --no-pickle argument to skip saving the classifier and the --fraction argument
to limit the training set and evaluate the classifier against a test set. This example replicates what we did
earlier in the Training a Naive Bayes classifier recipe.

$ python train_classifier.py movie_reviews --no-pickle --fraction
0.75
loading movie_reviews
2 labels: ['neg', 'pos']
using bag of words feature extraction
1500 training feats, 500 testing feats
training NaiveBayes classifier
accuracy: 0.726000

https://github.com/japerk/nltk-trainer
http://nltk-trainer.readthedocs.org/

neg precision: 0.952000
neg recall: 0.476000
neg f-measure: 0.634667
pos precision: 0.650667
pos recall: 0.976000
pos f-measure: 0.780800

You can see that not only do we get accuracy, we also get the precision and recall of each class, like we
covered earlier in the recipe, Measuring precision and recall of a classifier.

Note

The PYTHONHASHSEED environment variable has been omitted for clarity. This means that when you
run train_classifier.py, your accuracy, precision, and recall values may vary. To get consistent
values, run train_classifier.py like this:

$ PYTHONHASHSEED=0 python train_classifier.py movie_reviews

How it works...

The train_classifier.py script goes through a series of steps to train a classifier:

1. Loads the categorized corpus.
2. Extracts features.
3. Trains the classifier.

Depending on the arguments used, there may be further steps, such as evaluating the classifier and/or
saving the classifier.

The default feature extraction is a bag of words, which we covered in the first recipe of this chapter, Bag
of words feature extraction. And the default classifier is the NaiveBayesClassifier class, which
we covered earlier in the Training a Naive Bayes classifier recipe. You can choose a different classifier
using the --classifier argument. Here's an example with DecisionTreeClassifier,
replicating the same arguments we used in the Training a decision tree classifier recipe:

$ python train_classifier.py movie_reviews --no-pickle --fraction
0.75 --classifier DecisionTree --trace 0 --entropy_cutoff 0.8
--depth_cutoff 5 --support_cutoff 30 --binary
accuracy: 0.672000
neg precision: 0.683761
neg recall: 0.640000
neg f-measure: 0.661157
pos precision: 0.661654
pos recall: 0.704000
pos f-measure: 0.682171

There's more...

The train_classifier.py script supports many other arguments not shown here, all of which you
can see by running the script with --help. Some additional arguments are presented next along with
examples for other classification algorithms, followed by an introduction to another classification-
related script available in nltk-trainer.

Saving a pickled classifier

Without the --no-pickle argument, train_classifier.py will save a pickled classifier at
~/nltk_data/classifiers/NAME.pickle, where NAME is a combination of the corpus name
and training algorithm. You can specify a custom filename for your classifier using the --filename
argument like this:

$ python train_classifier.py movie_reviews --filename path/to/
classifier.pickle

Using different training instances

By default, train_classifier.py uses individual files as training instances. That means a single
categorized file will be used as one instance. But you can instead use paragraphs or sentences as training
instances. Here's an example using sentences from the movie_reviews corpus:

$ python train_classifier.py movie_reviews --no-pickle --fraction
0.75 --instances sents
loading movie_reviews
2 labels: ['neg', 'pos']
using bag of words feature extraction
50820 training feats, 16938 testing feats
training NaiveBayes classifier
accuracy: 0.638623
neg precision: 0.694942
neg recall: 0.470786
neg f-measure: 0.561313
pos precision: 0.610546
pos recall: 0.800580
pos f-measure: 0.692767

To use paragraphs instead of files or sentences, you can do --instances paras.

The most informative features

In the earlier recipe, Training a Naive Bayes classifier, we covered how to see the most informative
features. This can also be done as an argument in train_classifier.py:

$ python train_classifier.py movie_reviews --no-pickle --fraction
0.75 --show-most-informative 5

loading movie_reviews
2 labels: ['neg', 'pos']
using bag of words feature extraction
1500 training feats, 500 testing feats
training NaiveBayes classifier
accuracy: 0.726000
neg precision: 0.952000
neg recall: 0.476000
neg f-measure: 0.634667
pos precision: 0.650667
pos recall: 0.976000
pos f-measure: 0.780800
5 most informative features

Most Informative Features
finest = True pos : neg = 13.4 : 1.0

astounding = True pos : neg = 11.0 : 1.0
avoids = True pos : neg = 11.0 : 1.0
inject = True neg : pos = 10.3 : 1.0

strongest = True pos : neg = 10.3 : 1.0

The Maxent and LogisticRegression classifiers

In the Training a maximum entropy classifier recipe, we covered the MaxentClassifier class with
the GIS algorithm. Here's how to use train_classifier.py to do this:

$ python train_classifier.py movie_reviews --no-pickle --fraction
0.75 --classifier GIS --max_iter 10 --min_lldelta 0.5
loading movie_reviews
2 labels: ['neg', 'pos']
using bag of words feature extraction
1500 training feats, 500 testing feats
training GIS classifier

==> Training (10 iterations)
accuracy: 0.712000
neg precision: 0.964912
neg recall: 0.440000
neg f-measure: 0.604396
pos precision: 0.637306
pos recall: 0.984000
pos f-measure: 0.773585

If you have scikit-learn installed, then you can use many different sklearn algorithms for
classification. In the Training scikit-learn classifiers recipe, we covered the LogisticRegression
classifier, so here's how to do it with train_classifier.py:

$ python train_classifier.py movie_reviews --no-pickle --fraction
0.75 --classifier sklearn.LogisticRegression
loading movie_reviews
2 labels: ['neg', 'pos']
using bag of words feature extraction
1500 training feats, 500 testing feats
training sklearn.LogisticRegression with {'penalty': 'l2', 'C': 1.0}
using dtype bool
training sklearn.LogisticRegression classifier
accuracy: 0.856000
neg precision: 0.847656
neg recall: 0.868000
neg f-measure: 0.857708
pos precision: 0.864754
pos recall: 0.844000
pos f-measure: 0.854251

SVMs

SVM classifiers were introduced in the Training scikit-learn classifiers recipe, and can also be used with
train_classifier.py. Here's the parameters for LinearSVC:

$ python train_classifier.py movie_reviews --no-pickle --fraction
0.75 --classifier sklearn.LinearSVC
loading movie_reviews
2 labels: ['neg', 'pos']
using bag of words feature extraction
1500 training feats, 500 testing feats
training sklearn.LinearSVC with {'penalty': 'l2', 'loss': 'l2', 'C':
1.0}
using dtype bool
training sklearn.LinearSVC classifier
accuracy: 0.860000
neg precision: 0.851562
neg recall: 0.872000
neg f-measure: 0.861660
pos precision: 0.868852
pos recall: 0.848000
pos f-measure: 0.858300

And here's the parameters for NuSVC:

$ python train_classifier.py movie_reviews --no-pickle --fraction
0.75 --classifier sklearn.NuSVC
loading movie_reviews
2 labels: ['neg', 'pos']
using bag of words feature extraction

1500 training feats, 500 testing feats
training sklearn.NuSVC with {'kernel': 'rbf', 'nu': 0.5}
using dtype bool
training sklearn.NuSVC classifier
accuracy: 0.850000
neg precision: 0.827715
neg recall: 0.884000
neg f-measure: 0.854932
pos precision: 0.875536
pos recall: 0.816000
pos f-measure: 0.844720

Combining classifiers

In the Combining classifiers with voting recipe, we covered how to combine multiple classifiers into a
single classifier using a max vote method. The train_classifier.py script can also combine
classifiers, but it uses a slightly different algorithm. Instead of counting votes, it sums probabilities
together to produce a final probability distribution, which is then used to classify each instance. Here's
an example with three sklearn classifiers:

$ python train_classifier.py movie_reviews --no-pickle --fraction
0.75 --classifier sklearn.LogisticRegression sklearn.MultinomialNB
sklearn.NuSVC
loading movie_reviews
2 labels: ['neg', 'pos']
using bag of words feature extraction
1500 training feats, 500 testing feats
training sklearn.LogisticRegression with {'penalty': 'l2', 'C': 1.0}
using dtype bool
training sklearn.MultinomialNB with {'alpha': 1.0}
using dtype bool
training sklearn.NuSVC with {'kernel': 'rbf', 'nu': 0.5}
using dtype bool
training sklearn.LogisticRegression classifier
training sklearn.MultinomialNB classifier
training sklearn.NuSVC classifier
accuracy: 0.856000
neg precision: 0.839695
neg recall: 0.880000
neg f-measure: 0.859375
pos precision: 0.873950
pos recall: 0.832000
pos f-measure: 0.852459

High information words and bigrams

In the Calculating high information words recipe, we calculated the information gain of words, and then
used only words with high information gain as features. The train_classifier.py script can do
this too:

$ python train_classifier.py movie_reviews --no-pickle --fraction
0.75 --classifier NaiveBayes --min_score 5 --ngrams 1 2
loading movie_reviews
2 labels: ['neg', 'pos']
calculating word scores
using bag of words from known set feature extraction
9989 words meet min_score and/or max_feats
1500 training feats, 500 testing feats
training NaiveBayes classifier
accuracy: 0.860000
neg precision: 0.901786
neg recall: 0.808000
neg f-measure: 0.852321
pos precision: 0.826087
pos recall: 0.912000
pos f-measure: 0.866920

Cross-fold validation

Cross-fold validation is a method for evaluating a classification algorithm. The typical way to do it is
using 10 folds, leaving one fold out for testing. What this means is that the training corpus is first split
into 10 parts (or folds). Then, it is trained on nine of the folds and tested against the remaining fold. This
is repeated nine more times, choosing a different fold to leave out for testing each time. By using a
different set of training and testing examples each time, you can avoid any bias that might be present in
the training set. Here's how to do this with train_classifier.py:

$ python train_classifier.py movie_reviews --classifier
sklearn.LogisticRegression --cross-fold 10
…
mean and variance across folds

accuracy mean: 0.870000
accuracy variance: 0.000365
neg precision mean: 0.866884
neg precision variance: 0.000795
pos precision mean: 0.873236
pos precision variance: 0.001157
neg recall mean: 0.875482
neg recall variance: 0.000706
pos recall mean: 0.864537
pos recall variance: 0.001091

neg f_measure mean: 0.870630
neg f_measure variance: 0.000290
pos f_measure mean: 0.868246
pos f_measure variance: 0.000610

Most of the output has been omitted for clarity. What really matters is the final evaluation, which is the
mean and variance of the results across all folds.

Analyzing a classifier

Also included in NLTK-Trainer is a script called analyze_classifier_coverage.py. As the
name implies, you can use it to see how a classifier categorizes a given corpus. It expects the name of a
corpus and a path to a pickled classifier to run on the corpus. If the corpus is categorized, you can also
use the --metrics argument to get the accuracy, precision, and recall. The script supports many of the
same corpus-related arguments as train_classifier.py, and also has an optional --speed
argument, so you can see how fast the classifier is. Here's an example of analyzing a pickled
NaiveBayesClassifier class against the movie_reviews corpus:

$ python analyze_classifier_coverage.py movie_reviews --classifier
classifiers/movie_reviews_NaiveBayes.pickle --metrics --speed
loading time: 0secs
accuracy: 0.967
neg precision: 1.000000
neg recall: 0.934000
neg f-measure: 0.965874
pos precision: 0.938086
pos recall: 1.000000
pos f-measure: 0.968054
neg 934
pos 1066
average time per classify: 3secs / 2000 feats = 1.905661 ms/feat

See also

NLTK-Trainer was introduced at the end of Chapter 4, Part-of-speech Tagging, in the Training a tagger
with NLTK-Trainer recipe. It was also covered at the end of Chapter 5, Extracting Chunks, in the
Training a chunker with NLTK-Trainer recipe. All the previous recipes in the chapter explain various
aspects of how the train_classifier.py script works.

Chapter 8. Distributed Processing and Handling
Large Datasets
In this chapter, we will cover the following recipes:

• Distributed tagging with execnet
• Distributed chunking with execnet
• Parallel list processing with execnet
• Storing a frequency distribution in Redis
• Storing a conditional frequency distribution in Redis
• Storing an ordered dictionary in Redis
• Distributed word scoring with Redis and execnet

Introduction
NLTK is great for in-memory, single-processor natural language processing. However, there are times
when you have a lot of data to process and want to take advantage of multiple CPUs, multicore CPUs,
and even multiple computers. Or, you might want to store frequencies and probabilities in a persistent,
shared database so multiple processes can access it simultaneously. For the first case, we'll be using
execnet to do parallel and distributed processing with NLTK. For the second case, you'll learn how to
use the Redis data structure server/database to store frequency distributions and more.

Distributed tagging with execnet
Execnet is a distributed execution library for Python. It allows you to create gateways and channels for
remote code execution. A gateway is a connection from the calling process to a remote environment.
The remote environment can be a local subprocess or an SSH connection to a remote node. A channel is
created from a gateway and handles communication between the channel creator and the remote code. In
this way, execnet is a kind of Message Passing Interface (MPI), where the gateway creates the
connection and the channel is used to send messages back and forth.

Since many NLTK processes take 100% CPU during computation, execnet is an ideal way to distribute
that computation for maximum resource usage. You can create one gateway per CPU core, and it doesn't
matter whether the cores are in your local computer or spread across remote machines. In many
situations, you only need to have the trained objects and data on a single machine and can send the
objects and data to the remote nodes as needed.

Getting ready

You'll need to install execnet for this to work. It should be as simple as sudo pip install
execnet or sudo easy_install execnet. The current version of execnet, as of this writing,
is 1.2. The execnet home page, which has API documentation and examples, is at
http://codespeak.net/execnet/.

How to do it...

We start by importing the required modules, as well as an additional module, remote_tag.py, that
will be explained in the How it works... section. We also need to import pickle so we can serialize
(transmit) the tagger. Execnet does not natively know how to deal with complex objects such as a part-
of-speech tagger, so we must dump the tagger to a string using pickle.dumps(). We'll use the
default tagger that's used by the nltk.tag.pos_tag() function, but you could use any pre-trained
part-of-speech tagger as long as it implements the TaggerI interface.

Once we have a serialized tagger, we start execnet by making a gateway with
execnet.makegateway(). The default gateway creates a Python subprocess, and we can call the
remote_exec() function of the remote_tag module to create a channel. With an open channel,
we send over the serialized tagger, followed by the first tokenized sentence of the treebank corpus.

Note

You don't have to do any special serialization of simple types such as lists and tuples, since execnet
already knows how to handle serializing the built-in types.

Now, if we call channel.receive(), we get back a tagged sentence that is equivalent to the first
tagged sentence in the treebank corpus, so we know the tagging worked. We end by exiting the
gateway, which closes the channel and kills the subprocess.

http://codespeak.net/execnet/

>>> import execnet, remote_tag, nltk.tag, nltk.data
>>> from nltk.corpus import treebank
>>> import pickle
>>> pickled_tagger =
pickle.dumps(nltk.data.load(nltk.tag._POS_TAGGER))
>>> gw = execnet.makegateway()
>>> channel = gw.remote_exec(remote_tag)

>>> channel.send(pickled_tagger)
>>> channel.send(treebank.sents()[0])

>>> tagged_sentence = channel.receive()
>>> tagged_sentence == treebank.tagged_sents()[0]
True
>>> gw.exit()

Visually, the communication process looks like this:

How it works...

The gateway's remote_exec() method takes a single argument that can be one of the following three
types:

• A string of code to execute remotely
• The name of a pure function that will be serialized and executed remotely
• The name of a pure module whose source will be executed remotely

We use option three with the remote_tag.py module, which is defined as follows:

import pickle

if __name__ == '__channelexec__':
tagger = pickle.loads(channel.receive())

for sentence in channel:
channel.send(tagger.tag(sentence))

A pure module is a module that is self-contained: it can only access Python modules that are available
where it executes, and does not have access to any variables or states that exist wherever the gateway is
initially created. Similarly, a pure function is a self-contained function, with no external dependencies.
To detect that the module is being executed by execnet, you can look at the __name__ variable. If
it's equal to '__channelexec__', then it is being used to create a remote channel. This is similar to
doing if __name__ == '__main__' to check if a module is being executed on the command line.

The first thing we do is call channel.receive() to get the serialized tagger, which we load using
pickle.loads(). You may notice that channel is not imported anywhere—that's because it is
included in the global namespace of the module. Any module that execnet executes remotely has
access to the channel variable in order to communicate with the channel creator.

Once we have the tagger, we iteratively tag() each tokenized sentence that we receive from the
channel. This allows us to tag as many sentences as the sender wants to send, as iteration will not stop
until the channel is closed. What we've essentially created is a compute node for part-of-speech tagging
that dedicates 100% of its resources to tagging whatever sentences it receives. As long as the channel
remains open, the node is available for processing.

There's more...

This is a simple example that opens a single gateway and channel. But execnet can do a lot more,
such as opening multiple channels to increase parallel processing, as well as opening gateways to remote
hosts over SSH to do distributed processing.

Creating multiple channels

We can create multiple channels, one per gateway, to make the processing more parallel. Each gateway
creates a new subprocess (or remote interpreter if using an SSH gateway), and we use one channel per
gateway for communication. Once we've created two channels, we can combine them using the
MultiChannel class, which allows us to iterate over the channels and make a receive queue to
receive messages from each channel.

After creating each channel and sending the tagger, we cycle through the channels to send an even
number of sentences to each channel for tagging. Then, we collect all the responses from the queue. A
call to queue.get() will return a 2-tuple of (channel, message) in case you need to know
which channel the message came from.

Note

If you don't want to wait forever, you can also pass a timeout keyword argument with the maximum
number of seconds you want to wait, as in queue.get(timeout=4). This can be a good way to
handle network errors.

Once all the tagged sentences have been collected, we can exit the gateways. Here's the code:

>>> import itertools
>>> gw1 = execnet.makegateway()
>>> gw2 = execnet.makegateway()
>>> ch1 = gw1.remote_exec(remote_tag)
>>> ch1.send(pickled_tagger)
>>> ch2 = gw2.remote_exec(remote_tag)
>>> ch2.send(pickled_tagger)
>>> mch = execnet.MultiChannel([ch1, ch2])
>>> queue = mch.make_receive_queue()
>>> channels = itertools.cycle(mch)
>>> for sentence in treebank.sents()[:4]:
... channel = next(channels)
... channel.send(sentence)
>>> tagged_sentences = []
>>> for i in range(4):
... channel, tagged_sentence = queue.get()
... tagged_sentences.append(tagged_sentence)
>>> len(tagged_sentences)
4
>>> gw1.exit()
>>> gw2.exit()

In the example code, we're only sending four sentences, but in real-life, you'd want to send thousands. A
single computer can tag four sentences very quickly, but when thousands, or hundreds of thousands of
sentences need to be tagged, sending sentences to multiple computers can be much faster than waiting
for a single computer to do it all.

Local versus remote gateways

The default gateway spec is popen, which creates a Python subprocess on the local machine. This
means execnet.makegateway() is equivalent to execnet.makegateway('popen'). If you
have password-less SSH access to a remote machine, then you can create a remote gateway using
execnet.makegateway('ssh=remotehost'), where remotehost should be the hostname
of the machine. An SSH gateway spawns a new Python interpreter for executing the code remotely. As
long as the code you're using for remote execution is pure, you only need a Python interpreter on the
remote machine.

Channels work exactly the same no matter what kind of gateway is used; the only difference will be
communication time. This means you can mix and match local subprocesses with remote interpreters to

distribute your computations across many machines in a network. There are many more details on
gateways in the API documentation at http://codespeak.net/execnet/basics.html.

See also

Part-of-speech tagging and taggers are covered in detail in Chapter 4, Part-of-speech Tagging. In the
next recipe, we'll use execnet to do distributed chunk extraction.

http://codespeak.net/execnet/basics.html

Distributed chunking with execnet
In this recipe, we'll do chunking and tagging over an execnet gateway. This will be very similar to the
tagging in the previous recipe, but we'll be sending two objects instead of one, and we will be receiving
a Tree instead of a list, which requires pickling and unpickling for serialization.

Getting ready

As in the previous recipe, you must have execnet installed.

How to do it...

The setup code is very similar to the last recipe, and we'll use the same pickled tagger as well. First,
we'll pickle the default chunker used by nltk.chunk.ne_chunk(), though any chunker would
do. Next, we make a gateway for the remote_chunk module, get a channel, and send the pickled
tagger and chunker over. Then, we receive a pickled Tree, which we can unpickle and inspect to
see the result. Finally, we exit the gateway:

>>> import execnet, remote_chunk
>>> import nltk.data, nltk.tag, nltk.chunk
>>> import pickle
>>> from nltk.corpus import treebank_chunk
>>> tagger = pickle.dumps(nltk.data.load(nltk.tag._POS_TAGGER))
>>> chunker =
pickle.dumps(nltk.data.load(nltk.chunk._MULTICLASS_NE_CHUNKER))
>>> gw = execnet.makegateway()
>>> channel = gw.remote_exec(remote_chunk)
>>> channel.send(tagger)
>>> channel.send(chunker)
>>> channel.send(treebank_chunk.sents()[0])
>>> chunk_tree = pickle.loads(channel.receive())
>>> chunk_tree
Tree('S', [Tree('PERSON', [('Pierre', 'NNP')]), Tree('ORGANIZATION',
[('Vinken', 'NNP')]), (',', ','), ('61', 'CD'), ('years', 'NNS'),
('old', 'JJ'), (',', ','), ('will', 'MD'), ('join', 'VB'), ('the',
'DT'), ('board', 'NN'), ('as', 'IN'), ('a', 'DT'), ('nonexecutive',
'JJ'), ('director', 'NN'), ('Nov.', 'NNP'), ('29', 'CD'), ('.',
'.')])
>>> gw.exit()

The communication this time is slightly different, as shown in the following diagram:

How it works...

The remote_chunk.py module is just a little bit more complicated than the remote_tag.py
module from the previous recipe. In addition to receiving a pickled tagger, it also expects to receive a
pickled chunker that implements the ChunkerI interface. Once it has both a tagger and a
chunker, it expects to receive any number of tokenized sentences, which it tags and parses into a
Tree. This Tree is then pickled and sent back over the channel:

import pickle

if __name__ == '__channelexec__':
tagger = pickle.loads(channel.receive())
chunker = pickle.loads(channel.receive())

for sentence in channel:
chunk_tree = chunker.parse(tagger.tag(sent))
channel.send(pickle.dumps(chunk_tree))

Note

The Tree must be pickled because it is not a simple built-in type.

There's more...

Note that the remote_chunk module is pure. Its only external dependency is the pickle module,
which is part of the Python standard library. It doesn't need to import any NLTK modules in order to use
the tagger or chunker, because all the necessary data is pickled and sent over the channel. As
long as you structure your remote code like this, with no external dependencies, you only need NLTK to
be installed on a single machine—the one that starts the gateway and sends the objects over the channel.

Python subprocesses

If you look at your task/system monitor (or top on *nix) while running the execnet code, you may
notice a few extra Python processes. Every gateway spawns a new, self-contained, shared-nothing
Python interpreter process, which is killed when you call the exit() method. Unlike with threads,
there is no shared memory to worry about, and no global interpreter lock to slow things down. All you
have are separate communicating processes. This is true whether the processes are local or remote.
Instead of locking and synchronization, all you have to worry about is the order in which the messages
are sent and received.

See also

The previous recipe explains execnet gateways and channels in detail. In the next recipe, we'll use
execnet to process a list in parallel.

Parallel list processing with execnet
This recipe presents a pattern for using execnet to process a list in parallel. It's a function pattern for
mapping each element in the list to a new value, using execnet to do the mapping in parallel.

How to do it...

First, we need to decide exactly what we want to do. In this example, we'll just double integers, but we
could do any pure computation. Following is the remote_double.py module, which will be
executed by execnet. It receives a 2-tuple of (i, arg), assumes arg is a number, and sends back
(i, arg*2). The need for i will be explained in the next section.

if __name__ == '__channelexec__':
for (i, arg) in channel:

channel.send((i, arg * 2))

To use this module to double every element in a list, we import the plists module (explained in the
How it works... section) and call plists.map() with the remote_double module, and a list of
integers to double.

>>> import plists, remote_double
>>> plists.map(remote_double, range(10))
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

Communication between channels is very simple, as shown in the following diagram:

How it works...

The map() function is defined in plists.py. It takes a pure module, a list of arguments, and an
optional list of 2-tuples consisting of (spec, count). The default specs are [('popen', 2)],

which means we'll open two local gateways and channels. Once these channels are opened, we put them
into an itertools cycle, which creates an infinite iterator that cycles back to the beginning once it
hits the end.

Now we can send each argument in args to a channel for processing, and since the channels are
cycled, each channel gets an almost even distribution of arguments. This is where i comes in—we don't
know in what order we'll get the results back, so i, as the index of each arg in the list, is passed to the
channel and back so we can combine the results in the original order. We then wait for the results with a
MultiChannel receive queue and insert them into a prefilled list that's the same length as the original
args. Once we have all the expected results, we can exit the gateways and return the results:

import itertools, execnet

def map(mod, args, specs=[('popen', 2)]):

gateways = []
channels = []

for spec, count in specs:
for i in range(count):

gw = execnet.makegateway(spec)
gateways.append(gw)
channels.append(gw.remote_exec(mod))

cyc = itertools.cycle(channels)

for i, arg in enumerate(args):
channel = next(cyc)
channel.send((i, arg))

mch = execnet.MultiChannel(channels)
queue = mch.make_receive_queue()
l = len(args)
results = [None] * l # creates a list of length l, where every

element is None

for i in range(l):
channel, (i, result) = queue.get()
results[i] = result

for gw in gateways:  gw.exit()

return results

There's more...

You can increase the parallelization by modifying the specs, as follows:

>>> plists.map(remote_double, range(10), [('popen', 4)])
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

However, more parallelization does not necessarily mean faster processing. It depends on the available
resources, and the more gateways and channels you have open, the more overhead is required. Ideally,
there should be one gateway and channel per CPU core to get maximum resource utilization.

You can use plists.map() with any pure module as long as it receives and sends back 2-tuples
where i is the first element. This pattern is most useful when you have a bunch of numbers to crunch
and want to process them as quickly as possible.

See also

The previous two recipes cover execnet features in greater detail.

Storing a frequency distribution in Redis
The nltk.probability.FreqDist class is used in many classes throughout NLTK for storing
and managing frequency distributions. It's quite useful, but it's all in-memory, and doesn't provide a way
to persist the data. A single FreqDist is also not accessible to multiple processes. We can change all
that by building a FreqDist on top of Redis.

Redis is a data structure server that is one of the more popular NoSQL databases. Among other things,
it provides a network-accessible database for storing dictionaries (also known as hash maps). Building a
FreqDist interface to a Redis hash map will allow us to create a persistent FreqDist that is
accessible to multiple local and remote processes at the same time.

Note

Most Redis operations are atomic, so it's even possible to have multiple processes write to the
FreqDist concurrently.

Getting ready

For this and the subsequent recipes, we need to install both Redis and redis-py. The Redis website
is at http://redis.io/ and includes many documentation resources. To use hash maps, you should install
the latest version, which at the time of this writing is 2.8.9.

The Redis Python driver, redis-py, can be installed using pip install redis or
easy_install redis. The latest version at this time is 2.9.1. The redis-py home page is at
http://github.com/andymccurdy/redis-py/.

Once both are installed and a redis-server process is running, you're ready to go. Let's assume
redis-server is running on localhost on port 6379 (the default host and port).

How to do it...

The FreqDist class extends the standard library collections.Counter class, which makes a
FreqDist a small wrapper with a few extra methods, such as N(). The N() method returns the
number of sample outcomes, which is the sum of all the values in the frequency distribution.

We can create an API-compatible class on top of Redis by extending a RedisHashMap (which will be
explained in the next section) and then implementing the N() method. Since the FreqDist only stores
integers, we also override a few other methods to ensure values are always integers. This
RedisHashFreqDist (defined in redisprob.py) sums all the values in the hash map for the N()
method:

from rediscollections import RedisHashMap

class RedisHashFreqDist(RedisHashMap):
def N(self):

http://redis.io/
http://github.com/andymccurdy/redis-py/

return int(sum(self.values()))

def __missing__(self, key):
return 0

def __getitem__(self, key):
return int(RedisHashMap.__getitem__(self, key) or 0)

def values(self):
return [int(v) for v in RedisHashMap.values(self)]

def items(self):
return [(k, int(v)) for (k, v) in RedisHashMap.items(self)]

We can use this class just like a FreqDist. To instantiate it, we must pass a Redis connection and the
name of our hash map. The name should be a unique reference to this particular FreqDist so that it
doesn't clash with any other keys in Redis.

>>> from redis import Redis
>>> from redisprob import RedisHashFreqDist
>>> r = Redis()
>>> rhfd = RedisHashFreqDist(r, 'test')
>>> len(rhfd)
0
>>> rhfd['foo'] += 1
>>> rhfd['foo']
1
>>> rhfd.items()
>>> len(rhfd)
1

Note

The name of the hash map and the sample keys will be encoded to replace whitespace and & characters
with _. This is because the Redis protocol uses these characters for communication. It's best if the
name and keys don't include whitespace to begin with.

How it works...

Most of the work is done in the RedisHashMap class, found in rediscollections.py, which
extends collections.MutableMapping and then overrides all methods that require Redis-
specific commands. Here's an outline of each method that uses a specific Redis command:

• __len__(): This uses the hlen command to get the number of elements in the hash map
• __contains__(): This uses the hexists command to check if an element exists in the

hash map
• __getitem__(): This uses the hget command to get a value from the hash map

• __setitem__(): This uses the hset command to set a value in the hash map
• __delitem__(): This uses the hdel command to remove a value from the hash map
• keys(): This uses the hkeys command to get all the keys in the hash map
• values(): This uses the hvals command to get all the values in the hash map
• items(): This uses the hgetall command to get a dictionary containing all the keys and

values in the hash map
• clear(): This uses the delete command to remove the entire hash map from Redis

Note

Extending collections.MutableMapping provides a number of other dict compatible
methods based on the previous methods, such as update() and setdefault(), so we don't have to
implement them ourselves.

The initialization used for RedisHashFreqDist is actually implemented here, and requires a Redis
connection and a name for the hash map. The connection and name are both stored internally to use with
all the subsequent commands. As mentioned earlier, whitespace is replaced by an underscore in the
name and all keys for compatibility with the Redis network protocol.

import collections, re

white = re.compile('[\s&]+')

def encode_key(key):
return white.sub('_', key.strip())

class RedisHashMap(collections.MutableMapping):
def __init__(self, r, name):

self._r = r
self._name = encode_key(name)

def __iter__(self):
return self.items()

def __len__(self):
return self._r.hlen(self._name)

def __contains__(self, key):
return self._r.hexists(self._name, encode_key(key))

def __getitem__(self, key):
return self._r.hget(self._name, encode_key(key))

def __setitem__(self, key, val):
self._r.hset(self._name, encode_key(key), val)

def __delitem__(self, key):

self._r.hdel(self._name, encode_key(key))

def keys(self):
return self._r.hkeys(self._name)

def values(self):
return self._r.hvals(self._name)

def items(self):
return self._r.hgetall(self._name).items()

def get(self, key, default=0):
return self[key] or default

def clear(self):
self._r.delete(self._name)

There's more...

The RedisHashMap can be used by itself as a persistent key-value dictionary. However, while the
hash map can support a large number of keys and arbitrary string values, its storage structure is more
optimal for integer values and smaller numbers of keys. However, don't let that stop you from taking full
advantage of Redis. It's very fast (for a network server) and does its best to efficiently encode whatever
data you throw at it.

Note

While Redis is quite fast for a network database, it will be significantly slower than the in-memory
FreqDist. There's no way around this, but while you sacrifice speed, you gain persistence and the
ability to do concurrent processing.

See also

In the next recipe, we'll create a conditional frequency distribution based on the Redis frequency
distribution created here.

Storing a conditional frequency distribution in
Redis
The nltk.probability.ConditionalFreqDist class is a container for FreqDist instances,
with one FreqDist per condition. It is used to count frequencies that are dependent on another
condition, such as another word or a class label. We used this class in the Calculating high information
words recipe in Chapter 7, Text Classification. Here, we'll create an API-compatible class on top of
Redis using the RedisHashFreqDist from the previous recipe.

Getting ready

As in the previous recipe, you'll need to have Redis and redis-py installed with an instance of
redis-server running.

How to do it...

We define a RedisConditionalHashFreqDist class in redisprob.py that extends
nltk.probability.ConditionalFreqDist and overrides the __getitem__() method. We
override __getitem__() so we can create an instance of RedisHashFreqDist instead of a
FreqDist:

from nltk.probability import ConditionalFreqDist
from rediscollections import encode_key

class RedisConditionalHashFreqDist(ConditionalFreqDist):
def __init__(self, r, name, cond_samples=None):

self._r = r
self._name = name
ConditionalFreqDist.__init__(self, cond_samples)

for key in self._r.keys(encode_key('%s:*' % name)):
condition = key.split(':')[1]
self[condition] # calls self.__getitem__(condition)

def __getitem__(self, condition):
if condition not in self._fdists:

key = '%s:%s' % (self._name, condition)
val = RedisHashFreqDist(self._r, key)
super(RedisConditionalHashFreqDist,

self).__setitem__(condition, val)

return super(RedisConditionalHashFreqDist,
self).__getitem__(condition)

def clear(self):

for fdist in self.values():
fdist.clear()

An instance of this class can be created by passing in a Redis connection and a base name. After that,
it works just like a ConditionalFreqDist:

>>> from redis import Redis
>>> from redisprob import RedisConditionalHashFreqDist
>>> r = Redis()
>>> rchfd = RedisConditionalHashFreqDist(r, 'condhash')
>>> rchfd.N()
0
>>> rchfd.conditions()
[]

>>> rchfd['cond1']['foo'] += 1
>>> rchfd.N()
1
>>> rchfd['cond1']['foo']
1
>>> rchfd.conditions()
['cond1']
>>> rchfd.clear()

How it works...

The RedisConditionalHashFreqDist uses name prefixes to reference RedisHashFreqDist
instances. The name passed into the RedisConditionalHashFreqDist is a base name that is
combined with each condition to create a unique name for each RedisHashFreqDist. For example,
if the base name of the RedisConditionalHashFreqDist is 'condhash', and the condition is
'cond1', then the final name for the RedisHashFreqDist is 'condhash:cond1'. This
naming pattern is used at initialization to find all the existing hash maps using the keys command. By
searching for all keys matching 'condhash:*', we can identify all the existing conditions and create
an instance of RedisHashFreqDist for each.

Combining strings with colons is a common naming convention for Redis keys as a way to define
namespaces. In our case, each RedisConditionalHashFreqDist instance defines a single
namespace of hash maps.

There's more...

RedisConditionalHashFreqDist also defines a clear() method. This is a helper method that
calls clear() on all the internal RedisHashFreqDist instances. The clear() method is not
defined in ConditionalFreqDist.

See also

The previous recipe covers RedisHashFreqDist in detail. Also, see the Calculating high
information words recipe in Chapter 7, Text Classification, for example usage of
ConditionalFreqDist.

Storing an ordered dictionary in Redis
An ordered dictionary is like a normal dict, but the keys are ordered by an ordering function. In the
case of Redis, it supports ordered dictionaries whose keys are strings and whose values are floating point
scores. This structure can come in handy in cases where we need to calculate the information gain
(covered in the Calculating high information words recipe in Chapter 7, Text Classification), and when
you want to store all the words and scores for later use.

Getting ready

Again, you'll need Redis and redis-py installed with an instance of redis-server running, as
explained in the earlier recipe, Storing a frequency distribution in Redis.

How to do it...

The RedisOrderedDict class in rediscollections.py extends
collections.MutableMapping to get a number of dict compatible methods for free. Then, it
implements all the key methods that require Redis ordered set (also known as Zset) commands:

class RedisOrderedDict(collections.MutableMapping):
def __init__(self, r, name):

self._r = r
self._name = encode_key(name)

def __iter__(self):
return iter(self.items())

def __len__(self):
return self._r.zcard(self._name)

def __getitem__(self, key):
return self._r.zscore(self._name, encode_key(key))

def __setitem__(self, key, score):
self._r.zadd(self._name, encode_key(key), score)

def __delitem__(self, key):
self._r.zrem(self._name, encode_key(key))

def keys(self, start=0, end=-1):
we use zrevrange to get keys sorted by high value instead of

by lowest
return self._r.zrevrange(self._name, start, end)

def values(self, start=0, end=-1):
return [v for (k, v) in self.items(start=start, end=end)]

def items(self, start=0, end=-1):
return self._r.zrevrange(self._name, start, end, withscores=True)

def get(self, key, default=0):
return self[key] or default

def iteritems(self):
return iter(self)

def clear(self):
self._r.delete(self._name)

You can create an instance of RedisOrderedDict by passing in a Redis connection and a unique
name:

>>> from redis import Redis
>>> from rediscollections import RedisOrderedDict
>>> r = Redis()
>>> rod = RedisOrderedDict(r, 'test')
>>> rod.get('bar')
>>> len(rod)
0
>>> rod['bar'] = 5.2
>>> rod['bar']
5.2000000000000002
>>> len(rod)
1
>>> rod.items()
[(b'bar', 5.2)]
>>> rod.clear()

Note

By default, keys are returned as binary strings. If you want a plain string, you can convert the keys using
key.decode(). You can always look up values with normal strings.

How it works...

Much of the code may look similar to the RedisHashMap, which is to be expected since they both
extend collections.MutableMapping. The main difference here is that RedisOrderedSet
orders keys by floating point values, and so it is not suited for arbitrary key-value storage like the
RedisHashMap. Here's an outline explaining each key method and how they work with Redis:

• __len__(): This uses the zcard command to get the number of elements in the ordered set.
• __getitem__(): This uses the zscore command to get the score of a key, and returns 0 if

the key does not exist.

• __setitem__(): This uses the zadd command to add a key to the ordered set with the given
score, or updates the score if the key already exists.

• __delitem__(): This uses the zrem command to remove a key from the ordered set.
• keys(): This uses the zrevrange command to get all the keys in the ordered set, sorted by

the highest score. It takes two optional keyword arguments, start and end, to more
efficiently get a slice of the ordered keys.

• values(): This extracts all the scores from the items() method.
• items(): This uses the zrevrange command to get the scores of each key in order to return

a list of 2-tuples ordered by the highest score. Like keys(), it takes start and end keyword
arguments to efficiently get a slice.

• clear(): This uses the delete command to remove the entire ordered set from Redis.

Note

The default ordering of items in a Redis ordered set is low-to-high, so that the key with the lowest
score comes first. This is the same as Python's default list ordering when you call sort() or
sorted(), but this is not what we want when it comes to scoring. For storing scores, we expect items
to be sorted from high-to-low, which is why keys() and items() use zrevrange instead of
zrange.

All the Redis commands are documented at http://redis.io/commands.

There's more...

As mentioned previously, the keys() and items() methods take optional start and end keyword
arguments to get a slice of the results. This makes RedisOrderedDict optimal for storing scores and
getting the top N keys.

Note

The start and end keyword arguments are inclusive, so if you use start=0 and end=2, you will
get up to three elements.

Here's a simple example where we assign three word scores and get the top two:

>>> from redis import Redis
>>> from rediscollections import RedisOrderedDict
>>> r = Redis()
>>> rod = RedisOrderedDict(r, 'scores')
>>> rod['best'] = 10
>>> rod['worst'] = 0.1
>>> rod['middle'] = 5
>>> rod.keys()
[b'best', b'middle', b'worst']
>>> rod.keys(start=0, end=1)
[b'best', b'middle']
>>> rod.clear()

http://redis.io/commands

See also

The Calculating high information words recipe in Chapter 7, Text Classification, describes how to
calculate information gain, which is a good case for storing word scores in a RedisOrderedDict.
The Storing a frequency distribution in Redis recipe introduces Redis and the RedisHashMap.

Distributed word scoring with Redis and execnet
We can use Redis and execnet together to do distributed word scoring. In the Calculating high
information words recipe in Chapter 7, Text Classification, we calculated the information gain of each
word in the movie_reviews corpus using a FreqDist and ConditionalFreqDist. Now that
we have Redis, we can do the same thing using a RedisHashFreqDist and a
RedisConditionalHashFreqDist, and then store the scores in a RedisOrderedDict. We
can use execnet to distribute the counting in order to get a better performance out of Redis.

Getting ready

Redis, redis-py, and execnet must be installed, and an instance of redis-server must be
running on localhost.

How to do it...

We start by getting a list of (label, words) tuples for each label in the movie_reviews corpus
(which only has pos and neg labels). Then, we get the word_scores using score_words() from
the dist_featx module. The word_scores function is an instance of RedisOrderedDict, and
we can see that the total number of words is 39,764. Using the keys() method, we can then get the top
1,000 words and inspect the top five, just to see what they are. Once we've gotten all we want from
word_scores, we can delete the keys in Redis, as we no longer need the data.

>>> from dist_featx import score_words
>>> from nltk.corpus import movie_reviews
>>> labels = movie_reviews.categories()
>>> labelled_words = [(l, movie_reviews.words(categories=[l])) for l
in labels]
>>> word_scores = score_words(labelled_words)
>>> len(word_scores)
39767
>>> topn_words = word_scores.keys(end=1000)
>>> topn_words[0:5]
[b'bad', b',', b'and', b'?', b'movie']
>>> from redis import Redis
>>> r = Redis()
>>> [r.delete(key) for key in ['word_fd', 'label_word_fd:neg',
'label_word_fd:pos', 'word_scores']]
[1, 1, 1, 1]

The score_words() function from dist_featx can take a while to complete, so expect to wait a
couple of minutes. The overhead of using execnet and Redis means it will take significantly longer
than a nondistributed, in-memory version of the function.

How it works...

The dist_featx.py module contains the score_words() function, which does the following:

• Opens gateways and channels, sending initialization data to each channel
• Sends each (label, words) tuple over a channel for counting
• Sends a done message to each channel, waits for a done reply back, then closes the channels

and gateways
• Calculates the score of each word based on the counts and stores in a RedisOrderedDict

In our case of counting words in the movie_reviews corpus, calling score_words() opens two
gateways and channels, one for counting the pos words and the other for counting the neg words. The
communication looks like the following diagram:

Once the counting is finished, we can score all the words and store the results. The code itself is as
follows:

import itertools, execnet, remote_word_count
from nltk.metrics import BigramAssocMeasures
from redis import Redis
from redisprob import RedisHashFreqDist, RedisConditionalHashFreqDist
from rediscollections import RedisOrderedDict

def score_words(labelled_words, score_fn=BigramAssocMeasures.chi_sq,

host='localhost', specs=[('popen', 2)]):
gateways = []
channels = []

for spec, count in specs:
for i in range(count):

gw = execnet.makegateway(spec)
gateways.append(gw)
channel = gw.remote_exec(remote_word_count)
channel.send((host, 'word_fd', 'label_word_fd'))
channels.append(channel)

cyc = itertools.cycle(channels)

for label, words in labelled_words:
channel = next(cyc)
channel.send((label, list(words)))

for channel in channels:
channel.send('done')
assert 'done' == channel.receive()
channel.waitclose(5)

for gateway in gateways:
gateway.exit()

r = Redis(host)
fd = RedisHashFreqDist(r, 'word_fd')
cfd = RedisConditionalHashFreqDist(r, 'label_word_fd')
word_scores = RedisOrderedDict(r, 'word_scores')
n_xx = cfd.N()

for label in cfd.conditions():
n_xi = cfd[label].N()

for word, n_ii in cfd[label].iteritems():
word = word.decode()
n_ix = fd[word]

if n_ii and n_ix and n_xi and n_xx:
score = score_fn(n_ii, (n_ix, n_xi), n_xx)
word_scores[word] = score

return word_scores

Note

Note that this scoring method will only be accurate for comparing two labels. If there are more than two
labels, a different scoring method should be used, and its requirements will dictate how you store word
scores.

The remote_word_count.py module looks like the following code:

from redis import Redis
from redisprob import RedisHashFreqDist, RedisConditionalHashFreqDist

if __name__ == '__channelexec__':
host, fd_name, cfd_name = channel.receive()
r = Redis(host)
fd = RedisHashFreqDist(r, fd_name)
cfd = RedisConditionalHashFreqDist(r, cfd_name)

for data in channel:
if data == 'done':

channel.send('done')
break

label, words = data

for word in words:
fd[word] += 1
cfd[label][word] += 1

You'll notice that this is not a pure module, as it requires being able to import both redis and
redisprob. The reason is that instances of RedisHashFreqDist and
RedisConditionalHashFreqDist cannot be pickled and sent over the channel. Instead, we
send the hostname and key names over the channel so we can create the instances in the remote module.
Once we have the instances, there are two kinds of data we can receive over the channel:

• A done message, which signals that there is no more data coming in over the channel. We reply
back with another done message, then exit the loop to close the channel.

• A 2-tuple of (label, words), which we then iterate over to increment counts in both the
RedisHashFreqDist and RedisConditionalHashFreqDist.

There's more...

In this particular case, it would be faster to compute the scores without using Redis or execnet.
However, by using Redis, we can store the scores persistently for later examination and usage. Being
able to inspect all the word counts and scores manually is a great way to learn about your data. We can
also tweak feature extraction without having to re-compute the scores. For example, you could use
featx.bag_of_words_in_set() (found in Chapter 7, Text Classification) with the top N words
from the RedisOrderedDict, where N could be 1,000, 2,000, or whatever number you want. If our

data size is much greater, the benefits of execnet will be much more apparent. Horizontal scalability
using execnet or some other method to distribute computations across many nodes becomes more
valuable as the size of the data you need to process increases. This method of word scoring is much
slower than if we weren't using Redis, but the benefit is that the numbers are stored persistently.

See also

The Calculating high information words recipe in Chapter 7, Text Classification, introduces information
gain scoring of words for feature extraction and classification. The first three recipes of this chapter
show how to use execnet, while the next three recipes describe RedisHashFreqDist,
RedisConditionalHashFreqDist, and RedisOrderedDict, respectively.

Chapter 9. Parsing Specific Data Types
In this chapter, we will cover the following recipes:

• Parsing dates and times with dateutil
• Timezone lookup and conversion
• Extracting URLs from HTML with lxml
• Cleaning and stripping HTML
• Converting HTML entities with BeautifulSoup
• Detecting and converting character encodings

Introduction
This chapter covers parsing specific kinds of data, focusing primarily on dates, times, and HTML.
Luckily, there are a number of useful libraries to accomplish this, so we don't have to delve into tricky
and overly complicated regular expressions. These libraries can be great complements to NLTK:

• dateutil provides datetime parsing and timezone conversion
• lxml and BeautifulSoup can parse, clean, and convert HTML
• charade and UnicodeDammit can detect and convert text character encoding

These libraries can be useful for preprocessing text before passing it to an NLTK object, or
postprocessing text that has been processed and extracted using NLTK. Coming up is an example that
ties many of these tools together.

Let's say you need to parse a blog article about a restaurant. You can use lxml or BeautifulSoup to
extract the article text, outbound links, and the date and time when the article was written. The date and
time can then be parsed to a Python datetime object with dateutil. Once you have the article text,
you can use charade to ensure it's utf-8 before cleaning out the HTML and running it through
NLTK-based part-of-speech tagging, chunk extraction, and/or text classification to create additional
metadata about the article. Real-world text processing often requires more than just NLTK-based natural
language processing, and the functionality covered in this chapter can help with those additional
requirements.

Parsing dates and times with dateutil
If you need to parse dates and times in Python, there is no better library than dateutil. The parser
module can parse datetime strings in many more formats than can be shown here, while the tz
module provides everything you need for looking up timezones. When combined, these modules make it
quite easy to parse strings into timezone-aware datetime objects.

Getting ready

You can install dateutil using pip or easy_install, that is, sudo pip install
dateutil==2.0 or sudo easy_install dateutil==2.0. You need the 2.0 version for
Python 3 compatibility. The complete documentation can be found at http://labix.org/python-dateutil.

How to do it...

Let's dive into a few parsing examples:

>>> from dateutil import parser
>>> parser.parse('Thu Sep 25 10:36:28 2010')
datetime.datetime(2010, 9, 25, 10, 36, 28)
>>> parser.parse('Thursday, 25. September 2010 10:36AM')
datetime.datetime(2010, 9, 25, 10, 36)
>>> parser.parse('9/25/2010 10:36:28')
datetime.datetime(2010, 9, 25, 10, 36, 28)
>>> parser.parse('9/25/2010')
datetime.datetime(2010, 9, 25, 0, 0)
>>> parser.parse('2010-09-25T10:36:28Z')
datetime.datetime(2010, 9, 25, 10, 36, 28, tzinfo=tzutc())

As you can see, all it takes is importing the parser module and calling the parse() function with a
datetime string. The parser will do its best to return a sensible datetime object, but if it cannot parse
the string, it will raise a ValueError.

How it works...

The parser does not use regular expressions. Instead, it looks for recognizable tokens and does its best to
guess what those tokens refer to. The order of these tokens matters; for example, some cultures use a
date format that looks like Month/Day/Year (the default order), while others use a Day/Month/Year
format. To deal with this, the parse() function takes an optional keyword argument, dayfirst,
which defaults to False. If you set it to True, it can correctly parse dates in the latter format.

>>> parser.parse('25/9/2010', dayfirst=True)
datetime.datetime(2010, 9, 25, 0, 0)

http://labix.org/python-dateutil

Another ordering issue can occur with two-digit years. For example, '10-9-25' is ambiguous. Since
dateutil defaults to the Month-Day-Year format, '10-9-25' is parsed to the year 2025. But if you
pass yearfirst=True into parse(), it will be parsed to the year 2010:

>>> parser.parse('10-9-25')
datetime.datetime(2025, 10, 9, 0, 0)
>>> parser.parse('10-9-25', yearfirst=True)
datetime.datetime(2010, 9, 25, 0, 0)

There's more...

The dateutil parser can also do fuzzy parsing, which allows it to ignore extraneous characters in a
datetime string. With the default value of False, parse() will raise a ValueError when it
encounters unknown tokens. But if fuzzy=True, then a datetime object can usually be returned:

>>> try:
... parser.parse('9/25/2010 at about 10:36AM')
... except ValueError:
... 'cannot parse'
'cannot parse'
>>> parser.parse('9/25/2010 at about 10:36AM', fuzzy=True)
datetime.datetime(2010, 9, 25, 10, 36)

See also

In the next recipe, we'll use the tz module of dateutil to do timezone lookup and conversion.

Timezone lookup and conversion
Most datetime objects returned from the dateutil parser are naïve, meaning they don't have an
explicit tzinfo, which specifies the timezone and UTC offset. In the previous recipe, only one of the
examples had a tzinfo, and that's because it's in the standard ISO format for UTC datetime strings.
UTC is the coordinated universal time, and is basically the same as GMT. ISO is the International
Standards Organization, which among other things, specifies standard datetime formatting.

Python datetime objects can either be naïve or aware. If a datetime object has a tzinfo, then it
is aware. Otherwise, the datetime is naïve. To make a naïve datetime object timezone aware, you
must give it an explicit tzinfo. However, the Python datetime library only defines an abstract
baseclass for tzinfo, and leaves it up to others to actually implement tzinfo creation. This is where
the tz module of dateutil comes in—it provides everything you need to look up timezones from
your OS timezone data.

Getting ready

dateutil should be installed using pip or easy_install. You should also make sure your
operating system has timezone data. On Linux, this is usually found in /usr/share/zoneinfo, and
the Ubuntu package is called tzdata. If you have a number of files and directories in /usr/share/
zoneinfo, such as America/ and Europe/, then you should be ready to proceed. The upcoming
examples show directory paths for Ubuntu Linux.

How to do it...

Let's start by getting a UTC tzinfo object. This can be done by calling tz.tzutc(), and you can
check that the offset is 0 by calling the utcoffset() method with a UTC datetime object:

>>> from dateutil import tz
>>> tz.tzutc()
tzutc()
>>> import datetime
>>> tz.tzutc().utcoffset(datetime.datetime.utcnow())
datetime.timedelta(0)

To get tzinfo objects for other timezones, you can pass in a timezone file path to the gettz()
function:

>>> tz.gettz('US/Pacific')
tzfile('/usr/share/zoneinfo/US/Pacific')
>>> tz.gettz('US/Pacific').utcoffset(datetime.datetime.utcnow())
datetime.timedelta(-1, 61200)
>>> tz.gettz('Europe/Paris')
tzfile('/usr/share/zoneinfo/Europe/Paris')
>>> tz.gettz('Europe/Paris').utcoffset(datetime.datetime.utcnow())
datetime.timedelta(0, 7200)

You can see that the UTC offsets are timedelta objects, where the first number is days and the
second number is seconds.

Tip

If you're storing datetimes in a database, it's a good idea to store them all in UTC to eliminate any
timezone ambiguity. Even if the database can recognize timezones, it's still good practice.

To convert a non-UTC datetime object to UTC, it must be made timezone aware. If you try to
convert a naïve datetime to UTC, you'll get a ValueError exception. To make a naïve datetime
timezone aware, you simply call the replace() method with the correct tzinfo. Once a
datetime object has a tzinfo, then UTC conversion can be performed by calling the
astimezone() method with tz.tzutc().

>>> pst = tz.gettz('US/Pacific')
Y
>>> dt = datetime.datetime(2010, 9, 25, 10, 36)
>>> dt.tzinfo
>>> dt.astimezone(tz.tzutc())
Traceback (most recent call last):

File "/usr/lib/python2.6/doctest.py", line 1248, in __run
compileflags, 1) in test.globs
File "<doctest __main__[22]>", line 1, in <module>
dt.astimezone(tz.tzutc())

ValueError: astimezone() cannot be applied to a naive datetime
>>> dt.replace(tzinfo=pst)
datetime.datetime(2010, 9, 25, 10, 36, tzinfo=tzfile('/usr/share/
zoneinfo/US/Pacific'))
>>> dt.replace(tzinfo=pst).astimezone(tz.tzutc())
datetime.datetime(2010, 9, 25, 17, 36, tzinfo=tzutc())

Note

The tzfile paths vary across operating systems, so your tzfile paths may differ from the
examples. There is no cause for concern, unless you are getting different datetime values.

How it works...

The tzutc and tzfile objects are both subclasses of tzinfo. As such, they know the correct UTC
offset for timezone conversion (which is 0 for tzutc). A tzfile object knows how to read your
operating system's zoneinfo files to get the necessary offset data. The replace() method of a
datetime object does what the name implies—it replaces attributes. Once a datetime has a
tzinfo, the astimezone() method will be able to convert the time using the UTC offsets, and then
replace the current tzinfo with the new tzinfo.

Note

Note that both replace() and astimezone() return new datetime objects. They do not modify
the current object.

There's more...

You can pass a tzinfos keyword argument into the dateutil parser to detect the otherwise
unrecognized timezones:

>>> parser.parse('Wednesday, Aug 4, 2010 at 6:30 p.m. (CDT)',
fuzzy=True)
datetime.datetime(2010, 8, 4, 18, 30)
>>> tzinfos = {'CDT': tz.gettz('US/Central')}
>>> parser.parse('Wednesday, Aug 4, 2010 at 6:30 p.m. (CDT)',
fuzzy=True, tzinfos=tzinfos)
datetime.datetime(2010, 8, 4, 18, 30, tzinfo=tzfile('/usr/share/
zoneinfo/US/Central'))

In the first instance, we get a naïve datetime since the timezone is not recognized. But when we pass
in the tzinfos mapping, we get a timezone-aware datetime.

Local timezone

If you want to look up your local timezone, you can call tz.tzlocal(), which will use whatever
your operating system thinks is the local timezone. In Ubuntu Linux, this is usually specified in the
/etc/timezone file.

Custom offsets

You can create your own tzinfo object with a custom UTC offset using the tzoffset object. A
custom offset of 1 hour could be created as follows:

>>> tz.tzoffset('custom', 3600)
tzoffset('custom', 3600)

You must provide a name as the first argument and the offset time in seconds as the second argument.

See also

The previous recipe, Parsing dates and times with dateutil, covers parsing datetime strings with
dateutil.parser.

Extracting URLs from HTML with lxml
A common task when parsing HTML is extracting links. This is one of the core functions of every
general web crawler. There are a number of Python libraries for parsing HTML, and lxml is one of the
best. As you'll see, it comes with some great helper functions geared specifically towards link extraction.

Getting ready

lxml is a Python binding for the C libraries libxml2 and libxslt. This makes it a very fast XML
and HTML parsing library, while still being Pythonic. But that also means you need to install the C
libraries for it to work. Installation instructions are available at http://lxml.de/installation.html. But if
you're running Ubuntu Linux, installation is as easy as sudo apt-get install python-lxml.
You can also try doing pip install lxml. The latest version as of this writing is 3.3.5.

How to do it...

lxml comes with an html module designed specifically for parsing HTML. Using the
fromstring() function, we can parse an HTML string and get a list of all the links. The
iterlinks() method generates 4-tuples of the form (element, attr, link, pos):

• element: This is the parsed node of the anchor tag from which the link is extracted. If you're
just interested in the link, you can ignore this.

• attr: This is the attribute the link came from, which is usually 'href'.
• link: This is the actual URL extracted from the anchor tag.
• pos: This is the numeric index of the anchor tag in the document. The first tag has a pos of 0,

the second has a pos of 1, and so on.

Here's some code to demonstrate:

>>> from lxml import html
>>> doc = html.fromstring('Hello world')
>>> links = list(doc.iterlinks())
>>> len(links)
1
>>> (el, attr, link, pos) = links[0]
>>> attr
'href'
>>> link
'/world'
>>> pos
0

How it works...

lxml parses the HTML into an ElementTree. This is a tree structure of parent nodes and child
nodes, where each node represents an HTML tag and contains all the corresponding attributes of that

http://lxml.de/installation.html

tag. Once the tree is created, it can be iterated on to find elements, such as the a or anchor tag. The core
tree handling code is in the lxml.etree module, while the lxml.html module contains only
HTML-specific functions for creating and iterating a tree. For complete documentation, see the lxml
tutorial at http://lxml.de/tutorial.html.

There's more...

You'll notice that the link mentioned earlier is relative, meaning it's not an absolute URL. We can make
it absolute by calling the make_links_absolute() method with a base URL before extracting the
links:

>>> doc.make_links_absolute('http://hello')
>>> abslinks = list(doc.iterlinks())
>>> (el, attr, link, pos) = abslinks[0]
>>> link
'http://hello/world'

Extracting links directly

If you don't want to do anything other than extract links, you can call the iterlinks() function with
an HTML string:

>>> links = list(html.iterlinks('Hello world'))
>>> links[0][2]
'/world'

Parsing HTML from URLs or files

Instead of parsing an HTML string using the fromstring() function, you can call the parse()
function with a URL or filename; for example, html.parse('http://my/url') or
html.parse('/path/to/file'). The result will be the same as if you loaded the URL or file
into a string yourself and then called fromstring().

Extracting links with XPaths

Instead of using the iterlinks() method, you can also get links using the xpath() method, which
is a general way to extract whatever you want from HTML or XML parse trees:

>>> doc.xpath('//a/@href')[0]
'http://hello/world'

For more on XPath syntax, see http://www.w3schools.com/XPath/xpath_syntax.asp.

See also

In the next recipe, we'll cover cleaning and stripping HTML.

http://lxml.de/tutorial.html
http://www.w3schools.com/XPath/xpath_syntax.asp

Cleaning and stripping HTML
Cleaning up text is one of the unfortunate but entirely necessary aspects of text processing. When it
comes to parsing HTML, you probably don't want to deal with any embedded JavaScript or CSS, and
are only interested in the tags and text.

Getting ready

You'll need to install lxml. See the previous recipe or http://lxml.de/installation.html for installation
instructions.

How to do it...

We can use the clean_html() function in the lxml.html.clean module to remove unnecessary
HTML tags and embedded JavaScript from an HTML string:

>>> import lxml.html.clean
>>> lxml.html.clean.clean_html('<html><head></head><body
onload=loadfunc()>my text</body></html>')
'<div><body>my text</body></div>'

The result is much cleaner and easier to deal with.

How it works...

The lxml.html.clean_html() function parses the HTML string into a tree and then iterates over
and removes all nodes that should be removed. It also cleans nodes of unnecessary attributes (such as
embedded JavaScript) using regular expression matching and substitution.

There's more...

The lxml.html.clean module defines a default Cleaner class that's used when you call
clean_html(). You can customize the behavior of this class by creating your own instance and
calling its clean_html() method. For more details on this class, see http://lxml.de/
lxmlhtml.html#cleaning-up-html.

See also

The lxml.html module was introduced in the previous recipe for parsing HTML and extracting links.
In the next recipe, we'll cover unescaping HTML entities.

http://lxml.de/installation.html
http://lxml.de/lxmlhtml.html#cleaning-up-html
http://lxml.de/lxmlhtml.html#cleaning-up-html

Converting HTML entities with BeautifulSoup
HTML entities are strings such as "&" or "<". These are encodings of normal ASCII
characters that have special uses in HTML. For example, "<" is the entity for "<", but you can't
just have "<" within HTML tags because it is the beginning character for an HTML tag, hence the need
to escape it and define the "<" entity. "&" is the entity code for "&", which as we've just
seen is the beginning character for an entity code. If you need to process the text within an HTML
document, then you'll want to convert these entities back to their normal characters so you can recognize
them and handle them appropriately.

Getting ready

You'll need to install BeautifulSoup, which you should be able to do with sudo pip install
beautifulsoup4 or sudo easy_install beautifulsoup4. You can read more about
BeautifulSoup at http://www.crummy.com/software/BeautifulSoup/.

How to do it...

BeautifulSoup is an HTML parser library that can also be used for entity conversion. It's quite
simple: create an instance of BeautifulSoup given a string containing HTML entities, then get the
string attribute:

>>> from bs4 import BeautifulSoup
>>> BeautifulSoup('<').string
'<'
>>> BeautifulSoup('&').string
'&'

However, the reverse is not true. If you try to do BeautifulSoup('<'), you will get a None result
because that is not valid in HTML.

How it works...

To convert the HTML entities, BeautifulSoup looks for tokens that look like an entity and replaces
them with their corresponding value in the htmlentitydefs.name2codepoint dictionary from
the Python standard library. It can do this if the entity token is within an HTML tag, or when it's in a
normal string.

There's more...

BeautifulSoup is an excellent HTML and XML parser in its own right, and can be a great
alternative to lxml. It's particularly good at handling malformed HTML. You can read more about how
to use it at http://www.crummy.com/software/BeautifulSoup/bs4/doc/.

http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/bs4/doc/

Extracting URLs with BeautifulSoup

Here's an example of using BeautifulSoup to extract URLs, like we did in the Extracting URLs
from HTML with lxml recipe. You first create the soup with an HTML string, call the findAll()
method with 'a' to get all anchor tags, and pull out the 'href' attribute to get the URLs:

>>> from bs4 import BeautifulSoup
>>> soup = BeautifulSoup('Hello world')
>>> [a['href'] for a in soup.findAll('a')]
['/world']

See also

In the Extracting URLs from HTML with lxml recipe, we covered how to use lxml to extract URLs
from an HTML string, and we also covered the Cleaning and stripping HTML recipe after that.

Detecting and converting character encodings
A common occurrence with text processing is finding text that has nonstandard character encoding.
Ideally, all text would be ASCII or utf-8, but that's just not the reality. In cases when you have non-
ASCII or non-utf-8 text and you don't know what the character encoding is, you'll need to detect it and
convert the text to a standard encoding before doing further processing.

Getting ready

You'll need to install the charade module using sudo pip install charade or sudo
easy_install charade. You can learn more about charade at https://pypi.python.org/pypi/
charade.

How to do it...

Encoding detection and conversion functions are provided in encoding.py. These are simple
wrapper functions around the charade module. To detect the encoding of a string, call
encoding.detect(string). You'll get back a dict containing two attributes: confidence
and encoding. The confidence attribute is a probability of how confident charade is that the
value for encoding is correct.

-*- coding: utf-8 -*-
import charade

def detect(s):
try:

if isinstance(s, str):
return charade.detect(s.encode())

else:
return charade.detect(s)

except UnicodeDecodeError:
return charade.detect(s.encode('utf-8'))

def convert(s):
if isinstance(s, str):

s = s.encode()

encoding = detect(s)['encoding']

if encoding == 'utf-8':
return s.decode()

else:
return s.decode(encoding)

And here's some example code using detect() to determine character encoding:

https://pypi.python.org/pypi/charade
https://pypi.python.org/pypi/charade

>>> import encoding
>>> encoding.detect('ascii')
{'confidence': 1.0, 'encoding': 'ascii'}
>>> encoding.detect('abcdé')
{'confidence': 0.505, 'encoding': 'utf-8'}
>>> encoding.detect(bytes('\222\222\223\225', 'latin-1'))
{'confidence': 0.5, 'encoding': 'windows-1252'}

To convert a string to a standard unicode encoding, call encoding.convert(). This will decode
the string from its original encoding and then re-encode it as utf-8.

>>> encoding.convert('ascii')
'ascii'
>>> encoding.convert('abcdé')
'abcdé'
>>> encoding.convert((bytes('\222\222\223\225', 'latin-1'))
'\u2019\u2019\u201c\u2022'

How it works...

The detect() function is a wrapper around charade.detect() that can encode strings and
handle UnicodeDecodeError exceptions. The charade.detect() method expects a bytes
object, not a string, so in these cases, the string is encoded before trying to detect the encoding.

The convert() function first calls detect() to get the encoding and, then returns a decoded string.

There's more...

The comment at the top of the module, # -*- coding: utf-8 -*-, is a hint to the Python
interpreter that tells which encoding to use for the strings in the code. This is helpful for when you have
non-ASCII strings in your source code, and is documented in detail at http://www.python.org/dev/peps/
pep-0263/.

Converting to ASCII

If you want pure ASCII text, with non-ASCII characters converted to ASCII equivalents or dropped if
there is no equivalent character, then you can use the unicodedata.normalize() function:

>>> import unicodedata
>>> unicodedata.normalize('NFKD', 'abcd\xe9').encode('ascii',
'ignore')
b'abcde'

Specifying 'NFKD' as the first argument ensures that the non-ASCII characters are replaced with their
equivalent ASCII versions, and the final call to encode() with 'ignore' as the second argument
will remove any extraneous unicode characters. This returns a bytes object, which you can call
decode() on to get a string.

http://www.python.org/dev/peps/pep-0263/
http://www.python.org/dev/peps/pep-0263/

UnicodeDammit conversion

The BeautifulSoup library contains a helper class called UnicodeDammit, which can do
automatic conversion to unicode. Its usage is very simple:

>>> from bs4 import UnicodeDammit
>>> UnicodeDammit('abcd\xe9').unicode_markup
'abcdé'

Installing BeautifulSoup is covered in the previous recipe, Converting HTML entities with
BeautifulSoup.

See also

Encoding detection and conversion is a recommended first step before doing HTML processing with
lxml or BeautifulSoup, covered in the Extracting URLs from HTML with lxml and Converting
HTML entities with BeautifulSoup recipes.

Appendix A. Penn Treebank Part-of-speech Tags
The following is a table of all the part-of-speech tags that occur in the treebank corpus distributed
with NLTK. The tags and counts shown here were acquired using the following code:

>>> from nltk.probability import FreqDist
>>> from nltk.corpus import treebank
>>> fd = FreqDist()
>>> for word, tag in treebank.tagged_words():
... fd[tag] += 1
>>> fd.items()

The FreqDist fd contains all the counts shown here for every tag in the treebank corpus. You can
inspect each tag count individually, by doing fd[tag], for example, fd['DT']. Punctuation tags are
also shown, along with special tags such as -NONE-, which signifies that the part-of-speech tag is
unknown. Descriptions of most of the tags can be found at the following link:

http://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

Part-of-speech tag Frequency of occurrence

16

$ 724

'' 694

, 4886

-LRB- 120

-NONE- 6592

-RRB- 126

. 384

: 563

http://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

Part-of-speech tag Frequency of occurrence

'' 712

CC 2265

CD 3546

DT 8165

EX 88

FW 4

IN 9857

JJ 5834

JJR 381

JJS 182

LS 13

MD 927

NN 13166

NNP 9410

NNPS 244

NNS 6047

Part-of-speech tag Frequency of occurrence

PDT 27

POS 824

PRP 1716

PRP$ 766

RB 2822

RBR 136

RBS 35

RP 216

SYM 1

TO 2179

UH 3

VB 2554

VBD 3043

VBG 1460

VBN 2134

VBP 1321

Part-of-speech tag Frequency of occurrence

VBZ 2125

WDT 445

WP 241

WP$ 14

WRB 178

Part 3. Module 3
Mastering Natural Language Processing with Python

Maximize your NLP capabilities while creating amazing NLp projects in Python

Chapter 1. Working with Strings
Natural Language Processing (NLP) is concerned with the interaction between natural language and
the computer. It is one of the major components of Artificial Intelligence (AI) and computational
linguistics. It provides a seamless interaction between computers and human beings and gives computers
the ability to understand human speech with the help of machine learning. The fundamental data type
used to represent the contents of a file or a document in programming languages (for example, C, C++,
JAVA, Python, and so on) is known as string. In this chapter, we will explore various operations that can
be performed on strings that will be useful to accomplish various NLP tasks.

This chapter will include the following topics:

• Tokenization of text
• Normalization of text
• Substituting and correcting tokens
• Applying Zipf's law to text
• Applying similarity measures using the Edit Distance Algorithm
• Applying similarity measures using Jaccard's Coefficient
• Applying similarity measures using Smith Waterman

Tokenization
Tokenization may be defined as the process of splitting the text into smaller parts called tokens, and is
considered a crucial step in NLP.

When NLTK is installed and Python IDLE is running, we can perform the tokenization of text or
paragraphs into individual sentences. To perform tokenization, we can import the sentence tokenization
function. The argument of this function will be text that needs to be tokenized. The sent_tokenize
function uses an instance of NLTK known as PunktSentenceTokenizer. This instance of NLTK
has already been trained to perform tokenization on different European languages on the basis of letters
or punctuation that mark the beginning and end of sentences.

Tokenization of text into sentences

Now, let's see how a given text is tokenized into individual sentences:

>>> import nltk
>>> text=" Welcome readers. I hope you find it interesting. Please
do reply."
>>> from nltk.tokenize import sent_tokenize
>>> sent_tokenize(text)
[' Welcome readers.', 'I hope you find it interesting.', 'Please do
reply.']

So, a given text is split into individual sentences. Further, we can perform processing on the individual
sentences.

To tokenize a large number of sentences, we can load PunktSentenceTokenizer and use the
tokenize() function to perform tokenization. This can be seen in the following code:

>>> import nltk
>>> tokenizer=nltk.data.load('tokenizers/punkt/english.pickle')
>>> text=" Hello everyone. Hope all are fine and doing well. Hope
you find the book interesting"
>>> tokenizer.tokenize(text)
[' Hello everyone.', 'Hope all are fine and doing well.', 'Hope you
find the book interesting']

Tokenization of text in other languages

For performing tokenization in languages other than English, we can load the respective language pickle
file found in tokenizers/punkt and then tokenize the text in another language, which is an
argument of the tokenize() function. For the tokenization of French text, we will use the
french.pickle file as follows:

>> import nltk
>>> french_tokenizer=nltk.data.load('tokenizers/punkt/french.pickle')
>>> french_tokenizer.tokenize('Deux agressions en quelques jours,
voilà ce qui a motivé hier matin le débrayage collège
franco-britanniquedeLevallois-Perret. Deux agressions en quelques
jours, voilà ce qui a motivé hier matin le débrayage Levallois.
L'équipe pédagogique de ce collège de 750 élèves avait déjà été
choquée par l'agression, janvier , d'un professeur d'histoire.
L'équipe pédagogique de ce collège de 750 élèves avait déjà été
choquée par l'agression, mercredi , d'un professeur d'histoire')
['Deux agressions en quelques jours, voilà ce qui a motivé hier
matin le débrayage collège franco-britanniquedeLevallois-Perret.',
'Deux agressions en quelques jours, voilà ce qui a motivé hier matin
le débrayage Levallois.', 'L'équipe pédagogique de ce collège de
750 élèves avait déjà été choquée par l'agression, janvier , d'un
professeur d'histoire.', 'L'équipe pédagogique de ce collège de 750
élèves avait déjà été choquée par l'agression, mercredi , d'un
professeur d'histoire']

Tokenization of sentences into words

Now, we'll perform processing on individual sentences. Individual sentences are tokenized into words.
Word tokenization is performed using a word_tokenize() function. The word_tokenize
function uses an instance of NLTK known as TreebankWordTokenizer to perform word
tokenization.

The tokenization of English text using word_tokenize is shown here:

>>> import nltk
>>> text=nltk.word_tokenize("PierreVinken , 59 years old , will join
as a nonexecutive director on Nov. 29 .»)
>>> print(text)
[' PierreVinken', ',', '59', ' years', ' old', ',', 'will', 'join',
'as', 'a', 'nonexecutive', 'director' , 'on', 'Nov.', '29', '.']

Tokenization of words can also be done by loading TreebankWordTokenizer and then calling the
tokenize() function, whose argument is a sentence that needs to be tokenized into words. This
instance of NLTK has already been trained to perform the tokenization of sentence into words on the
basis of spaces and punctuation.

The following code will help us obtain user input, tokenize it, and evaluate its length:

>>> import nltk
>>> from nltk import word_tokenize
>>> r=input("Please write a text")
Please write a textToday is a pleasant day
>>> print("The length of text is",len(word_tokenize(r)),"words")
The length of text is 5 words

Tokenization using TreebankWordTokenizer

Let's have a look at the code that performs tokenization using TreebankWordTokenizer:

>>> import nltk
>>> from nltk.tokenize import TreebankWordTokenizer
>>> tokenizer = TreebankWordTokenizer()
>>> tokenizer.tokenize("Have a nice day. I hope you find the book
interesting")
['Have', 'a', 'nice', 'day.', 'I', 'hope', 'you', 'find', 'the',
'book', 'interesting']

TreebankWordTokenizer uses conventions according to Penn Treebank Corpus. It works by
separating contractions. This is shown here:

>>> import nltk
>>> text=nltk.word_tokenize(" Don't hesitate to ask questions")
>>> print(text)
['Do', "n't", 'hesitate', 'to', 'ask', 'questions']

Another word tokenizer is PunktWordTokenizer. It works by splitting punctuation; each word is
kept instead of creating an entirely new token. Another word tokenizer is WordPunctTokenizer. It
provides splitting by making punctuation an entirely new token. This type of splitting is usually
desirable:

>>> from nltk.tokenize import WordPunctTokenizer
>>> tokenizer=WordPunctTokenizer()
>>> tokenizer.tokenize(" Don't hesitate to ask questions")
['Don', "'", 't', 'hesitate', 'to', 'ask', 'questions']

The inheritance tree for tokenizers is given here:

Tokenization using regular expressions

The tokenization of words can be performed by constructing regular expressions in these two ways:

• By matching with words
• By matching spaces or gaps

We can import RegexpTokenizer from NLTK. We can create a Regular Expression that can match
the tokens present in the text:

>>> import nltk
>>> from nltk.tokenize import RegexpTokenizer
>>> tokenizer=RegexpTokenizer([\w]+")
>>> tokenizer.tokenize("Don't hesitate to ask questions")
["Don't", 'hesitate', 'to', 'ask', 'questions']

Instead of instantiating class, an alternative way of tokenization would be to use this function:

>>> import nltk
>>> from nltk.tokenize import regexp_tokenize
>>> sent="Don't hesitate to ask questions"

>>> print(regexp_tokenize(sent, pattern='\w+|\$[\d\.]+|\S+'))
['Don', "'t", 'hesitate', 'to', 'ask', 'questions']

RegularexpTokenizer uses the re.findall()function to perform tokenization by matching
tokens. It uses the re.split() function to perform tokenization by matching gaps or spaces.

Let's have a look at an example of how to tokenize using whitespaces:

>>> import nltk
>>> from nltk.tokenize import RegexpTokenizer
>>> tokenizer=RegexpTokenizer('\s+',gaps=True)
>>> tokenizer.tokenize("Don't hesitate to ask questions")
["Don't", 'hesitate', 'to', 'ask', 'questions']

To select the words starting with a capital letter, the following code is used:

>>> import nltk
>>> from nltk.tokenize import RegexpTokenizer
>>> sent=" She secured 90.56 % in class X . She is a meritorious
student"
>>> capt = RegexpTokenizer('[A-Z]\w+')
>>> capt.tokenize(sent)
['She', 'She']

The following code shows how a predefined Regular Expression is used by a subclass of
RegexpTokenizer:

>>> import nltk
>>> sent=" She secured 90.56 % in class X . She is a meritorious
student"
>>> from nltk.tokenize import BlanklineTokenizer
>>> BlanklineTokenizer().tokenize(sent)
[' She secured 90.56 % in class X \n. She is a meritorious student\
n']

The tokenization of strings can be done using whitespace—tab, space, or newline:

>>> import nltk
>>> sent=" She secured 90.56 % in class X . She is a meritorious
student"
>>> from nltk.tokenize import WhitespaceTokenizer
>>> WhitespaceTokenizer().tokenize(sent)
['She', 'secured', '90.56', '%', 'in', 'class', 'X', '.', 'She',
'is', 'a', 'meritorious', 'student']

WordPunctTokenizer makes use of the regular expression \w+|[^\w\s]+ to perform the
tokenization of text into alphabetic and non-alphabetic characters.

Tokenization using the split() method is depicted in the following code:

>>>import nltk
>>>sent= She secured 90.56 % in class X. She is a meritorious
student"
>>> sent.split()
['She', 'secured', '90.56', '%', 'in', 'class', 'X', '.', 'She',
'is', 'a', 'meritorious', 'student']
>>> sent.split('')
['', 'She', 'secured', '90.56', '%', 'in', 'class', 'X', '.', 'She',
'is', 'a', 'meritorious', 'student']
>>> sent=" She secured 90.56 % in class X \n. She is a meritorious
student\n"
>>> sent.split('\n')
[' She secured 90.56 % in class X ', '. She is a meritorious
student', '']

Similar to sent.split('\n'), LineTokenizer works by tokenizing text into lines:

>>> import nltk
>>> from nltk.tokenize import BlanklineTokenizer
>>> sent=" She secured 90.56 % in class X \n. She is a meritorious
student\n"
>>> BlanklineTokenizer().tokenize(sent)
[' She secured 90.56 % in class X \n. She is a meritorious student\
n']
>>> from nltk.tokenize import LineTokenizer
>>> LineTokenizer(blanklines='keep').tokenize(sent)
[' She secured 90.56 % in class X ', '. She is a meritorious
student']
>>> LineTokenizer(blanklines='discard').tokenize(sent)
[' She secured 90.56 % in class X ', '. She is a meritorious
student']

SpaceTokenizer works similar to sent.split(''):

>>> import nltk
>>> sent=" She secured 90.56 % in class X \n. She is a meritorious
student\n"
>>> from nltk.tokenize import SpaceTokenizer
>>> SpaceTokenizer().tokenize(sent)
['', 'She', 'secured', '90.56', '%', 'in', 'class', 'X', '\n.',
'She', 'is', 'a', 'meritorious', 'student\n']

nltk.tokenize.util module works by returning the sequence of tuples that are offsets of the
tokens in a sentence:

>>> import nltk
>>> from nltk.tokenize import WhitespaceTokenizer
>>> sent=" She secured 90.56 % in class X \n. She is a meritorious
student\n"
>>> list(WhitespaceTokenizer().span_tokenize(sent))
[(1, 4), (5, 12), (13, 18), (19, 20), (21, 23), (24, 29), (30, 31),
(33, 34), (35, 38), (39, 41), (42, 43), (44, 55), (56, 63)]

Given a sequence of spans, the sequence of relative spans can be returned:

>>> import nltk
>>> from nltk.tokenize import WhitespaceTokenizer
>>> from nltk.tokenize.util import spans_to_relative
>>> sent=" She secured 90.56 % in class X \n. She is a meritorious
student\n"
>>>list(spans_to_relative(WhitespaceTokenizer().span_tokenize(sent)))
[(1, 3), (1, 7), (1, 5), (1, 1), (1, 2), (1, 5), (1, 1), (2, 1), (1,
3), (1, 2), (1, 1), (1, 11), (1, 7)]

nltk.tokenize.util.string_span_tokenize(sent,separator) will return the offsets
of tokens in sent by splitting at each incidence of the separator:

>>> import nltk
>>> from nltk.tokenize.util import string_span_tokenize
>>> sent=" She secured 90.56 % in class X \n. She is a meritorious
student\n"
>>> list(string_span_tokenize(sent, ""))
[(1, 4), (5, 12), (13, 18), (19, 20), (21, 23), (24, 29), (30, 31),
(32, 34), (35, 38), (39, 41), (42, 43), (44, 55), (56, 64)]

Normalization
In order to carry out processing on natural language text, we need to perform normalization that mainly
involves eliminating punctuation, converting the entire text into lowercase or uppercase, converting
numbers into words, expanding abbreviations, canonicalization of text, and so on.

Eliminating punctuation

Sometimes, while tokenizing, it is desirable to remove punctuation. Removal of punctuation is
considered one of the primary tasks while doing normalization in NLTK.

Consider the following example:

>>> text=[" It is a pleasant evening.","Guests, who came from US
arrived at the venue","Food was tasty."]
>>> from nltk.tokenize import word_tokenize
>>> tokenized_docs=[word_tokenize(doc) for doc in text]
>>> print(tokenized_docs)
[['It', 'is', 'a', 'pleasant', 'evening', '.'], ['Guests', ',',
'who', 'came', 'from', 'US', 'arrived', 'at', 'the', 'venue'],
['Food', 'was', 'tasty', '.']]

The preceding code obtains the tokenized text. The following code will remove punctuation from
tokenized text:

>>> import re
>>> import string
>>> text=[" It is a pleasant evening.","Guests, who came from US
arrived at the venue","Food was tasty."]
>>> from nltk.tokenize import word_tokenize
>>> tokenized_docs=[word_tokenize(doc) for doc in text]
>>> x=re.compile('[%s]' % re.escape(string.punctuation))
>>> tokenized_docs_no_punctuation = []
>>> for review in tokenized_docs:

new_review = []
for token in review:
new_token = x.sub(u'', token)
if not new_token == u'':

new_review.append(new_token)
tokenized_docs_no_punctuation.append(new_review)

>>> print(tokenized_docs_no_punctuation)
[['It', 'is', 'a', 'pleasant', 'evening'], ['Guests', 'who', 'came',
'from', 'US', 'arrived', 'at', 'the', 'venue'], ['Food', 'was',
'tasty']]

Conversion into lowercase and uppercase

A given text can be converted into lowercase or uppercase text entirely using the functions lower()
and upper(). The task of converting text into uppercase or lowercase falls under the category of
normalization.

Consider the following example of case conversion:

>>> text='HARdWork IS KEy to SUCCESS'
>>> print(text.lower())
hardwork is key to success
>>> print(text.upper())
HARDWORK IS KEY TO SUCCESS

Dealing with stop words

Stop words are words that need to be filtered out during the task of information retrieval or other natural
language tasks, as these words do not contribute much to the overall meaning of the sentence. There are
many search engines that work by deleting stop words so as to reduce the search space. Elimination of
stopwords is considered one of the normalization tasks that is crucial in NLP.

NLTK has a list of stop words for many languages. We need to unzip datafile so that the list of stop
words can be accessed from nltk_data/corpora/stopwords/:

>>> import nltk
>>> from nltk.corpus import stopwords
>>> stops=set(stopwords.words('english'))
>>> words=["Don't", 'hesitate','to','ask','questions']
>>> [word for word in words if word not in stops]
["Don't", 'hesitate', 'ask', 'questions']

The instance of nltk.corpus.reader.WordListCorpusReader is a stopwords corpus. It
has the words() function, whose argument is fileid. Here, it is English; this refers to all the stop
words present in the English file. If the words() function has no argument, then it will refer to all the
stop words of all the languages.

Other languages in which stop word removal can be done, or the number of languages whose file of stop
words is present in NLTK can be found using the fileids() function:

>>> stopwords.fileids()
['danish', 'dutch', 'english', 'finnish', 'french', 'german',
'hungarian', 'italian', 'norwegian', 'portuguese', 'russian',
'spanish', 'swedish', 'turkish']

Any of these previously listed languages can be used as an argument to the words() function so as to
get the stop words in that language.

Calculate stopwords in English

Let's see an example of how to calculate stopwords:

>>> import nltk
>>> from nltk.corpus import stopwords
>>> stopwords.words('english')
['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you',
'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his',
'himself', 'she', 'her', 'hers', 'herself', 'it', 'its', 'itself',
'they', 'them', 'their', 'theirs', 'themselves', 'what', 'which',
'who', 'whom', 'this', 'that', 'these', 'those', 'am', 'is', 'are',
'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had',
'having', 'do', 'does', 'did', 'doing', 'a', 'an', 'the', 'and',
'but', 'if', 'or', 'because', 'as', 'until', 'while', 'of', 'at',
'by', 'for', 'with', 'about', 'against', 'between', 'into',
'through', 'during', 'before', 'after', 'above', 'below', 'to',
'from', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under',
'again', 'further', 'then', 'once', 'here', 'there', 'when',
'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more',
'most', 'other', 'some', 'such', 'no', 'nor', 'not', 'only', 'own',
'same', 'so', 'than', 'too', 'very', 's', 't', 'can', 'will',
'just', 'don', 'should', 'now']
>>> def para_fraction(text):
stopwords = nltk.corpus.stopwords.words('english')
para = [w for w in text if w.lower() not in stopwords]
return len(para) / len(text)

>>> para_fraction(nltk.corpus.reuters.words())
0.7364374824583169

>>> para_fraction(nltk.corpus.inaugural.words())
0.5229560503653893

Normalization may also involve converting numbers into words (for example, 1 can be replaced by
one) and expanding abbreviations (for instance, can't can be replaced by cannot). This can be
achieved by representing them in replacement patterns. This is discussed in the next section.

Substituting and correcting tokens
In this section, we will discuss the replacement of tokens with other tokens. We will also about how we
can correct the spelling of tokens by replacing incorrectly spelled tokens with correctly spelled tokens.

Replacing words using regular expressions

In order to remove errors or perform text normalization, word replacement is done. One way by which
text replacement is done is by using regular expressions. Previously, we faced problems while
performing tokenization for contractions. Using text replacement, we can replace contractions with their
expanded versions. For example, doesn't can be replaced by does not.

We will begin by writing the following code, naming this program replacers.py, and saving it in
the nltkdata folder:

import re
replacement_patterns = [
(r'won\'t', 'will not'),
(r'can\'t', 'cannot'),
(r'i\'m', 'i am'),
(r'ain\'t', 'is not'),
(r'(\w+)\'ll', '\g<1> will'),
(r'(\w+)n\'t', '\g<1> not'),
(r'(\w+)\'ve', '\g<1> have'),
(r'(\w+)\'s', '\g<1> is'),
(r'(\w+)\'re', '\g<1> are'),
(r'(\w+)\'d', '\g<1> would')
]
class RegexpReplacer(object):

def __init__(self, patterns=replacement_patterns):
self.patterns = [(re.compile(regex), repl) for (regex, repl)

in
patterns]

def replace(self, text):
s = text
for (pattern, repl) in self.patterns:

(s, count) = re.subn(pattern, repl, s)
return s

Here, replacement patterns are defined in which the first term denotes the pattern to be matched and the
second term is its corresponding replacement pattern. The RegexpReplacer class has been defined
to perform the task of compiling pattern pairs and it provides a method called replace(), whose
function is to perform the replacement of a pattern with another pattern.

Example of the replacement of a text with another text

Let's see an example of how we can substitute a text with another text:

>>> import nltk
>>> from replacers import RegexpReplacer
>>> replacer= RegexpReplacer()
>>> replacer.replace("Don't hesitate to ask questions")
'Do not hesitate to ask questions'
>>> replacer.replace("She must've gone to the market but she didn't
go")
'She must have gone to the market but she did not go'

The function of RegexpReplacer.replace() is substituting every instance of a replacement
pattern with its corresponding substitution pattern. Here, must've is replaced by must have and
didn't is replaced by did not, since the replacement pattern in replacers.py has already been
defined by tuple pairs, that is,(r'(\w+)\'ve', '\g<1> have') and (r'(\w+)n\'t',
'\g<1> not').

We can not only perform the replacement of contractions; we can also substitute a token with any other
token.

Performing substitution before tokenization

Tokens substitution can be performed prior to tokenization so as to avoid the problem that occurs during
tokenization for contractions:

>>> import nltk
>>> from nltk.tokenize import word_tokenize
>>> from replacers import RegexpReplacer
>>> replacer=RegexpReplacer()
>>> word_tokenize("Don't hesitate to ask questions")
['Do', "n't", 'hesitate', 'to', 'ask', 'questions']
>>> word_tokenize(replacer.replace("Don't hesitate to ask
questions"))
['Do', 'not', 'hesitate', 'to', 'ask', 'questions']

Dealing with repeating characters

Sometimes, people write words involving repeating characters that cause grammatical errors. For
instance consider a sentence, I like it lotttttt. Here, lotttttt refers to lot. So now, we'll
eliminate these repeating characters using the backreference approach, in which a character refers to the
previous characters in a group in a regular expression. This is also considered one of the normalization
tasks.

Firstly, append the following code to the previously created replacers.py:

class RepeatReplacer(object):
def __init__(self):

self.repeat_regexp = re.compile(r'(\w*)(\w)\2(\w*)')
self.repl = r'\1\2\3'

def replace(self, word):
repl_word = self.repeat_regexp.sub(self.repl, word)
if repl_word != word:

return self.replace(repl_word)
else:

return repl_word

Example of deleting repeating characters

Let's see an example of how we can delete repeating characters from a token:

>>> import nltk
>>> from replacers import RepeatReplacer
>>> replacer=RepeatReplacer()
>>> replacer.replace('lotttt')
'lot'
>>> replacer.replace('ohhhhh')
'oh'
>>> replacer.replace('ooohhhhh')
'oh'

The RepeatReplacer class works by compiling regular expressions and replacement strings and is
defined using backreference.Repeat_regexp, which is present in replacers.py. It matches
the starting characters that can be zero or many (\w*), ending characters that can be zero or many
(\w*), or a character (\w)that is followed by same character.

For example, lotttt is split into (lo)(t)t(tt). Here, one t is reduced and the string becomes
lottt. The process of splitting continues, and finally, the resultant string obtained is lot.

The problem with RepeatReplacer is that it will convert happy to hapy, which is inappropriate.
To avoid this problem, we can embed wordnet along with it.

In the replacers.py program created previously, add the following lines to include wordnet:

import re
from nltk.corpus import wordnet
class RepeatReplacer(object):

def __init__(self):
self.repeat_regexp = re.compile(r'(\w*)(\w)\2(\w*)')
self.repl = r'\1\2\3'

def replace(self, word):
if wordnet.synsets(word):

return word

repl_word = self.repeat_regexp.sub(self.repl, word)
if repl_word != word:

return self.replace(repl_word)
else:

return repl_word

Now, let's take a look at how the previously mentioned problem can be overcome:

>>> import nltk
>>> from replacers import RepeatReplacer
>>> replacer=RepeatReplacer()
>>> replacer.replace('happy')
'happy'

Replacing a word with its synonym

Now we will see how we can substitute a given word by its synonym. To the already existing
replacers.py, we can add a class called WordReplacer that provides mapping between a word
and its synonym:

class WordReplacer(object):
def __init__(self, word_map):

self.word_map = word_map
def replace(self, word):

return self.word_map.get(word, word)

Example of substituting word a with its synonym

Let's have a look at an example of substituting a word with its synonym: 

>>> import nltk
>>> from replacers import WordReplacer
>>> replacer=WordReplacer({'congrats':'congratulations'})
>>> replacer.replace('congrats')
'congratulations'
>>> replacer.replace('maths')
'maths'

In this code, the replace() function looks for the corresponding synonym for a word in word_map.
If the synonym is present for a given word, then the word will be replaced by its synonym. If the
synonym for a given word is not present, then no replacement will be performed; the same word will be
returned.

Applying Zipf's law to text
Zipf's law states that the frequency of a token in a text is directly proportional to its rank or position in
the sorted list. This law describes how tokens are distributed in languages: some tokens occur very
frequently, some occur with intermediate frequency, and some tokens rarely occur.

Let's see the code for obtaining the log-log plot in NLTK that is based on Zipf's law:

>>> import nltk
>>> from nltk.corpus import gutenberg
>>> from nltk.probability import FreqDist
>>> import matplotlib
>>> import matplotlib.pyplot as plt
>>> matplotlib.use('TkAgg')
>>> fd = FreqDist()
>>> for text in gutenberg.fileids():
. . . for word in gutenberg.words(text):
. . . fd.inc(word)
>>> ranks = []
>>> freqs = []
>>> for rank, word in enumerate(fd):
. . . ranks.append(rank+1)
. . . freqs.append(fd[word])
. . .
>>> plt.loglog(ranks, freqs)
>>> plt.xlabel('frequency(f)', fontsize=14, fontweight='bold')
>>> plt.ylabel('rank(r)', fontsize=14, fontweight='bold')
>>> plt.grid(True)
>>> plt.show()

The preceding code will obtain a plot of rank versus the frequency of words in a document. So, we can
check whether Zipf's law holds for all the documents or not by seeing the proportionality relationship
between rank and the frequency of words.

Similarity measures
There are many similarity measures that can be used for performing NLP tasks. The nltk.metrics
package in NLTK is used to provide various evaluation or similarity measures, which is conducive to
perform various NLP tasks.

In order to test the performance of taggers, chunkers, and so on, in NLP, the standard scores retrieved
from information retrieval can be used.

Let's have a look at how the output of named entity recognizer can be analyzed using the standard scores
obtained from a training file:

>>> from __future__ import print_function
>>> from nltk.metrics import *
>>> training='PERSON OTHER PERSON OTHER OTHER ORGANIZATION'.split()
>>> testing='PERSON OTHER OTHER OTHER OTHER OTHER'.split()
>>> print(accuracy(training,testing))
0.6666666666666666
>>> trainset=set(training)
>>> testset=set(testing)
>>> precision(trainset,testset)
1.0
>>> print(recall(trainset,testset))
0.6666666666666666
>>> print(f_measure(trainset,testset))
0.8

Applying similarity measures using Ethe edit distance algorithm

Edit distance or the Levenshtein edit distance between two strings is used to compute the number of
characters that can be inserted, substituted, or deleted in order to make two strings equal.

The operations performed in Edit Distance include the following:

• Copying letters from the first string to the second string (cost 0) and substituting a letter with
another (cost 1):

D(i-1,j-1) + d(si,tj)(Substitution / copy)
• Deleting a letter in the first string (cost 1)

D(i,j-1)+1 (deletion)
• Inserting a letter in the second string (cost 1):

D(i,j) = min D(i-1,j)+1 (insertion)

The Python code for Edit Distance that is included in the nltk.metrics package is as follows:

from __future__ import print_function
def _edit_dist_init(len1, len2):

lev = []
for i in range(len1):

lev.append([0] * len2) # initialize 2D array to zero
for i in range(len1):

lev[i][0] = i # column 0: 0,1,2,3,4,...
for j in range(len2):

lev[0][j] = j # row 0: 0,1,2,3,4,...
return lev

def_edit_dist_step(lev,i,j,s1,s2,transpositions=False):
c1 =s1[i-1]
c2 =s2[j-1]

skipping a character in s1
a =lev[i-1][j] +1
skipping a character in s2
b =lev[i][j -1]+1
substitution
c =lev[i-1][j-1]+(c1!=c2)
transposition
d =c+1 # never picked by default
if transpositions and i>1 and j>1:
if s1[i -2]==c2 and s2[j -2]==c1:
d =lev[i-2][j-2]+1
pick the cheapest
lev[i][j] =min(a,b,c,d)

def edit_distance(s1, s2, transpositions=False):
set up a 2-D array
len1 = len(s1)
len2 = len(s2)
lev = _edit_dist_init(len1 + 1, len2 + 1)

iterate over the array
for i in range(len1):

for j in range(len2):
_edit_dist_step(lev, i + 1, j + 1, s1, s2,

transpositions=transpositions)
return lev[len1][len2]

Let's have a look at the Edit Distance calculated in NLTK using the nltk.metrics package:

>>> import nltk
>>> from nltk.metrics import *
>>> edit_distance("relate","relation")

3
>>> edit_distance("suggestion","calculation")
7

Here, when we calculate the edit distance between relate and relation, three operations (one
substitution and two insertions) are performed. While calculating the edit distance between
suggestion and calculation, seven operations (six substitutions and one insertion) are
performed.

Applying similarity measures using Jaccard's Coefficient

Jaccard's coefficient, or Tanimoto coefficient, may be defined as a measure of the overlap of two sets, X
and Y.

It may be defined as follows:

• Jaccard(X,Y)=|X∩Y|/|XUY|
• Jaccard(X,X)=1
• Jaccard(X,Y)=0 if X∩Y=0

The code for Jaccard's similarity may be given as follows:

def jacc_similarity(query, document):
first=set(query).intersection(set(document))
second=set(query).union(set(document))
return len(first)/len(second)

Let's have a look at the implementation of Jaccard's similarity coefficient using NLTK:

>>> import nltk
>>> from nltk.metrics import *
>>> X=set([10,20,30,40])
>>> Y=set([20,30,60])
>>> print(jaccard_distance(X,Y))
0.6

Applying similarity measures using the Smith Waterman
distance

The Smith Waterman distance is similar to edit distance. This similarity metric was developed in order
to detect the optical alignments between related protein sequences and DNA. It consists of costs to be
assigned to and functions for alphabet mapping to cost values (substitution); cost is also assigned to gap
G (insertion or deletion):

1. 0 //start over
2. D(i-1,j-1) -d(si,tj) //subst/copy
3. D(i,j) = max D(i-1,j)-G //insert
4. D(i,j-1)-G //delete

Note

Distance is maximum over all i,j in table of D(i,j)

5. G = 1 //example value for gap
6. d(c,c) = -2 //context dependent substitution cost
7. d(c,d) = +1 //context dependent substitution cost

Similar to Edit distance, the Python code for Smith Waterman can be embedded with the
nltk.metrics package to perform string similarity using Smith Waterman in NLTK.

Other string similarity metrics

Binary distance is a string similarity metric. It returns the value 0.0 if two labels are identical;
otherwise, it returns the value 1.0.

The Python code for Binary distance metrics is:

def binary_distance(label1, label2):
return 0.0 if label1 == label2 else 1.0

Let's see how Binary distance metrics is implemented in NLTK:

>>> import nltk
>>> from nltk.metrics import *
>>> X = set([10,20,30,40])
>>> Y= set([30,50,70])
>>> binary_distance(X, Y)
1.0

Masi distance is based on partial agreement when multiple labels are present.

The Python code included in nltk.metrics for masi distance is as follows:

def masi_distance(label1, label2):
len_intersection = len(label1.intersection(label2))
len_union = len(label1.union(label2))
len_label1 = len(label1)
len_label2 = len(label2)
if len_label1 == len_label2 and len_label1 == len_intersection:

m = 1
elif len_intersection == min(len_label1, len_label2):

m = 0.67
elif len_intersection > 0:

m = 0.33
else:

m = 0

return 1 - (len_intersection / float(len_union)) * m

Let's see the implementation of masi distance in NLTK:

>>> import nltk
>>> from __future__ import print_function
>>> from nltk.metrics import *
>>> X = set([10,20,30,40])
>>> Y= set([30,50,70])
>>> print(masi_distance(X,Y))
0.945

Summary
In this chapter, you have learned various operations that can be performed on a text that is a collection of
strings. You have understood the concept of tokenization, substitution, and normalization, and applied
various similarity measures to strings using NLTK. We have also discussed Zipf's law, which may be
applicable to some of the existing documents.

In the next chapter, we'll discuss various language modeling techniques and different NLP tasks.

Chapter 2. Statistical Language Modeling
Computational linguistics is an emerging field that is widely used in analytics, software applications,
and contexts where people communicate with machines. Computational linguistics may be defined as a
subfield of artificial intelligence. Applications of computational linguistics include machine translation,
speech recognition, intelligent Web searching, information retrieval, and intelligent spelling checkers. It
is important to understand the preprocessing tasks or the computations that can be performed on natural
language text. In the following chapter, we will discuss ways to calculate word frequencies, the
Maximum Likelihood Estimation (MLE) model, interpolation on data, and so on. But first, let's go
through the various topics that we will cover in this chapter. They are as follows:

• Calculating word frequencies (1-gram, 2-gram, 3-gram)
• Developing MLE for a given text
• Applying smoothing on the MLE model
• Developing a back-off mechanism for MLE
• Applying interpolation on data to get a mix and match
• Evaluating a language model through perplexity
• Applying Metropolis-Hastings in modeling languages
• Applying Gibbs sampling in language processing

Understanding word frequency
Collocations may be defined as the collection of two or more tokens that tend to exist together. For
example, the United States, the United Kingdom, Union of Soviet Socialist Republics, and so on.

Unigram represents a single token. The following code will be used for generate unigrams for Alpino
Corpus:

>>> import nltk
>>> from nltk.util import ngrams
>>> from nltk.corpus import alpino
>>> alpino.words()
['De', 'verzekeringsmaatschappijen', 'verhelen', ...]>>>
unigrams=ngrams(alpino.words(),1)
>>> for i in unigrams:
print(i)

Consider another example for generating quadgrams or fourgrams from alpinocorpus:

>>> import nltk
>>> from nltk.util import ngrams
>>> from nltk.corpus import alpino
>>> alpino.words()
['De', 'verzekeringsmaatschappijen', 'verhelen', ...]
>>> quadgrams=ngrams(alpino.words(),4)

>>> for i in quadgrams:
print(i)

bigram refers to a pair of tokens. To find bigrams in the text, firstly, lowercased words are searched, a
list of lowercased words in the text is created, and BigramCollocationFinder is produced. The
BigramAssocMeasures found in the nltk.metrics package can be used to find bigrams in the
text:

>>> import nltk
>>> from nltk.collocations import BigramCollocationFinder
>>> from nltk.corpus import webtext
>>> from nltk.metrics import BigramAssocMeasures
>>> tokens=[t.lower() for t in webtext.words('grail.txt')]
>>> words=BigramCollocationFinder.from_words(tokens)
>>> words.nbest(BigramAssocMeasures.likelihood_ratio, 10)
[("'", 's'), ('arthur', ':'), ('#', '1'), ("'", 't'), ('villager',
'#'), ('#', '2'), (']', '['), ('1', ':'), ('oh', ','), ('black',
'knight')]

In the preceding code, we can add a word filter that can be used to eliminate stopwords and
punctuation:

>>> from nltk.corpus import stopwords
>>> from nltk.corpus import webtext
>>> from nltk.collocations import BigramCollocationFinder
>>> from nltk.metrics import BigramAssocMeasures
>>> set = set(stopwords.words('english'))
>>> stops_filter = lambda w: len(w) < 3 or w in set
>>> tokens=[t.lower() for t in webtext.words('grail.txt')]
>>> words=BigramCollocationFinder.from_words(tokens)
>>> words.apply_word_filter(stops_filter)
>>> words.nbest(BigramAssocMeasures.likelihood_ratio, 10)
[('black', 'knight'), ('clop', 'clop'), ('head', 'knight'),
('mumble', 'mumble'), ('squeak', 'squeak'), ('saw', 'saw'), ('holy',
'grail'), ('run', 'away'), ('french', 'guard'), ('cartoon',
'character')]

Here, we can change the frequency of bigrams from 10 to any other number.

Another way of generating bigrams from a text is using collocation finders. This is given in the
following code:

>>> import nltk
>>> from nltk.collocation import *
>>> text1="Hardwork is the key to success. Never give up!"
>>> word = nltk.wordpunct_tokenize(text1)
>>> finder = BigramCollocationFinder.from_words(word)

>>> bigram_measures = nltk.collocations.BigramAssocMeasures()
>>> value = finder.score_ngrams(bigram_measures.raw_freq)
>>> sorted(bigram for bigram, score in value)
[('.', 'Never'), ('Hardwork', 'is'), ('Never', 'give'), ('give',
'up'), ('is', 'the'), ('key', 'to'), ('success', '.'), ('the',
'key'), ('to', 'success'), ('up', '!')]

We will now see another code for generating bigrams from alpino corpus:

>>> import nltk
>>> from nltk.util import ngrams
>>> from nltk.corpus import alpino
>>> alpino.words()
['De', 'verzekeringsmaatschappijen', 'verhelen', ...]
>>> bigrams_tokens=ngrams(alpino.words(),2)
>>> for i in bigrams_tokens:
print(i)

This code will generate bigrams from alpino corpus.

We will now see the code for generating trigrams:

>>> import nltk
>>> from nltk.util import ngrams
>>> from nltk.corpus import alpino
>>> alpino.words()
['De', 'verzekeringsmaatschappijen', 'verhelen', ...]>>>
trigrams_tokens=ngrams(alpino.words(),3)
>>> for i in trigrams_tokens:
print(i)

For generating fourgrams and generating the frequency of fourgrams, the following code is used:

>>> import nltk
>>> import nltk
>>> from nltk.collocations import *
>>> text="Hello how are you doing ? I hope you find the book
interesting"
>>> tokens=nltk.wordpunct_tokenize(text)
>>>
fourgrams=nltk.collocations.QuadgramCollocationFinder.from_words(toke
ns)
>>> for fourgram, freq in fourgrams.ngram_fd.items():
print(fourgram,freq)

('hope', 'you', 'find', 'the') 1
('Hello', 'how', 'are', 'you') 1

('you', 'doing', '?', 'I') 1
('are', 'you', 'doing', '?') 1
('how', 'are', 'you', 'doing') 1
('?', 'I', 'hope', 'you') 1
('doing', '?', 'I', 'hope') 1
('find', 'the', 'book', 'interesting') 1
('you', 'find', 'the', 'book') 1
('I', 'hope', 'you', 'find') 1

We will now see the code for generating ngrams for a given sentence:

>>> import nltk
>>> sent=" Hello , please read the book thoroughly . If you have any
queries , then don't hesitate to ask . There is no shortcut to
success ."
>>> n=5
>>> fivegrams=ngrams(sent.split(),n)
>>> for grams in fivegrams:

print(grams)

('Hello', ',', 'please', 'read', 'the')
(',', 'please', 'read', 'the', 'book')
('please', 'read', 'the', 'book', 'thoroughly')
('read', 'the', 'book', 'thoroughly', '.')
('the', 'book', 'thoroughly', '.', 'If')
('book', 'thoroughly', '.', 'If', 'you')
('thoroughly', '.', 'If', 'you', 'have')
('.', 'If', 'you', 'have', 'any')
('If', 'you', 'have', 'any', 'queries')
('you', 'have', 'any', 'queries', ',')
('have', 'any', 'queries', ',', 'then')
('any', 'queries', ',', 'then', "don't")
('queries', ',', 'then', "don't", 'hesitate')
(',', 'then', "don't", 'hesitate', 'to')
('then', "don't", 'hesitate', 'to', 'ask')
("don't", 'hesitate', 'to', 'ask', '.')
('hesitate', 'to', 'ask', '.', 'There')
('to', 'ask', '.', 'There', 'is')
('ask', '.', 'There', 'is', 'no')
('.', 'There', 'is', 'no', 'shortcut')
('There', 'is', 'no', 'shortcut', 'to')
('is', 'no', 'shortcut', 'to', 'success')
('no', 'shortcut', 'to', 'success', '.')

Develop MLE for a given text

MLE, also referred to as multinomial logistic regression or a conditional exponential classifier, is an
essential task in the field of NLP. It was first introduced in 1996 by Berger and Della Pietra. Maximum
Entropy is defined in NLTK in the nltk.classify.maxent module. In this module, all the
probability distributions are considered that are in accordance with the training data. This model is used
to refer to two features, namely input-feature and joint feature. An input feature may be called the
feature of unlabeled words. A joined feature may be called the feature of labeled words. MLE is used to
generate freqdist that contains the probability distribution for a given occurrence in a text. param
freqdist consists of frequency distribution on which probability distribution is based.

We'll now see the code for the Maximum Entropy Model in NLTK:

from__future__import print_function,unicode_literals
__docformat__='epytext en'

try:
import numpy
except ImportError:

pass
import tempfile
import os
from collections import defaultdict
from nltk import compat
from nltk.data import gzip_open_unicode
from nltk.util import OrderedDict
from nltk.probability import DictionaryProbDist
from nltk.classify.api import ClassifierI
from nltk.classify.util import CutoffChecker,accuracy,log_likelihood
from nltk.classify.megam import (call_megam,
write_megam_file,parse_megam_weights)
from nltk.classify.tadm import
call_tadm,write_tadm_file,parse_tadm_weights

In the preceding code, nltk.probability consists of the FreqDist class that can be used to
determine the frequency of the occurrence of individual tokens in a text.

The ProbDistI is used to determine the probability distribution of individual occurrences in a text.
There are basically two kinds of probability distributions: Derived Probability Distribution and Analytic
Probability Distribution. Distributed Probability Distributions are obtained from frequency distribution.
Analytic Probability Distributions are obtained from parameters, such as variance.

In order to obtain the frequency distribution, the maximum likelihood estimate is used. It computes the
probability of every occurrence on the basis of its frequency in the frequency distribution:

class MLEProbDist(ProbDistI):

def __init__(self, freqdist, bins=None):
self._freqdist = freqdist

def freqdist(self):
"""

It will find the frequency distribution on the basis of probability distribution:

"""
return self._freqdist

def prob(self, sample):
return self._freqdist.freq(sample)

def max(self):
return self._freqdist.max()

def samples(self):
return self._freqdist.keys()

def __repr__(self):
"""

It will return string representation of ProbDist
"""

return '<MLEProbDist based on %d samples>' %
self._freqdist.N()

class LidstoneProbDist(ProbDistI):
"""

It is used to obtain frequency distribution. It is represented by a real number, Gamma, whose range lies
between 0 and 1. The LidstoneProbDist calculates the probability of a given observation with
count c, outcomes N, and bins B as follows: (c+Gamma)/(N+B*Gamma).

It also means that Gamma is added to the count of each bin and MLE is computed from the given
frequency distribution:

"""
SUM_TO_ONE = False

def __init__(self, freqdist, gamma, bins=None):
"""

Lidstone is used to compute the probability distribution in order to obtain freqdist.

paramfreqdist may be defined as the frequency distribution on which probability estimates are
based.

param bins may be defined as sample values that can be obtained from the probability distribution. The
sum of probabilities is equal to one:

"""
if (bins == 0) or (bins is None and freqdist.N() == 0):

name = self.__class__.__name__[:-8]
raise ValueError('A %s probability distribution ' % name

+
'must have at least one bin.')

if (bins is not None) and (bins < freqdist.B()):
name = self.__class__.__name__[:-8]
raise ValueError('\nThe number of bins in a %s

distribution ' % name +
'(%d) must be greater than or equal to\n' % bins +
'the number of bins in the FreqDist used ' +
'to create it (%d).' % freqdist.B())

self._freqdist = freqdist
self._gamma = float(gamma)
self._N = self._freqdist.N()

if bins is None:
bins = freqdist.B()

self._bins = bins

self._divisor = self._N + bins * gamma
if self._divisor == 0.0:

In extreme cases we force the probability to be 0,
which it will be, since the count will be 0:
self._gamma = 0
self._divisor = 1

def freqdist(self):
"""

It obtains frequency distribution, which is based upon the probability distribution:

"""
return self._freqdist

def prob(self, sample):
c = self._freqdist[sample]

return (c + self._gamma) / self._divisor

def max(self):
To obtain most probable sample, choose the one

that occurs very frequently.

return self._freqdist.max()

def samples(self):
return self._freqdist.keys()

def discount(self):
gb = self._gamma * self._bins

return gb / (self._N + gb)

def __repr__(self):
"""

String representation of ProbDist is obtained.

"""
return '<LidstoneProbDist based on %d samples>' %

self._freqdist.N()

class LaplaceProbDist(LidstoneProbDist):
"""

It is used to obtain frequency distribution. It calculates the probability of a sample with count c,
outcomes N, and bins B as follows:

(c+1)/(N+B)

It also means that 1 is added to the count of every bin, and the maximum likelihood is estimated for the
resultant frequency distribution:

"""
def __init__(self, freqdist, bins=None):

"""

LaplaceProbDist is used to obtain the probability distribution for generating freqdist.

param freqdist is used to obtain the frequency distribution, which is based on probability
estimates.

Param bins may be defined as the frequency of sample values that can be generated. The sum of
probabilities must be 1:

"""
LidstoneProbDist.__init__(self, freqdist, 1, bins)

def __repr__(self):
"""

String representation of ProbDist is obtained.
"""

return '<LaplaceProbDist based on %d samples>' %
self._freqdist.N()

class ELEProbDist(LidstoneProbDist):
"""

It is used to obtain frequency distribution. It calculates the probability of a sample with count c,
outcomes N, and bins B as follows:

(c+0.5)/(N+B/2)

It also means that 0.5 is added to the count of every bin and the maximum likelihood is estimated for
the resultant frequency distribution:

"""
def __init__(self, freqdist, bins=None):

"""

The expected likelihood estimation is used to obtain the probability distribution for generating
freqdist.param.freqdist is used to obtain the frequency distribution, which is based on
probability estimates.

param bins may be defined as the frequency of sample values that can be generated. The sum of
probabilities must be 1:

"""
LidstoneProbDist.__init__(self, freqdist, 0.5, bins)

def __repr__(self):
"""

String representation of ProbDist is obtained.
"""

return '<ELEProbDist based on %d samples>' %
self._freqdist.N()

class WittenBellProbDist(ProbDistI):
"""

The WittenBellProbDist is used to obtain the probability distribution. It is used to obtain the
uniform probability mass on the basis of the frequency of the sample seen before. The probability mass
for the sample is given as follows:

T / (N + T)

Here, T is the number of samples observed and N is total number of events observed. It is equal to the
maximum likelihood estimate of a new sample that is occurring. The sum of all the probabilities is equal
to 1:

Here,
p = T / Z (N + T), if count = 0
p = c / (N + T), otherwise

"""

def __init__(self, freqdist, bins=None):
"""

It obtains the probability distribution. This probability is used to provide the uniform probability mass to
an unseen sample. The probability mass for the sample is given as follows:

T / (N + T)

Here, T is the number of samples observed and N is the total number of events observed. It is equal to
the maximum likelihood estimate of a new sample that is occurring. The sum of all the probabilities is
equal to 1:

Here,
p = T / Z (N + T), if count = 0
p = c / (N + T), otherwise

Z is the normalizing factor that is calculated using these values and a bin value.

Param freqdist is used to estimate the frequency counts from which the probability distribution is
obtained.

Param bins may be defined as the number of possible types of samples:

"""
assert bins is None or bins >= freqdist.B(),\

'bins parameter must not be less than %d=freqdist.B()' % freqdist.B()
if bins is None:

bins = freqdist.B()
self._freqdist = freqdist
self._T = self._freqdist.B()
self._Z = bins - self._freqdist.B()
self._N = self._freqdist.N()
self._P0 is P(0), precalculated for efficiency:
if self._N==0:

if freqdist is empty, we approximate P(0) by a
UniformProbDist:

self._P0 = 1.0 / self._Z
else:

self._P0 = self._T / float(self._Z * (self._N + self._T))

def prob(self, sample):
inherit docs from ProbDistI
c = self._freqdist[sample]
return (c / float(self._N + self._T) if c != 0 else self._P0)

def max(self):
return self._freqdist.max()

def samples(self):
return self._freqdist.keys()

def freqdist(self):
return self._freqdist

def discount(self):
raise NotImplementedError()

def __repr__(self):
"""

String representation of ProbDist is obtained.

"""
return '<WittenBellProbDist based on %d samples>' %

self._freqdist.N()

We can perform testing using maximum likelihood estimation. Let's consider the following code for
MLE in NLTK:

>>> import nltk
>>> from nltk.probability import *
>>> train_and_test(mle)
28.76%
>>> train_and_test(LaplaceProbDist)
69.16%
>>> train_and_test(ELEProbDist)
76.38%
>>> def lidstone(gamma):

return lambda fd, bins: LidstoneProbDist(fd, gamma, bins)

>>> train_and_test(lidstone(0.1))
86.17%
>>> train_and_test(lidstone(0.5))
76.38%

>>> train_and_test(lidstone(1.0))
69.16%

Hidden Markov Model estimation

Hidden Markov Model (HMM) comprises of observed states and the latent states that help in
determining them. Consider the diagrammatic description of HMM. Here, x represents the latent state
and y represents the observed state.

We can perform testing using HMM estimation. Let's consider the Brown Corpus and the code given
here:

>>> import nltk
>>> corpus =
nltk.corpus.brown.tagged_sents(categories='adventure')[:700]
>>> print(len(corpus))
700
>>> from nltk.util import unique_list
>>> tag_set = unique_list(tag for sent in corpus for (word,tag) in
sent)
>>> print(len(tag_set))
104
>>> symbols = unique_list(word for sent in corpus for (word,tag) in
sent)
>>> print(len(symbols))
1908
>>> print(len(tag_set))
104
>>> symbols = unique_list(word for sent in corpus for (word,tag) in
sent)
>>> print(len(symbols))
1908
>>> trainer = nltk.tag.HiddenMarkovModelTrainer(tag_set, symbols)

>>> train_corpus = []
>>> test_corpus = []
>>> for i in range(len(corpus)):
if i % 10:
train_corpus += [corpus[i]]
else:
test_corpus += [corpus[i]]

>>> print(len(train_corpus))
630
>>> print(len(test_corpus))
70
>>> def train_and_test(est):
hmm = trainer.train_supervised(train_corpus, estimator=est)
print('%.2f%%' % (100 * hmm.evaluate(test_corpus)))

In the preceding code, we have created a 90% training and 10% testing file and we have tested the
estimator.

Applying smoothing on the MLE model
Smoothing is used to handle the words that have not occurred previously. So, the probability of
unknown words is 0. To solve this problem, smoothing is used.

Add-one smoothing

In the 18th century, Laplace invented add-one smoothing. In add-one smoothing, 1 is added to the count
of each word. Instead of 1, any other value can also be added to the count of unknown words so that
unknown words can be handled and their probability is non-zero. Pseudo count is the value (that is,
either 1 or nonzero) that is added to the counts of unknown words to make their probability nonzero.

Let's consider the following code for add-one smoothing in NLTK:

>>> import nltk
>>> corpus=u"<s> hello how are you doing ? Hope you find the book
interesting. </s>".split()
>>> sentence=u"<s>how are you doing</s>".split()
>>> vocabulary=set(corpus)
>>> len(vocabulary)
13
>>> cfd = nltk.ConditionalFreqDist(nltk.bigrams(corpus))
>>> # The corpus counts of each bigram in the sentence:
>>> [cfd[a][b] for (a,b) in nltk.bigrams(sentence)]
[0, 1, 0]
>>> # The counts for each word in the sentence:
>>> [cfd[a].N() for (a,b) in nltk.bigrams(sentence)]
[0, 1, 2]
>>> # There is already a FreqDist method for MLE probability:
>>> [cfd[a].freq(b) for (a,b) in nltk.bigrams(sentence)]
[0, 1.0, 0.0]
>>> # Laplace smoothing of each bigram count:
>>> [1 + cfd[a][b] for (a,b) in nltk.bigrams(sentence)]
[1, 2, 1]
>>> # We need to normalise the counts for each word:
>>> [len(vocabulary) + cfd[a].N() for (a,b) in
nltk.bigrams(sentence)]
[13, 14, 15]
>>> # The smoothed Laplace probability for each bigram:
>>> [1.0 * (1+cfd[a][b]) / (len(vocabulary)+cfd[a].N()) for (a,b) in
nltk.bigrams(sentence)]
[0.07692307692307693, 0.14285714285714285, 0.06666666666666667]

Consider another way of performing Add-one smoothing or generating a Laplace probability
distribution:

>>> # MLEProbDist is the unsmoothed probability distribution:
>>> cpd_mle = nltk.ConditionalProbDist(cfd, nltk.MLEProbDist,
bins=len(vocabulary))
>>> # Now we can get the MLE probabilities by using the .prob method:
>>> [cpd_mle[a].prob(b) for (a,b) in nltk.bigrams(sentence)]
[0, 1.0, 0.0]
>>> # LaplaceProbDist is the add-one smoothed ProbDist:
>>> cpd_laplace = nltk.ConditionalProbDist(cfd,
nltk.LaplaceProbDist, bins=len(vocabulary))
>>> # Getting the Laplace probabilities is the same as for MLE:
>>> [cpd_laplace[a].prob(b) for (a,b) in nltk.bigrams(sentence)]
[0.07692307692307693, 0.14285714285714285, 0.06666666666666667]

Good Turing

Good Turing was introduced by Alan Turing along with his statistical assistant I.J. Good. It is an
efficient smoothing method that increases the performance of statistical techniques performed for
linguistic tasks, such as word sense disambiguation (WSD), named entity recognition (NER), spelling
correction, machine translation, and so on. This method helps to predict the probability of unseen
objects. In this method, binomial distribution is exhibited by our objects of interest. This method is used
to compute the mass probability for zero or low count samples on the basis of higher count samples .
Simple Good Turing performs approximation from frequency to frequency by linear regression into a
linear line in log space. If c\ is the adjusted count, it will compute the following:

c\ = (c + 1) N(c + 1) / N(c) for c >= 1

The samples with zero frequency in training = N(1) for c == 0.

Here, c is the original count and N(i) is the number of event types observed with count i.

Bill Gale and Geoffrey Sampson have presented Simple Good Turing:

class SimpleGoodTuringProbDist(ProbDistI):
"""

Given a pair (pi, qi), where pi refers to the frequency and
qi refers to the frequency of frequency, our aim is to minimize

the
square variation. E(p) and E(q) is the mean of pi and qi.

- slope, b = sigma ((pi-E(p)(qi-E(q))) / sigma
((pi-E(p))(pi-E(p)))

- intercept: a = E(q) - b.E(p)
"""

SUM_TO_ONE = False
def __init__(self, freqdist, bins=None):

"""
param freqdist refers to the count of frequency from which

probability
distribution is estimated.
Param bins is used to estimate the possible number of

samples.
"""

assert bins is None or bins > freqdist.B(),\
'bins parameter must not be less than %d=freqdist.B()+1' %
(freqdist.B()+1)

if bins is None:
bins = freqdist.B() + 1

self._freqdist = freqdist
self._bins = bins
r, nr = self._r_Nr()
self.find_best_fit(r, nr)
self._switch(r, nr)
self._renormalize(r, nr)

def _r_Nr_non_zero(self):
r_Nr = self._freqdist.r_Nr()
del r_Nr[0]
return r_Nr

def _r_Nr(self):
"""
Split the frequency distribution in two list (r, Nr), where Nr(r) > 0
"""

nonzero = self._r_Nr_non_zero()

if not nonzero:
return [], []

return zip(*sorted(nonzero.items()))

def find_best_fit(self, r, nr):
"""

Use simple linear regression to tune parameters self._slope
and

self._intercept in the log-log space based on count and
Nr(count)

(Work in log space to avoid floating point underflow.)
"""

For higher sample frequencies the data points becomes
horizontal

along line Nr=1. To create a more evident linear model in
log-log

space, we average positive Nr values with the surrounding

zero
values. (Church and Gale, 1991)

if not r or not nr:
Empty r or nr?
return

zr = []
for j in range(len(r)):

i = (r[j-1] if j > 0 else 0)
k = (2 * r[j] - i if j == len(r) - 1 else r[j+1])
zr_ = 2.0 * nr[j] / (k - i)
zr.append(zr_)

log_r = [math.log(i) for i in r]
log_zr = [math.log(i) for i in zr]

xy_cov = x_var = 0.0
x_mean = 1.0 * sum(log_r) / len(log_r)
y_mean = 1.0 * sum(log_zr) / len(log_zr)
for (x, y) in zip(log_r, log_zr):

xy_cov += (x - x_mean) * (y - y_mean)
x_var += (x - x_mean)**2

self._slope = (xy_cov / x_var if x_var != 0 else 0.0)
if self._slope >= -1:

warnings.warn('SimpleGoodTuring did not find a proper
best fit '
'line for smoothing probabilities of occurrences. '
'The probability estimates are likely to be '
'unreliable.')

self._intercept = y_mean - self._slope * x_mean

def _switch(self, r, nr):
"""

Calculate the r frontier where we must switch from Nr to Sr
when estimating E[Nr].

"""
for i, r_ in enumerate(r):

if len(r) == i + 1 or r[i+1] != r_ + 1:
We are at the end of r, or there is a gap in r
self._switch_at = r_
break

Sr = self.smoothedNr
smooth_r_star = (r_ + 1) * Sr(r_+1) / Sr(r_)
unsmooth_r_star = 1.0 * (r_ + 1) * nr[i+1] / nr[i]

std = math.sqrt(self._variance(r_, nr[i], nr[i+1]))
if abs(unsmooth_r_star-smooth_r_star) <= 1.96 * std:

self._switch_at = r_
break

def _variance(self, r, nr, nr_1):
r = float(r)
nr = float(nr)
nr_1 = float(nr_1)
return (r + 1.0)**2 * (nr_1 / nr**2) * (1.0 + nr_1 / nr)

def _renormalize(self, r, nr):
"""

Renormalization is very crucial to ensure that the proper distribution of probability is obtained. It can be
obtained by making the probability estimate of an unseen sample N(1)/N and then, renormalizing all the
previously seen sample probabilities:

"""
prob_cov = 0.0
for r_, nr_ in zip(r, nr):

prob_cov += nr_ * self._prob_measure(r_)
if prob_cov:

self._renormal = (1 - self._prob_measure(0)) / prob_cov

def smoothedNr(self, r):
"""

Return the number of samples with count r.

"""

Nr = a*r^b (with b < -1 to give the appropriate hyperbolic
relationship)
Estimate a and b by simple linear regression technique on
the logarithmic form of the equation: log Nr = a + b*log(r)

return math.exp(self._intercept + self._slope * math.log(r))

def prob(self, sample):
"""

Return the sample's probability.

"""
count = self._freqdist[sample]
p = self._prob_measure(count)
if count == 0:

if self._bins == self._freqdist.B():
p = 0.0

else:
p = p / (1.0 * self._bins - self._freqdist.B())

else:
p = p * self._renormal

return p

def _prob_measure(self, count):
if count == 0 and self._freqdist.N() == 0 :

return 1.0
elif count == 0 and self._freqdist.N() != 0:

return 1.0 * self._freqdist.Nr(1) / self._freqdist.N()

if self._switch_at > count:
Er_1 = 1.0 * self._freqdist.Nr(count+1)
Er = 1.0 * self._freqdist.Nr(count)

else:
Er_1 = self.smoothedNr(count+1)
Er = self.smoothedNr(count)

r_star = (count + 1) * Er_1 / Er
return r_star / self._freqdist.N()

def check(self):
prob_sum = 0.0
for i in range(0, len(self._Nr)):

prob_sum += self._Nr[i] * self._prob_measure(i) /
self._renormal

print("Probability Sum:", prob_sum)
#assert prob_sum != 1.0, "probability sum should be one!"

def discount(self):
"""

It is used to provide the total probability transfers from
the

seen events to the unseen events.
"""

return 1.0 * self.smoothedNr(1) / self._freqdist.N()

def max(self):
return self._freqdist.max()

def samples(self):
return self._freqdist.keys()

def freqdist(self):

return self._freqdist

def __repr__(self):
"""

It obtains the string representation of ProbDist.
"""

return '<SimpleGoodTuringProbDist based on %d samples>'\
% self._freqdist.N()

Let's see the code for Simple Good Turing in NLTK:

>>> gt = lambda fd, bins: SimpleGoodTuringProbDist(fd, bins=1e5)
>>> train_and_test(gt)
5.17%

Kneser Ney estimation

Kneser Ney is used with trigrams. Let's see the following code in NLTK for the Kneser Ney estimation:

>>> import nltk
>>> corpus = [[((x[0],y[0],z[0]),(x[1],y[1],z[1]))

for x, y, z in nltk.trigrams(sent)]
for sent in corpus[:100]]

>>> tag_set = unique_list(tag for sent in corpus for (word,tag) in
sent)
>>> len(tag_set)
906
>>> symbols = unique_list(word for sent in corpus for (word,tag) in
sent)
>>> len(symbols)
1341
>>> trainer = nltk.tag.HiddenMarkovModelTrainer(tag_set, symbols)
>>> train_corpus = []
>>> test_corpus = []
>>> for i in range(len(corpus)):
if i % 10:
train_corpus += [corpus[i]]
else:
test_corpus += [corpus[i]]

>>> len(train_corpus)
90
>>> len(test_corpus)
10
>>> kn = lambda fd, bins: KneserNeyProbDist(fd)
>>> train_and_test(kn)
0.86%

Witten Bell estimation

Witten Bell is the smoothing algorithm that was designed to deal with unknown words having zero
probability. Let's consider the following code for Witten Bell estimation in NLTK:

>>> train_and_test(WittenBellProbDist)
6.90%

Develop a back-off mechanism for MLE
Katz back-off may be defined as a generative n gram language model that computes the conditional
probability of a given token given its previous information in n gram. According to this model, in
training, if n gram is seen more than n times, then the conditional probability of a token, given its
previous information, is proportional to the MLE of that n gram. Else, the conditional probability is
equivalent to the back-off conditional probability of (n-1) gram.

The following is the code for Katz's back-off model in NLTK:

def prob(self, word, context):
"""
Evaluate the probability of this word in this context using Katz
Backoff.
: param word: the word to get the probability of
: type word: str
:param context: the context the word is in
:type context: list(str)
"""
context = tuple(context)
if(context+(word,) in self._ngrams) or (self._n == 1):
return self[context].prob(word)
else:
return self._alpha(context) * self._backoff.prob(word,context[1:])

Applying interpolation on data to get mix and
match
The limitation of using an additive smoothed bigram is that we back off to a state of ignorance when we
deal with rare text. For example, the word captivating occurs five times in a training data: thrice
followed by by and twice followed by the. With additive smoothing, the occurrence of a and new before
captivating is the same. Both the occurrences are plausible, but the former is more probable as compared
to latter. This problem can be rectified using unigram probabilities. We can develop an interpolation
model in which both the unigram and bigram probabilities can be combined.

In SRILM, we perform interpolation by first training a unigram model with -order 1 and –order 2
used for the bigram model:

ngram - count - text / home / linux / ieng6 / ln165w / public / data
/ engand hintrain . txt \ - vocab / home / linux / ieng6 / ln165w /
public / data / engandhinlexicon . txt \ - order 1 - addsmooth
0.0001 - lm wsj1 . lm

Evaluate a language model through perplexity
The nltk.model.ngram module in NLTK has a submodule, perplexity(text). This
submodule evaluates the perplexity of a given text. Perplexity is defined as 2**Cross Entropy for the
text. Perplexity defines how a probability model or probability distribution can be useful to predict a
text.

The code for evaluating the perplexity of text as present in the nltk.model.ngram module is as
follows:

def perplexity(self, text):
"""

Calculates the perplexity of the given text.
This is simply 2 ** cross-entropy for the text.

:param text: words to calculate perplexity of
:type text: list(str)

"""

return pow(2.0, self.entropy(text))

Applying metropolis hastings in modeling
languages
There are various ways to perform processing on posterior distribution in Markov Chain Monte Carlo
(MCMC). One way is using the Metropolis-Hastings sampler. In order to implement the Metropolis-
Hastings algorithm, we require standard uniform distribution, proposal distribution, and target
distribution that is proportional to posterior probability. An example of Metropolis-Hastings is discussed
in the following topic.

Applying Gibbs sampling in language processing
With the help of Gibbs sampling, Markov chain is built by sampling from the conditional probability.
When the iteration over all the parameters is completed, then one cycle of the Gibbs sampler is
completed. When it is not possible to sample from conditional distribution, then Metropolis-Hastings
can be used. This is referred to as Metropolis within Gibbs. Gibbs sampling may be defined as
Metropolis-hastings with special proposal distribution. On each iteration, we draw a proposal for a new
value of a specific parameter.

Consider an example of throwing two coins that is characterized by the number of heads and the number
of tosses of a coin:

def bern(theta,z,N):
"""Bernoulli likelihood with N trials and z successes."""
return np.clip(theta**z*(1-theta)**(N-z),0,1)
def bern2(theta1,theta2,z1,z2,N1,N2):
"""Bernoulli likelihood with N trials and z successes."""
return bern(theta1,z1,N1)*bern(theta2,z2,N2)
def make_thetas(xmin,xmax,n):
xs=np.linspace(xmin,xmax,n)
widths=(xs[1:]-xs[:-1])/2.0
thetas=xs[:-1]+widths
returnt hetas
def make_plots(X,Y,prior,likelihood,posterior,projection=None):
fig,ax=plt.subplots(1,3,subplot_kw=dict(projection=projection,aspect=
'equal'),figsize=(12,3))
ifprojection=='3d':
ax[0].plot_surface(X,Y,prior,alpha=0.3,cmap=plt.cm.jet)
ax[1].plot_surface(X,Y,likelihood,alpha=0.3,cmap=plt.cm.jet)
ax[2].plot_surface(X,Y,posterior,alpha=0.3,cmap=plt.cm.jet)
else:
ax[0].contour(X,Y,prior)
ax[1].contour(X,Y,likelihood)
ax[2].contour(X,Y,posterior)
ax[0].set_title('Prior')
ax[1].set_title('Likelihood')
ax[2].set_title('Posteior')
plt.tight_layout()
thetas1=make_thetas(0,1,101)
thetas2=make_thetas(0,1,101)
X,Y=np.meshgrid(thetas1,thetas2)

For Metropolis, the following values are considered:

a=2
b=3

z1=11
N1=14
z2=7
N2=14

prior=lambdatheta1,theta2:stats.beta(a,b).pdf(theta1)*stats.beta(a,b)
.pdf(theta2)
lik=partial(bern2,z1=z1,z2=z2,N1=N1,N2=N2)
target=lambdatheta1,theta2:prior(theta1,theta2)*lik(theta1,theta2)

theta=np.array([0.5,0.5])
niters=10000
burnin=500
sigma=np.diag([0.2,0.2])

thetas=np.zeros((niters-burnin,2),np.float)
foriinrange(niters):
new_theta=stats.multivariate_normal(theta,sigma).rvs()
p=min(target(*new_theta)/target(*theta),1)
ifnp.random.rand()<p:
theta=new_theta
ifi>=burnin:
thetas[i-burnin]=theta
kde=stats.gaussian_kde(thetas.T)
XY=np.vstack([X.ravel(),Y.ravel()])
posterior_metroplis=kde(XY).reshape(X.shape)
make_plots(X,Y,prior(X,Y),lik(X,Y),posterior_metroplis)
make_plots(X,Y,prior(X,Y),lik(X,Y),posterior_metroplis,projection='3d
')

For Gibbs, the following values are considered:

a=2
b=3

z1=11
N1=14
z2=7
N2=14

prior=lambda
theta1,theta2:stats.beta(a,b).pdf(theta1)*stats.beta(a,b).pdf(theta2)
lik=partial(bern2,z1=z1,z2=z2,N1=N1,N2=N2)
target=lambdatheta1,theta2:prior(theta1,theta2)*lik(theta1,theta2)

theta=np.array([0.5,0.5])

niters=10000
burnin=500
sigma=np.diag([0.2,0.2])

thetas=np.zeros((niters-burnin,2),np.float)
foriinrange(niters):
theta=[stats.beta(a+z1,b+N1-z1).rvs(),theta[1]]
theta=[theta[0],stats.beta(a+z2,b+N2-z2).rvs()]

ifi>=burnin:
thetas[i-burnin]=theta
kde=stats.gaussian_kde(thetas.T)
XY=np.vstack([X.ravel(),Y.ravel()])
posterior_gibbs=kde(XY).reshape(X.shape)
make_plots(X,Y,prior(X,Y),lik(X,Y),posterior_gibbs)
make_plots(X,Y,prior(X,Y),lik(X,Y),posterior_gibbs,projection='3d')

In the preceding codes of Metropolis and Gibbs, 2D and 3D plots of prior, likelihood, and posterior
would be obtained.

Summary
In this chapter, we have discussed about word frequencies (unigram, bigram, and trigram). You have
studied Maximum Likelihood Estimation and its implementation in NLTK. We have discussed about the
interpolation method, the backoff method, Gibbs sampling, and Metropolis-hastings. We have also
discussed how we can perform language modeling through perplexity.

In the next chapter, we will discuss about Stemmer and Lemmatizer, and creating the Morphological
generator using machine learning tools.

Chapter 3. Morphology – Getting Our Feet Wet
Morphology may be defined as the study of the composition of words using morphemes. A morpheme is
the smallest unit of language that has meaning. In this chapter, we will discuss stemming and
lemmatizing, stemmer and lemmatizer for non-English languages, developing a morphological analyzer
and morphological generator using machine learning tools, search engines, and many such concepts.

In brief, this chapter will include the following topics:

• Introducing morphology
• Understanding stemmer
• Understanding lemmatization
• Developing a stemmer for non-English languages
• Morphological analyzer
• Morphological generator
• Search engine

Introducing morphology
Morphology may be defined as the study of the production of tokens with the help of morphemes. A
morpheme is the basic unit of language carrying meaning. There are two types of morpheme: stems and
affixes (suffixes, prefixes, infixes, and circumfixes).

Stems are also referred to as free morphemes, since they can even exist without adding affixes. Affixes
are referred to as bound morphemes, since they cannot exist in a free form and they always exist along
with free morphemes. Consider the word unbelievable. Here, believe is a stem or a free
morpheme. It can exist on its own. The morphemes un and able are affixes or bound morphemes.
They cannot exist in a free form, but they exist together with stem. There are three kinds of language,
namely isolating languages, agglutinative languages, and inflecting languages. Morphology has a
different meaning in all these languages. Isolating languages are those languages in which words are
merely free morphemes and they do not carry any tense (past, present, and future) and number (singular
or plural) information. Mandarin Chinese is an example of an isolating language. Agglutinative
languages are those in which small words combine together to convey compound information. Turkish is
an example of an agglutinative language. Inflecting languages are those in which words are broken
down into simpler units, but all these simpler units exhibit different meanings. Latin is an example of an
inflecting language. Morphological processes are of the following types: inflection, derivation,
semiaffixes and combining forms, and cliticization. Inflection means transforming the word into a form
so that it represents person, number, tense, gender, case, aspect, and mood. Here, the syntactic category
of a token remains the same. In derivation, the syntactic category of a word is also changed. Semiaffixes
are bound morphemes that exhibit words, such as quality, for example, noteworthy, antisocial,
anticlockwise, and so on.

Understanding stemmer
Stemming may be defined as the process of obtaining a stem from a word by eliminating the affixes
from a word. For example, in the case of the word raining, stemmer would return the root word or
stem word rain by removing the affix from raining. In order to increase the accuracy of information
retrieval, search engines mostly use stemming to get the stems and store them as indexed words. Search
engines call words with the same meaning synonyms, which may be a kind of query expansion known
as conflation. Martin Porter has designed a well-known stemming algorithm known as the Porter
stemming algorithm. This algorithm is basically designed to replace and eliminate some well-known
suffices present in English words. To perform stemming in NLTK, we can simply do an instantiation of
the PorterStemmer class and then perform stemming by calling the stem method.

Let's see the code for stemming using the PorterStemmer class in NLTK:

>>> import nltk
>>> from nltk.stem import PorterStemmer
>>> stemmerporter = PorterStemmer()
>>> stemmerporter.stem('working')
'work'
>>> stemmerporter.stem('happiness')
'happi'

The PorterStemmer class has been trained and has knowledge of the many stems and word forms of
English. The process of stemming takes place in a series of steps and transforms the word into a shorter
word or a word that has a similar meaning to the root word. The Stemmer I interface defines the
stem() method, and all the stemmers are inherited from the Stemmer I interface. The inheritance
diagram is depicted here:

Another stemming algorithm known as the Lancaster stemming algorithm was introduced at Lancaster
University. Similar to the PorterStemmer class, the LancasterStemmer class is used in NLTK to
implement Lancaster stemming. However, one of the major differences between the two algorithms is
that Lancaster stemming involves the use of more words of different sentiments as compared to Porter
Stemming.

Let's consider the following code that depicts Lancaster stemming in NLTK:

>>> import nltk
>>> from nltk.stem import LancasterStemmer
>>> stemmerlan=LancasterStemmer()
>>> stemmerlan.stem('working')
'work'
>>> stemmerlan.stem('happiness')
'happy'

We can also build our own stemmer in NLTK using RegexpStemmer. It works by accepting a string
and eliminating the string from the prefix or suffix of a word when a match is found.

Let's consider an example of stemming using RegexpStemmer in NLTK:

>>> import nltk
>>> from nltk.stem import RegexpStemmer
>>> stemmerregexp=RegexpStemmer('ing')
>>> stemmerregexp.stem('working')
'work'
>>> stemmerregexp.stem('happiness')
'happiness'
>>> stemmerregexp.stem('pairing')
'pair'

We can use RegexpStemmer in the cases in which stemming cannot be performed using
PorterStemmer and LancasterStemmer.

SnowballStemmer is used to perform stemming in 13 languages other than English. In order to
perform stemming using SnowballStemmer, firstly, an instance is created in the language in which
stemming needs to be performed. Then, using the stem() method, stemming is performed.

Consider the following example of performing stemming in Spanish and French in NLTK using
SnowballStemmer:

>>> import nltk
>>> from nltk.stem import SnowballStemmer
>>> SnowballStemmer.languages
('danish', 'dutch', 'english', 'finnish', 'french', 'german',
'hungarian', 'italian', 'norwegian', 'porter', 'portuguese',
'romanian', 'russian', 'spanish', 'swedish')

>>> spanishstemmer=SnowballStemmer('spanish')
>>> spanishstemmer.stem('comiendo')
'com'
>>> frenchstemmer=SnowballStemmer('french')
>>> frenchstemmer.stem('manger')
'mang'

Nltk.stem.api consists of the Stemmer I class in which the stem function is performed.

Consider the following code present in NLTK that enables us to perform stemming:

Class StemmerI(object):
"""
It is an interface that helps to eliminate morphological affixes
from the tokens and the process is known as stemming.
"""
def stem(self, token):
"""
Eliminate affixes from token and stem is returned.
"""
raise NotImplementedError()

Let's see the code used to perform stemming using multiple stemmers:

>>> import nltk
>>> from nltk.stem.porter import PorterStemmer
>>> from nltk.stem.lancaster import LancasterStemmer
>>> from nltk.stem import SnowballStemmer
>>> def obtain_tokens():
With open('/home/p/NLTK/sample1.txt') as stem: tok =
nltk.word_tokenize(stem.read())
return tokens
>>> def stemming(filtered):
stem=[]
for x in filtered:
stem.append(PorterStemmer().stem(x))
return stem
>>> if_name_=="_main_":
tok= obtain_tokens()
>>>print("tokens is %s")%(tok)
>>>stem_tokens= stemming(tok)
>>>print("After stemming is %s")%stem_tokens
>>>res=dict(zip(tok,stem_tokens))
>>>print("{tok:stemmed}=%s")%(result)

Understanding lemmatization
Lemmatization is the process in which we transform the word into a form with a different word
category. The word formed after lemmatization is entirely different. The built-in morphy() function is
used for lemmatization in WordNetLemmatizer. The inputted word is left unchanged if it is not
found in WordNet. In the argument, pos refers to the part of speech category of the inputted word.

Consider an example of lemmatization in NLTK:

>>> import nltk
>>> from nltk.stem import WordNetLemmatizer
>>> lemmatizer_output=WordNetLemmatizer()
>>> lemmatizer_output.lemmatize('working')
'working'
>>> lemmatizer_output.lemmatize('working',pos='v')
'work'
>>> lemmatizer_output.lemmatize('works')
'work'

The WordNetLemmatizer library may be defined as a wrapper around the so-called WordNet
corpus, and it makes use of the morphy()function present in WordNetCorpusReader to extract a
lemma. If no lemma is extracted, then the word is only returned in its original form. For example, for
works, the lemma returned is the singular form, work.

Let's consider the following code that illustrates the difference between stemming and lemmatization :

>>> import nltk
>>> from nltk.stem import PorterStemmer
>>> stemmer_output=PorterStemmer()
>>> stemmer_output.stem('happiness')
'happi'
>>> from nltk.stem import WordNetLemmatizer
>>> lemmatizer_output=WordNetLemmatizer()
>>> lemmatizer_output.lemmatize('happiness')
'happiness'

In the preceding code, happiness is converted to happi by stemming. Lemmatization doesn't find
the root word for happiness, so it returns the word happiness.

Developing a stemmer for non-English language
Polyglot is a software that is used to provide models called morfessor models that are used to obtain
morphemes from tokens. The Morpho project's goal is to create unsupervised data-driven processes. The
main aim of the Morpho project is to focus on the creation of morphemes, which is the smallest unit of
syntax. Morphemes play an important role in natural language processing. Morphemes are useful in
automatic recognition and the creation of language. With the help of the vocabulary dictionaries of
Polyglot, morfessor models on the 50,000 tokens of different languages were used.

Let's see the code for obtaining the language table using polyglot:

from polyglot.downloader import downloader
print(downloader.supported_languages_table("morph2"))

The output obtained from preceding code is the languages listed here:

The necessary models can be downloaded using the following code:

%%bash
polyglot download morph2.en morph2.ar

[polyglot_data] Downloading package morph2.en to
[polyglot_data] /home/rmyeid/polyglot_data...
[polyglot_data] Package morph2.en is already up-to-date!
[polyglot_data] Downloading package morph2.ar to
[polyglot_data] /home/rmyeid/polyglot_data...
[polyglot_data] Package morph2.ar is already up-to-date!

Consider an example that is used to obtain an output from polyglot:

from polyglot.text import Text, Word
tokens =["unconditional" ,"precooked", "impossible", "painful",
"entered"]
for s in tokens:
s=Word(s, language="en")
print("{:<20}{}".format(s,s.morphemes))

unconditional['un','conditional']
precooked['pre','cook','ed']
impossible['im','possible']
painful['pain','ful']
entered['enter','ed']

If tokenization is not performed properly, then we can perform morphological analysis for the process of
splitting the text into the original constituents:

sent="Ihopeyoufindthebookinteresting"
para=Text(sent)
para.language="en"
para.morphemes
WordList(['I','hope','you','find','the','book','interesting'])

Morphological analyzer
Morphological analysis may be defined as the process of obtaining grammatical information from
tokens, given their suffix information. Morphological analysis can be performed in three ways:
morpheme-based morphology (or anitem and arrangement approach), lexeme-based morphology (or an
item and process approach), and word-based morphology (or a word and paradigm approach). A
morphological analyzer may be defined as a program that is responsible for the analysis of the
morphology of a given input token. It analyzes a given token and generates morphological information,
such as gender, number, class, and so on, as an output.

In order to perform morphological analysis on a given non-whitespace token, the pyEnchant
dictionary is used.

Let's consider the following code that performs morphological analysis:

>>> import enchant
>>> s = enchant.Dict("en_US")
>>> tok=[]
>>> def tokenize(st1):
if not st1:return
for j in xrange(len(st1),-1,-1):
if s.check(st1[0:j]):
tok.append(st1[0:i])
st1=st[j:]
tokenize(st1)
break
>>> tokenize("itismyfavouritebook")
>>> tok
['it', 'is', 'my','favourite','book']
>>> tok=[]
>>> tokenize("ihopeyoufindthebookinteresting")
>>> tok
['i','hope','you','find','the','book','interesting']

We can determine the category of the word with the help of the following points:

• Morphological hints: The suffix's information helps us detect the category of a word. For
example, the -ness and –ment suffixes exist with nouns.

• Syntactic hints: Contextual information is conducive to determine the category of a word. For
example, if we have found the word that has the noun category, then syntactic hints will be
useful for determining whether an adjective would appear before the noun or after the noun
category.

• Semantic hints: A semantic hint is also useful for determining the word's category. For
example, if we already know that a word represents the name of a location, then it will fall
under the noun category.

• Open class: This is class of words that are not fixed, and their number keeps on increasing
every day, whenever a new word is added to their list. Words in the open class are usually

nouns. Prepositions are mostly in a closed class. For example, there can be an unlimited number
of words in the of Persons list. So, it is an open class.

• Morphology captured by the Part of Speech tagset: The Part of Speech tagset captures
information that helps us perform morphology. For example, the word plays would appear
with the third person and a singular noun.

• Omorfi:Omorfi (Open morphology of Finnish) is a package that has been licensed by GNU
GPL version 3. It is used for performing numerous tasks, such as language modeling,
morphological analysis, rule-based machine translation, information retrieval, statistical
machine translation, morphological segmentation, ontologies, and spell checking and correction.

Morphological generator
A morphological generator is a program that performs the task of morphological generation.
Morphological generation may be considered an opposite task of morphological analysis. Here, given
the description of a word in terms of number, category, stem, and so on, the original word is retrieved.
For example, if root = go, part of speech = verb, tense= present, and if it occurs along with a third
person and singular subject, then a morphological generator would generate its surface form, goes.

There is a lot of Python-based software that performs morphological analysis and generation. Some of
them are as follows:

• ParaMorfo: It is used to perform morphological generation and analysis of Spanish and
Guarani nouns, adjectives, and verbs.

• HornMorpho: It is used for the morphological generation and analysis of Oromo and Amharic
nouns and verbs, as well as Tigrinya verbs.

• AntiMorfo: It is used for the morphological generation and analysis of Quechua adjectives,
verbs, and nouns, as well as Spanish verbs.

• MorfoMelayu: It is used for the morphological analysis of Malay words.

Other examples of software that is used to perform morphological analysis and generation are as
follows:

• Morph is a morphological generator and analyzer for English for the RASP system
• Morphy is a morphological generator, analyzer, and POS tagger for German
• Morphisto is a morphological generator and analyzer for German
• Morfette performs supervised learning (inflectional morphology) for Spanish and French

Search engine
PyStemmer 1.0.1 consists of Snowball stemming algorithms that are used for performing information
retrieval tasks and for constructing a search engine. It consists of the Porter stemming algorithm and
many other stemming algorithms that are useful for performing stemming and information retrieval
tasks in many languages, including many European languages.

We can construct a vector space search engine by converting the texts into vectors.

The following are the steps involved in constructing a vector space search engine:

1. Consider the following code for the removal of stopwords and tokenization:

A stemmer is a program that accepts words and converts them into stems. Tokens that have the
same stem have nearly the same meanings. Stopwords are also eliminated from a text.

def eliminatestopwords(self,list):
"""
Eliminate words which occur often and have not much
significance from context point of view.
"""
return[word for word in list if word not in self.stopwords]

def tokenize(self,string):
"""
Perform the task of splitting text into stop words and tokens
"""
Str=self.clean(str)
Words=str.split("")
return [self.stemmer.stem(word,0,len(word)-1) for word in words]

2. Consider the following code for mapping keywords into vector dimensions:

def obtainvectorkeywordindex(self, documentList):
"""
In the document vectors, generate the keyword for the given
position of element
"""

#Perform mapping of text into strings
vocabstring = "".join(documentList)

vocablist = self.parser.tokenise(vocabstring)
#Eliminate common words that have no search significance
vocablist = self.parser.eliminatestopwords(vocablist)
uniqueVocablist = util.removeDuplicates(vocablist)

vectorIndex={}
offset=0

#Attach a position to keywords that performs mapping with
dimension that is used to depict this token
for word in uniqueVocablist:

vectorIndex[word]=offset
offset+=1
return vectorIndex #(keyword:position)

3. Here, a simple term count model is used. Consider the following code for the conversion of text
strings into vectors:

def constructVector(self, wordString):

Initialise the vector with 0's
Vector_val = [0] * len(self.vectorKeywordIndex)
tokList = self.parser.tokenize(tokString)
tokList = self.parser.eliminatestopwords(tokList)
for word in toklist:

vector[self.vectorKeywordIndex[word]] += 1;
simple Term Count Model is used

return vector

4. Searching similar documents by finding the cosine of an angle between the vectors of a
document, we can prove whether two given documents are similar or not. If the cosine value is
1, then the angle's value is 0 degrees and the vectors are said to be parallel (this means that the
documents are said to be related). If the cosine value is 0 and value of the angle is 90 degrees,
then the vectors are said to be perpendicular (this means that the documents are not said to be
related). Let's see the code for computing the cosine between the text vectors using SciPy:

def cosine(vec1, vec2):
"""

cosine = (X * Y) / ||X|| x ||Y||
"""
return float(dot(vec1,vec2) / (norm(vec1) * norm(vec2)))

5. We perform the mapping of keywords to vector space. We construct a temporary text that
represents the items to be searched and then compare it with document vectors with the help of
cosine measurement. Let's see the following code for searching the vector space:

def searching(self,searchinglist):
""" search for text that are matched on the basis oflist of
items """

askVector = self.buildQueryVector(searchinglist)

ratings = [util.cosine(askVector, textVector) for textVector in
self.documentVectors]

ratings.sort(reverse=True)
return ratings

6. We will now consider the following code that can be used for detecting languages from the
source text:

>>> import nltk
>>> import sys
>>> try:
from nltk import wordpunct_tokenize
from nltk.corpus import stopwords
except ImportError:
print('Error has occured')

#---

>>> def _calculate_languages_ratios(text):
"""
Compute probability of given document that can be written in
different languages and give a dictionary that appears like
{'german': 2, 'french': 4, 'english': 1}
"""
languages_ratios = {}

'''
nltk.wordpunct_tokenize() splits all punctuations into separate
tokens
wordpunct_tokenize("I hope you like the book interesting .")

[' I',' hope ','you ','like ','the ','book' ,'interesting ','.']
'''

tok = wordpunct_tokenize(text)
wor = [word.lower() for word in tok]

Compute occurence of unique stopwords in a text
for language in stopwords.fileids():
stopwords_set = set(stopwords.words(language))
words_set = set(words)
common_elements = words_set.intersection(stopwords_set)
languages_ratios[language] = len(common_elements)
language "score"
return languages_ratios

#---
-

>>> def detect_language(text):

"""
Compute the probability of given text that is written in
different languages and obtain the one that is highest scored.
It makes use of stopwords calculation approach, finds out
unique stopwords present in a analyzed text.
"""
ratios = _calculate_languages_ratios(text)
most_rated_language = max(ratios, key=ratios.get)
return most_rated_language

if __name__=='__main__':

text = '''
All over this cosmos, most of the people believe that there is
an invisible supreme power that is the creator and the runner
of this world. Human being is supposed to be the most
intelligent and loved creation by that power and that is being
searched by human beings in different ways into different
things. As a result people reveal His assumed form as per their
own perceptions and beliefs. It has given birth to different
religions and people are divided on the name of religion viz.
Hindu, Muslim, Sikhs, Christian etc. People do not stop at
this. They debate the superiority of one over the other and
fight to establish their views. Shrewd people like politicians
oppose and support them at their own convenience to divide them
and control them. It has intensified to the extent that even
parents of a
new born baby teach it about religious differences and
recommend their own religion superior to that of others and let
the child learn to hate other people just because of religion.
Jonathan Swift, an eighteenth century novelist, observes that
we have just enough religion to make us hate, but not enough to
make us love one another.
The word 'religion' does not have a derogatory meaning - A
literal meaning of religion is 'A
personal or institutionalized system grounded in belief in a
God or Gods and the activities connected
with this'. At its basic level, 'religion is just a set of
teachings that tells people how to lead a good
life'. It has never been the purpose of religion to divide
people into groups of isolated followers that
cannot live in harmony together. No religion claims to teach
intolerance or even instructs its believers to segregate a
certain religious group or even take the fundamental rights of
an individual solely based on their religious choices. It is

also said that 'Majhab nhi sikhata aaps mai bair krna'.But this
very majhab or religion takes a very heinous form when it is
misused by the shrewd politicians and the fanatics e.g. in
Ayodhya on 6th December, 1992 some right wing political parties
and communal organizations incited the Hindus to demolish the
16th century Babri Masjid in the
name of religion to polarize Hindus votes. Muslim fanatics in
Bangladesh retaliated and destroyed a
number of temples, assassinated innocent Hindus and raped Hindu
girls who had nothing to do with
the demolition of Babri Masjid. This very inhuman act has been
presented by Taslima Nasrin, a Bangladeshi Doctor-cum-Writer in
her controversial novel 'Lajja' (1993) in which, she seems to
utilizes fiction's mass emotional appeal, rather than its
potential for nuance and universality.
'''

>>> language = detect_language(text)

>>> print(language)

The preceding code will search for stopwords and detect the language of the text, that is, English.

Summary
The field of computational linguistics has numerous applications. We need to perform preprocessing on
our original text in order to implement or build an application. In this chapter, we have discussed
stemming, lemmatization, and morphological analysis and generation, and their implementation in
NLTK. We have also discussed search engines and their implementation.

In the next chapter, we will discuss parts of speech, tagging, and chunking.

Chapter 4. Parts-of-Speech Tagging – Identifying
Words
Parts-of-speech (POS) tagging is one of the many tasks in NLP. It is defined as the process of assigning
a particular parts-of-speech tag to individual words in a sentence. The parts-of-speech tag identifies
whether a word is a noun, verb, adjective, and so on. There are numerous applications of parts-of-speech
tagging, such as information retrieval, machine translation, NER, language analysis, and so on.

This chapter will include the following topics:

• Creating POS tagged corpora
• Selecting a machine learning algorithm
• Statistical modeling involving the n-gram approach
• Developing a chunker using POS tagged data

Introducing parts-of-speech tagging
Parts-of-speech tagging is the process of assigning a category (for example, noun, verb, adjective, and so
on) tag to individual tokens in a sentence. In NLTK, taggers are present in the nltk.tag package and
it is inherited by the TaggerIbase class.

Consider an example to implement POS tagging for a given sentence in NLTK:

>>> import nltk
>>> text1=nltk.word_tokenize("It is a pleasant day today")
>>> nltk.pos_tag(text1)
[('It', 'PRP'), ('is', 'VBZ'), ('a', 'DT'), ('pleasant', 'JJ'),
('day', 'NN'), ('today', 'NN')]

We can implement the tag() method in all the subclasses of TaggerI. In order to evaluate tagger,
TaggerI has provided the evaluate() method. A combination of taggers can be used to form a
back-off chain so that the next tagger can be used for tagging if one tagger is not tagging.

Let's see the list of available tags provided by Penn Treebank (https://www.ling.upenn.edu/courses/
Fall_2003/ling001/penn_treebank_pos.html):

CC - Coordinating conjunction
CD - Cardinal number
DT - Determiner
EX - Existential there
FW - Foreign word
IN - Preposition or subordinating conjunction
JJ - Adjective
JJR - Adjective, comparative
JJS - Adjective, superlative
LS - List item marker

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

MD - Modal
NN - Noun, singular or mass
NNS - Noun, plural
NNP - Proper noun, singular
NNPS - Proper noun, plural
PDT - Predeterminer
POS - Possessive ending
PRP - Personal pronoun
PRP$ - Possessive pronoun (prolog version PRP-S)
RB - Adverb
RBR - Adverb, comparative
RBS - Adverb, superlative
RP - Particle
SYM - Symbol
TO - to
UH - Interjection
VB - Verb, base form
VBD - Verb, past tense
VBG - Verb, gerund or present participle
VBN - Verb, past participle
VBP - Verb, non-3rd person singular present
VBZ - Verb, 3rd person singular present
WDT - Wh-determiner
WP - Wh-pronoun
WP$ - Possessive wh-pronoun (prolog version WP-S)
WRB - Wh-adverb

NLTK may provide the information of tags. Consider the following code, which provides information
about the NNS tag:

>>> nltk.help.upenn_tagset('NNS')
NNS: noun, common, plural

undergraduates scotches bric-a-brac products bodyguards facets
coasts

divestitures storehouses designs clubs fragrances averages
subjectivists apprehensions muses factory-jobs ...

Let's see another example in which a regular expression may also be queried:

>>> nltk.help.upenn_tagset('VB.*')
VB: verb, base form

ask assemble assess assign assume atone attention avoid bake
balkanize

bank begin behold believe bend benefit bevel beware bless boil
bomb

boost brace break bring broil brush build ...
VBD: verb, past tense

dipped pleaded swiped regummed soaked tidied convened halted
registered

cushioned exacted snubbed strode aimed adopted belied figgered
speculated wore appreciated contemplated ...

VBG: verb, present participle or gerund
telegraphing stirring focusing angering judging stalling

lactating
hankerin' alleging veering capping approaching traveling

besieging
encrypting interrupting erasing wincing ...

VBN: verb, past participle
multihulled dilapidated aerosolized chaired languished panelized

used
experimented flourished imitated reunifed factored condensed sheared

unsettled primed dubbed desired ...
VBP: verb, present tense, not 3rd person singular

predominate wrap resort sue twist spill cure lengthen brush
terminate

appear tend stray glisten obtain comprise detest tease attract
emphasize mold postpone sever return wag ...

VBZ: verb, present tense, 3rd person singular
bases reconstructs marks mixes displeases seals carps weaves

snatches
slumps stretches authorizes smolders pictures emerges stockpiles
seduces fizzes uses bolsters slaps speaks pleads ...R

The preceding code gives information regarding all the tags of verb phrases.

Let's look at an example that depicts words' sense disambiguation achieved through POS tagging:

>>> import nltk
>>> text=nltk.word_tokenize("I cannot bear the pain of bear")
>>> nltk.pos_tag(text)
[('I', 'PRP'), ('can', 'MD'), ('not', 'RB'), ('bear', 'VB'), ('the',
'DT'), ('pain', 'NN'), ('of', 'IN'), ('bear', 'NN')]

Here, in the previous sentence, bear is a verb, which means to tolerate, and it also is an animal, which
means that it is a noun.

In NLTK, a tagged token is represented as a tuple consisting of a token and its tag. We can create this
tuple in NLTK using the str2tuple() function:

>>> import nltk
>>> taggedword=nltk.tag.str2tuple('bear/NN')
>>> taggedword
('bear', 'NN')
>>> taggedword[0]

'bear'
>>> taggedword[1]
'NN'

Let's consider an example in which sequences of tuples can be generated from the given text:

>>> import nltk
>>> sentence='''The/DT sacred/VBN Ganga/NNP flows/VBZ in/IN this/DT
region/NN ./. This/DT is/VBZ a/DT pilgrimage/NN ./. People/NNP from/
IN all/DT over/IN the/DT country/NN visit/NN this/DT place/NN ./. '''
>>> [nltk.tag.str2tuple(t) for t in sentence.split()]
[('The', 'DT'), ('sacred', 'VBN'), ('Ganga', 'NNP'), ('flows',
'VBZ'), ('in', 'IN'), ('this', 'DT'), ('region', 'NN'), ('.', '.'),
('This', 'DT'), ('is', 'VBZ'), ('a', 'DT'), ('pilgrimage', 'NN'),
('.', '.'), ('People', 'NNP'), ('from', 'IN'), ('all', 'DT'),
('over', 'IN'), ('the', 'DT'), ('country', 'NN'), ('visit', 'NN'),
('this', 'DT'), ('place', 'NN'), ('.', '.')]

Now, consider the following code that converts the tuple (word and pos tag) into a word and a tag:

>>> import nltk
>>> taggedtok = ('bear', 'NN')
>>> from nltk.tag.util import tuple2str
>>> tuple2str(taggedtok)
'bear/NN'

Let's see the occurrence of some common tags in the Treebank corpus:

>>> import nltk
>>> from nltk.corpus import treebank
>>> treebank_tagged = treebank.tagged_words(tagset='universal')
>>> tag = nltk.FreqDist(tag for (word, tag) in treebank_tagged)
>>> tag.most_common()
[('NOUN', 28867), ('VERB', 13564), ('.', 11715), ('ADP', 9857),
('DET', 8725), ('X', 6613), ('ADJ', 6397), ('NUM', 3546), ('PRT',
3219), ('ADV', 3171), ('PRON', 2737), ('CONJ', 2265)]

Consider the following code, which calculates the number of tags occurring before a noun tag:

>>> import nltk
>>> from nltk.corpus import treebank
>>> treebank_tagged = treebank.tagged_words(tagset='universal')
>>> tagpairs = nltk.bigrams(treebank_tagged)
>>> preceders_noun = [x[1] for (x, y) in tagpairs if y[1] == 'NOUN']
>>> freqdist = nltk.FreqDist(preceders_noun)
>>> [tag for (tag, _) in freqdist.most_common()]

['NOUN', 'DET', 'ADJ', 'ADP', '.', 'VERB', 'NUM', 'PRT', 'CONJ',
'PRON', 'X', 'ADV']

We can also provide POS tags to tokens using dictionaries in Python. Let's see the following code that
illustrates the creation of a tuple (word:pos tag) using dictionaries in Python:

>>> import nltk
>>> tag={}
>>> tag
{}
>>> tag['beautiful']='ADJ'
>>> tag
{'beautiful': 'ADJ'}
>>> tag['boy']='N'
>>> tag['read']='V'
>>> tag['generously']='ADV'
>>> tag
{'boy': 'N', 'beautiful': 'ADJ', 'generously': 'ADV', 'read': 'V'}

Default tagging

Default tagging is a kind of tagging that assigns identical parts-of-speech tags to all the tokens. The
subclass of SequentialBackoffTagger is DefaultTagger. The choose_tag() method
must be implemented by SequentialBackoffTagger. This method includes the following
arguments:

• A collection of tokens
• The index of the token that should be tagged
• The previous tags list

The hierarchy of tagger is depicted as follows:

Let's now see the following code, which depicts the working of DefaultTagger:

>>> import nltk
>>> from nltk.tag import DefaultTagger
>>> tag = DefaultTagger('NN')
>>> tag.tag(['Beautiful', 'morning'])
[('Beautiful', 'NN'), ('morning', 'NN')]

We can convert a tagged sentence into an untagged sentence with the help of nltk.tag.untag().
After calling this function, the tags on individual tokens will be eliminated.

Let's see the code for untagging a sentence:

>>> from nltk.tag import untag
>>> untag([('beautiful', 'NN'), ('morning', 'NN')])
['beautiful', 'morning']

Creating POS-tagged corpora
A corpus may be known as a collection of documents. A corpora is the collection of multiple corpus.

Let's see the following code, which will generate a data directory inside the home directory:

>>> import nltk
>>> import os,os.path
>>> create = os.path.expanduser('~/nltkdoc')
>>> if not os.path.exists(create):

os.mkdir(create)

>>> os.path.exists(create)
True
>>> import nltk.data
>>> create in nltk.data.path
True

This code will create a data directory named ~/nltkdoc inside the home directory. The last line of
this code will return True and will ensure that the data directory has been created. If the last line of
the code returns False, then it means that the data directory has not been created and we need to
create it manually. After creating the data directory manually, we can test the last line and it will then
return True. Within this directory, we can create another directory named nltkcorpora that will
hold the whole corpus. The path will be ~/nltkdoc/nltkcorpora. Also, we can create a
subdirectory named important that will hold all the necessary files.

The path will be ~/nltkdoc/nltkcorpora/important.

Let's see the following code to load a text file into the subdirectory:

>>> import nltk.data
>>> nltk.data.load('nltkcorpora/important/firstdoc.txt',format='raw')
'nltk\n'

Here, in the previous code, we have mentioned format='raw', since nltk.data.load() cannot
interpret .txt files.

There is a word list corpus in NLTK known as the Names corpus. It consists of two files, namely,
male.txt and female.txt.

Let's see the code to generate the length of male.txt and female.txt:

>>> import nltk
>>> from nltk.corpus import names
>>> names.fileids()

['female.txt', 'male.txt']
>>> len(names.words('male.txt'))
2943
>>> len(names.words('female.txt'))
5001

NLTK also consists of a large collection of English words. Let's see the code that describes the number
of words present in the English word file:

>>> import nltk
>>> from nltk.corpus import words
>>> words.fileids()
['en', 'en-basic']
>>> len(words.words('en'))
235886
>>> len(words.words('en-basic'))
850

Consider the following code used in NLTK for defining the Maxent Treebank POS tagger:

def pos_tag(tok):
"""

We can use POS tagger given by NLTK to tag a list of tokens:

>>> from nltk.tag import pos_tag
>>> from nltk.tokenize import word_tokenize
>>> pos_tag(word_tokenize("Papa's favourite hobby is reading."))

[('Papa', 'NNP'), ("'s", 'POS'), ('favourite', 'JJ'),
('hobby', 'NN'), ('is',

'VBZ'), ('reading', 'VB'), ('.', '.')]

:param tokens: list of tokens that need to be tagged
:type tok: list(str)
:return: The tagged tokens
:rtype: list(tuple(str, str))
"""
tagger = load(_POS_TAGGER)
return tagger.tag(tok)

def batch_pos_tag(sent):
"""
We can use part of speech tagger given by NLTK to perform

tagging of list of tokens.
"""
tagger = load(_POS_TAGGER)
return tagger.batch_tag(sent)

Selecting a machine learning algorithm
POS tagging is also referred to as word category disambiguation or grammatical tagging. POS tagging
may be of two types: rule-based or stochastic/probabilistic. E. Brill's tagger is based on the rule-based
tagging algorithm.

A POS classifier takes a document as input and obtains word features. It trains itself with the help of
these word features combined with the already available training labels. This type of classifier is referred
to as a second order classifier, and it makes use of the bootstrap classifier in order to generate the tags
for words.

A backoff classifier is one in which backoff procedure is performed. The output is obtained in such a
manner that the trigram POS tagger relies on the bigram POS tagger, which in turn relies on the unigram
POS tagger.

While training a POS classifier, a feature set is generated. This feature set may comprise the following:

• Information about the current word
• Information about the previous word or prefix
• Information about the next word or successor

In NLTK, FastBrillTagger is based on unigram. It makes use of a dictionary of words that are
already known and the pos tag information.

Let's see the code for FastBrillTagger used in NLTK:

from nltk.tag import UnigramTagger
from nltk.tag import FastBrillTaggerTrainer

from nltk.tag.brill import SymmetricProximateTokensTemplate
from nltk.tag.brill import ProximateTokensTemplate
from nltk.tag.brill import ProximateTagsRule
from nltk.tag.brill import ProximateWordsRule

ctx = [# Context = surrounding words and tags.
SymmetricProximateTokensTemplate(ProximateTagsRule, (1, 1)),
SymmetricProximateTokensTemplate(ProximateTagsRule, (1, 2)),
SymmetricProximateTokensTemplate(ProximateTagsRule, (1, 3)),
SymmetricProximateTokensTemplate(ProximateTagsRule, (2, 2)),
SymmetricProximateTokensTemplate(ProximateWordsRule, (0, 0)),
SymmetricProximateTokensTemplate(ProximateWordsRule, (1, 1)),
SymmetricProximateTokensTemplate(ProximateWordsRule, (1, 2)),
ProximateTokensTemplate(ProximateTagsRule, (-1, -1), (1, 1)),

]

tagger = UnigramTagger(sentences)

tagger = FastBrillTaggerTrainer(tagger, ctx, trace=0)
tagger = tagger.train(sentences, max_rules=100)

Classification may be defined as the process of deciding a POS tag for a given input.

In supervised classification, a training corpus is used that comprises a word and its correct tag. In
unsupervised classification, any pair of words and a correct tag list does not exist:

In supervised classification, during training, a feature extractor accepts the input and labels and
generates a set of features. These features set along with the label act as input to machine learning
algorithms. During the testing or prediction phase, a feature extractor is used that generates features
from unknown inputs, and the output is sent to a classifier model that generates an output in the form of
label or pos tag information with the help of machine learning algorithms.

The maximum entropy classifier is one in that searches the parameter set in order to maximize the total
likelihood of the corpus used for training.

It may be defined as follows:

Statistical modeling involving the n-gram
approach
Unigram means a single word. In a unigram tagger, a single token is used to find the particular parts-of-
speech tag.

Training of UnigramTagger can be performed by providing it with a list of sentences at the time of
initialization.

Let's see the following code in NLTK, which performs UnigramTagger training:

>>> import nltk
>>> from nltk.tag import UnigramTagger
>>> from nltk.corpus import treebank
>>> training= treebank.tagged_sents()[:7000]
>>> unitagger=UnigramTagger(training)
>>> treebank.sents()[0]
['Pierre', 'Vinken', ',', '61', 'years', 'old', ',', 'will', 'join',
'the', 'board', 'as', 'a', 'nonexecutive', 'director', 'Nov.', '29',
'.']
>>> unitagger.tag(treebank.sents()[0])
[('Pierre', 'NNP'), ('Vinken', 'NNP'), (',', ','), ('61', 'CD'),
('years', 'NNS'), ('old', 'JJ'), (',', ','), ('will', 'MD'),
('join', 'VB'), ('the', 'DT'), ('board', 'NN'), ('as', 'IN'), ('a',
'DT'), ('nonexecutive', 'JJ'), ('director', 'NN'), ('Nov.', 'NNP'),
('29', 'CD'), ('.', '.')]

In the preceding code, we have performed training using the first 7000 sentences of the Treebank
corpus.

The hierarchy followed by UnigramTagger is depicted in the following inheritance diagram:

To evaluate UnigramTagger, let's see the following code, which calculates the accuracy:

>>> import nltk
>>> from nltk.corpus import treebank
>>> from nltk.tag import UnigramTagger
>>> training= treebank.tagged_sents()[:7000]
>>> unitagger=UnigramTagger(training)
>>> testing = treebank.tagged_sents()[2000:]
>>> unitagger.evaluate(testing)
0.963400866227395

So, it is 96% accurate in correctly performing pos tagging.

Since UnigramTagger inherits from ContextTagger, we can map the context key with a specific
tag.

Consider the following example of tagging using UnigramTagger:

>>> import nltk
>>> from nltk.corpus import treebank
>>> from nltk.tag import UnigramTagger
>>> unitag = UnigramTagger(model={'Vinken': 'NN'})
>>> unitag.tag(treebank.sents()[0])
[('Pierre', None), ('Vinken', 'NN'), (',', None), ('61', None),
('years', None), ('old', None), (',', None), ('will', None),
('join', None), ('the', None), ('board', None), ('as', None), ('a',
None), ('nonexecutive', None), ('director', None), ('Nov.', None),
('29', None), ('.', None)]

Here, in the preceding code, UnigramTagger only tags 'Vinken' with the 'NN' tag and the rest
are tagged with the 'None' tag since we have provided the tag for the word 'Vinken' in the context
model and no other words are included in the context model.

In a given context, ContextTagger uses the frequency of a given tag to decide the occurrence of the
most probable tag. In order to use minimum threshold frequency, we can pass a specific value to the
cutoff value. Let's see the code that evaluates UnigramTagger:

>>> unitagger = UnigramTagger(training, cutoff=5)
>>> unitagger.evaluate(testing)
0.7974218445306567

Backoff tagging may be defined as a feature of SequentialBackoffTagger. All the taggers are
chained together so that if one of the taggers is unable to tag a token, then the token may be passed to
the next tagger.

Let's see the following code, which uses back-off tagging. Here, DefaultTagger and
UnigramTagger are used to tag a token. If any tagger of them is unable to tag a word, then the next
tagger may be used to tag it:

>>> import nltk
>>> from nltk.tag import UnigramTagger
>>> from nltk.tag import DefaultTagger
>>> from nltk.corpus import treebank
>>> testing = treebank.tagged_sents()[2000:]
>>> training= treebank.tagged_sents()[:7000]
>>> tag1=DefaultTagger('NN')
>>> tag2=UnigramTagger(training,backoff=tag1)
>>> tag2.evaluate(testing)
0.963400866227395

The subclasses of NgramTagger areUnigramTagger, BigramTagger, and TrigramTagger.
BigramTagger makes use of the previous tag as contextual information. TrigramTagger uses the
previous two tags as contextual information.

Consider the following code, which illustrates the implementation of BigramTagger:

>>> import nltk
>>> from nltk.tag import BigramTagger
>>> from nltk.corpus import treebank
>>> training_1= treebank.tagged_sents()[:7000]
>>> bigramtagger=BigramTagger(training_1)
>>> treebank.sents()[0]
['Pierre', 'Vinken', ',', '61', 'years', 'old', ',', 'will', 'join',
'the', 'board', 'as', 'a', 'nonexecutive', 'director', 'Nov.', '29',
'.']
>>> bigramtagger.tag(treebank.sents()[0])
[('Pierre', 'NNP'), ('Vinken', 'NNP'), (',', ','), ('61', 'CD'),
('years', 'NNS'), ('old', 'JJ'), (',', ','), ('will', 'MD'),
('join', 'VB'), ('the', 'DT'), ('board', 'NN'), ('as', 'IN'), ('a',
'DT'), ('nonexecutive', 'JJ'), ('director', 'NN'), ('Nov.', 'NNP'),
('29', 'CD'), ('.', '.')]
>>> testing_1 = treebank.tagged_sents()[2000:]
>>> bigramtagger.evaluate(testing_1)
0.922942709936983

Let's see another code for BigramTagger and TrigramTagger:

>>> import nltk
>>> from nltk.tag import BigramTagger, TrigramTagger
>>> from nltk.corpus import treebank
>>> testing = treebank.tagged_sents()[2000:]
>>> training= treebank.tagged_sents()[:7000]
>>> bigramtag = BigramTagger(training)
>>> bigramtag.evaluate(testing)
0.9190426339881356
>>> trigramtag = TrigramTagger(training)
>>> trigramtag.evaluate(testing)
0.9101956195989079

NgramTagger can be used to generate a tagger for n greater than three as well. Let's see the following
code in NLTK, which develops QuadgramTagger:

>>> import nltk
>>> from nltk.corpus import treebank
>>> from nltk import NgramTagger
>>> testing = treebank.tagged_sents()[2000:]
>>> training= treebank.tagged_sents()[:7000]
>>> quadgramtag = NgramTagger(4, training)
>>> quadgramtag.evaluate(testing)
0.9429767842847466

The AffixTagger is also a ContextTagger in that makes use of a prefix or suffix as the
contextual information.

Let's see the following code, which uses AffixTagger:

>>> import nltk
>>> from nltk.corpus import treebank
>>> from nltk.tag import AffixTagger
>>> testing = treebank.tagged_sents()[2000:]
>>> training= treebank.tagged_sents()[:7000]
>>> affixtag = AffixTagger(training)
>>> affixtag.evaluate(testing)
0.29043249789601167

Let's see the following code, which learns the use of four character prefixes:

>>> import nltk
>>> from nltk.tag import AffixTagger
>>> from nltk.corpus import treebank
>>> testing = treebank.tagged_sents()[2000:]
>>> training= treebank.tagged_sents()[:7000]
>>> prefixtag = AffixTagger(training, affix_length=4)
>>> prefixtag.evaluate(testing)
0.21103516226368618

Consider the following code, which learns the use of three character suffixes:

>>> import nltk
>>> from nltk.tag import AffixTagger
>>> from nltk.corpus import treebank
>>> testing = treebank.tagged_sents()[2000:]
>>> training= treebank.tagged_sents()[:7000]
>>> suffixtag = AffixTagger(training, affix_length=-3)
>>> suffixtag.evaluate(testing)
0.29043249789601167

Consider the following code in NLTK, which that combines many affix taggers in the back-off chain:

>>> import nltk
>>> from nltk.tag import AffixTagger
>>> from nltk.corpus import treebank
>>> testing = treebank.tagged_sents()[2000:]
>>> training= treebank.tagged_sents()[:7000]
>>> prefixtagger=AffixTagger(training,affix_length=4)
>>> prefixtagger.evaluate(testing)
0.21103516226368618
>>>
prefixtagger3=AffixTagger(training,affix_length=3,backoff=prefixtagge
r)
>>> prefixtagger3.evaluate(testing)

0.25906767658107027
>>>
suffixtagger3=AffixTagger(training,affix_length=-3,backoff=prefixtagg
er3)
>>> suffixtagger3.evaluate(testing)
0.2939630929654946
>>>
suffixtagger4=AffixTagger(training,affix_length=-4,backoff=suffixtagg
er3)
>>> suffixtagger4.evaluate(testing)
0.3316090892296324

The TnT is Trigrams n Tags. TnT is a statistical-based tagger that is based on the second order Markov
models.

Let's see the code in NLTK for TnT:

>>> import nltk
>>> from nltk.tag import tnt
>>> from nltk.corpus import treebank
>>> testing = treebank.tagged_sents()[2000:]
>>> training= treebank.tagged_sents()[:7000]
>>> tnt_tagger=tnt.TnT()
>>> tnt_tagger.train(training)
>>> tnt_tagger.evaluate(testing)
0.9882176652913768

TnT computes ConditionalFreqDist and internalFreqDist from the training text. These
instances are used to compute unigrams, bigrams, and trigrams. In order to choose the best tag, TnT uses
the ngram model.

Consider the following code of a DefaultTagger in which, if the value of the unknown tagger is
provided explicitly, then TRAINED will be set to TRUE:

>>> import nltk
>>> from nltk.tag import DefaultTagger
>>> from nltk.tag import tnt
>>> from nltk.corpus import treebank
>>> testing = treebank.tagged_sents()[2000:]
>>> training= treebank.tagged_sents()[:7000]
>>> tnt_tagger=tnt.TnT()
>>> unknown=DefaultTagger('NN')
>>> tagger_tnt=tnt.TnT(unk=unknown,Trained=True)
>>> tnt_tagger.train(training)
>>> tnt_tagger.evaluate(testing)
0.988238192006897

Developing a chunker using pos-tagged corpora
Chunking is the process used to perform entity detection. It is used for the segmentation and labeling of
multiple sequences of tokens in a sentence.

To design a chunker, a chunk grammar should be defined. A chunk grammar holds the rules of how
chunking should be done.

Let's consider the example that performs Noun Phrase Chunking by forming the chunk rules:

>>> import nltk
>>> sent=[("A","DT"),("wise", "JJ"), ("small", "JJ"),("girl", "NN"),
("of", "IN"), ("village", "N"), ("became", "VBD"), ("leader", "NN")]
>>> sent=[("A","DT"),("wise", "JJ"), ("small", "JJ"),("girl", "NN"),
("of", "IN"), ("village", "NN"), ("became", "VBD"), ("leader",
"NN")]
>>> grammar = "NP: {<DT>?<JJ>*<NN><IN>?<NN>*}"
>>> find = nltk.RegexpParser(grammar)
>>> res = find.parse(sent)
>>> print(res)
(S

(NP A/DT wise/JJ small/JJ girl/NN of/IN village/NN)
became/VBD
(NP leader/NN))

>>> res.draw()

The following parse tree is generated:

Here, the chunk rule for Noun Phrase is defined by keeping DT as optional, any number of JJ,
followed by NN, optional IN, and any number of NN.

Consider another example in which the Noun Phrase chunk rule is created with any number of nouns:

>>> import nltk
>>>
noun1=[("financial","NN"),("year","NN"),("account","NN"),("summary","
NN")]

>>> gram="NP:{<NN>+}"
>>> find = nltk.RegexpParser(gram)
>>> print(find.parse(noun1))
(S (NP financial/NN year/NN account/NN summary/NN))
>>> x=find.parse(noun1)
>>> x.draw()

The output in the form of the parse tree is given here:

Chunking is the process in which some of the parts of a chunk are eliminated. Either an entire chunk
may be used, a part of the chunk may be used from the middle and the remaining parts are eliminated, or
a part of chunk may be used either from the beginning of the chunk or from the end of the chunk and the
remaining part of the chunk is removed.

Consider the code for UnigramChunker in NLTK, which has been developed to perform chunking
and parsing:

class UnigramChunker(nltk.ChunkParserI):
def _init_(self,training):

training_data=[[(x,y) for p,x,y in
nltk.chunk.treeconlltags(sent)]

for sent in training]
self.tagger=nltk.UnigramTagger(training_data)

def parsing(self,sent):
postags=[pos1 for (word1,pos1) in sent]
tagged_postags=self.tagger.tag(postags)
chunk_tags=[chunking for (pos1,chunktag) in tagged_postags]
conll_tags=[(word,pos1,chunktag) for ((word,pos1),chunktag)

in zip(sent, chunk_tags)]
return nltk.chunk.conlltaags2tree(conlltags)

Consider the following code, which can be used to estimate the accuracy of the chunker after it is
trained:

import nltk.corpus, nltk.tag

def ubt_conll_chunk_accuracy(train_sents, test_sents):
chunks_train =conll_tag_chunks(training)
chunks_test =conll_tag_chunks(testing)

chunker1 =nltk.tag.UnigramTagger(chunks_train)
print 'u:', nltk.tag.accuracy(chunker1, chunks_test)

chunker2 =nltk.tag.BigramTagger(chunks_train, backoff=chunker1)
print 'ub:', nltk.tag.accuracy(chunker2, chunks_test)

chunker3 =nltk.tag.TrigramTagger(chunks_train, backoff=chunker2)
print 'ubt:', nltk.tag.accuracy(chunker3, chunks_test)

chunker4 =nltk.tag.TrigramTagger(chunks_train, backoff=chunker1)
print 'ut:', nltk.tag.accuracy(chunker4, chunks_test)

chunker5 =nltk.tag.BigramTagger(chunks_train, backoff=chunker4)
print 'utb:', nltk.tag.accuracy(chunker5, chunks_test)

accuracy test for conll chunking
conll_train =nltk.corpus.conll2000.chunked_sents('train.txt')
conll_test =nltk.corpus.conll2000.chunked_sents('test.txt')
ubt_conll_chunk_accuracy(conll_train, conll_test)

accuracy test for treebank chunking
treebank_sents =nltk.corpus.treebank_chunk.chunked_sents()
ubt_conll_chunk_accuracy(treebank_sents[:2000],
treebank_sents[2000:])

Summary
In this chapter, we have discussed POS tagging, different POS taggers, and the approaches used for POS
tagging. You have also learned about statistical modeling involving the n-gram approach, and have
developed a chunker using POS tags information.

In the following chapter, we will discuss Treebank construction, CFG construction, different parsing
algorithms, and so on.

Chapter 5. Parsing – Analyzing Training Data
Parsing, also referred to as syntactic analysis, is one of the tasks in NLP. It is defined as the process of
finding whether a character sequence, written in natural language, is in accordance with the rules
defined in formal grammar. It is the process of breaking the sentences into words or phrase sequences
and providing them a particular component category (noun, verb, preposition, and so on).

This chapter will include the following topics:

• Treebank construction
• Extracting Context-free Grammar (CFG) rules from Treebank
• Creating a probabilistic Context-free Grammar from CFG
• CYK chart parsing algorithm
• Earley chart parsing algorithm

Introducing parsing
Parsing is one of the steps involved in NLP. It is defined as the process of determining the part-of-speech
category for an individual component in a sentence and analyzing whether a given sentence is in
accordance with grammar rules or not. The term parsing has been derived from the Latin word pars
(oration is) which means part-of-speech.

Consider an example—Ram bought a book. This sentence is grammatically correct. But, instead of this
sentence, if we have a sentence Book bought a Ram, then by adding the semantic information to the
parse tree so constructed, we can conclude that although the sentence is grammatically correct, it is not
semantically correct. So, the generation of a parse tree is followed by adding meaning to it as well. A
parser is a software that accepts an input text and constructs a parse tree or a syntax tree. Parsing may be
divided into two categories Top-down Parsing and Bottom-up Parsing. In Top-down Parsing, we begin
from the start symbol and continue till we reach individual components. Some of the Top-down Parsers
include the Recursive Descent Parser, LL Parser, and Earley Parser. In Bottom-up Parsing, we start from
individual components and continue till we reach the start symbol. Some Bottom-up Parsers include the
Operator-precedence parser, Simple precedence parser, Simple LR Parser, LALR Parser, Canonical LR
(LR(1)) Parser, GLR Parser, CYK or (alternatively CKY) Parser, Recursive ascent parser, and Shift-
reduce parser.

The nltk.parse.api.ParserI class is defined in NLTK. This class is used to obtain parses or
syntactic structures for a given sentence. Parsers can be used to obtain syntactic structures, discourse
structures, and morphological trees.

Chart parsing follows the dynamic programming approach. In this, once some results are obtained, these
may be treated as the intermediate results and may be reused to obtain future results. Unlike in Top-
down parsing, the same task is not performed again and again.

Treebank construction
The nltk.corpus.package consists of a number of corpus readerclasses that can be used to
obtain the contents of various corpora.

Treebank corpus can also be accessed from nltk.corpus. Identifiers for files can be obtained using
fileids():

>>> import nltk
>>> import nltk.corpus
>>> print(str(nltk.corpus.treebank).replace('\\\\','/'))
<BracketParseCorpusReader in 'C:/nltk_data/corpora/treebank/
combined'>
>>> nltk.corpus.treebank.fileids()
['wsj_0001.mrg', 'wsj_0002.mrg', 'wsj_0003.mrg', 'wsj_0004.mrg',
'wsj_0005.mrg', 'wsj_0006.mrg', 'wsj_0007.mrg', 'wsj_0008.mrg',
'wsj_0009.mrg', 'wsj_0010.mrg', 'wsj_0011.mrg', 'wsj_0012.mrg',
'wsj_0013.mrg', 'wsj_0014.mrg', 'wsj_0015.mrg', 'wsj_0016.mrg',
'wsj_0017.mrg', 'wsj_0018.mrg', 'wsj_0019.mrg', 'wsj_0020.mrg',
'wsj_0021.mrg', 'wsj_0022.mrg', 'wsj_0023.mrg', 'wsj_0024.mrg',
'wsj_0025.mrg', 'wsj_0026.mrg', 'wsj_0027.mrg', 'wsj_0028.mrg',
'wsj_0029.mrg', 'wsj_0030.mrg', 'wsj_0031.mrg', 'wsj_0032.
mrg', 'wsj_0033.mrg', 'wsj_0034.mrg', 'wsj_0035.mrg',
'wsj_0036.mrg', 'wsj_0037.mrg', 'wsj_0038.mrg', 'wsj_0039.mrg',
'wsj_0040.mrg', 'wsj_0041.mrg', 'wsj_0042.mrg', 'wsj_0043.mrg',
'wsj_0044.mrg', 'wsj_0045.mrg', 'wsj_0046.mrg', 'wsj_0047.mrg',
'wsj_0048.mrg', 'wsj_0049.mrg', 'wsj_0050.mrg', 'wsj_0051.mrg',
'wsj_0052.mrg', 'wsj_0053.mrg', 'wsj_0054.mrg', 'wsj_0055.mrg',
'wsj_0056.mrg', 'wsj_0057.mrg', 'wsj_0058.mrg', 'wsj_0059.mrg',
'wsj_0060.mrg', 'wsj_0061.mrg', 'wsj_0062.mrg', 'wsj_0063.mrg',
'wsj_0064.mrg', 'wsj_0065.mrg', 'wsj_0066.mrg', 'wsj_0067.mrg',
'wsj_0068.mrg', 'wsj_0069.mrg', 'wsj_0070.mrg', 'wsj_0071.mrg',
'wsj_0072.mrg', 'wsj_0073.mrg', 'wsj_0074.mrg', 'wsj_0075.mrg',
'wsj_0076.mrg', 'wsj_0077.mrg', 'wsj_0078.mrg', 'wsj_0079.mrg',
'wsj_0080.mrg', 'wsj_0081.mrg', 'wsj_0082.mrg', 'wsj_0083.mrg',
'wsj_0084.mrg', 'wsj_0085.mrg', 'wsj_0086.mrg', 'wsj_0087.mrg',
'wsj_0088.mrg', 'wsj_0089.mrg', 'wsj_0090.mrg', 'wsj_0091.mrg',
'wsj_0092.mrg', 'wsj_0093.mrg', 'wsj_0094.mrg', 'wsj_0095.mrg',
'wsj_0096.mrg', 'wsj_0097.mrg', 'wsj_0098.mrg', 'wsj_0099.mrg',
'wsj_0100.mrg', 'wsj_0101.mrg', 'wsj_0102.mrg', 'wsj_0103.mrg',
'wsj_0104.mrg', 'wsj_0105.mrg', 'wsj_0106.mrg', 'wsj_0107.mrg',
'wsj_0108.mrg', 'wsj_0109.mrg', 'wsj_0110.mrg', 'wsj_0111.mrg',
'wsj_0112.mrg', 'wsj_0113.mrg', 'wsj_0114.mrg', 'wsj_0115.mrg',
'wsj_0116.mrg', 'wsj_0117.mrg', 'wsj_0118.mrg', 'wsj_0119.mrg',
'wsj_0120.mrg', 'wsj_0121.mrg', 'wsj_0122.mrg', 'wsj_0123.mrg',
'wsj_0124.mrg', 'wsj_0125.mrg', 'wsj_0126.mrg', 'wsj_0127.mrg',

'wsj_0128.mrg', 'wsj_0129.mrg', 'wsj_0130.mrg', 'wsj_0131.mrg',
'wsj_0132.mrg', 'wsj_0133.mrg', 'wsj_0134.mrg', 'wsj_0135.mrg',
'wsj_0136.mrg', 'wsj_0137.mrg', 'wsj_0138.mrg', 'wsj_0139.mrg',
'wsj_0140.mrg', 'wsj_0141.mrg', 'wsj_0142.mrg', 'wsj_0143.mrg',
'wsj_0144.mrg', 'wsj_0145.mrg', 'wsj_0146.mrg', 'wsj_0147.mrg',
'wsj_0148.mrg', 'wsj_0149.mrg', 'wsj_0150.mrg', 'wsj_0151.mrg',
'wsj_0152.mrg', 'wsj_0153.mrg', 'wsj_0154.mrg', 'wsj_0155.mrg',
'wsj_0156.mrg', 'wsj_0157.mrg', 'wsj_0158.mrg', 'wsj_0159.mrg',
'wsj_0160.mrg', 'wsj_0161.mrg', 'wsj_0162.mrg', 'wsj_0163.mrg',
'wsj_0164.mrg', 'wsj_0165.mrg', 'wsj_0166.mrg', 'wsj_0167.mrg',
'wsj_0168.mrg', 'wsj_0169.mrg', 'wsj_0170.mrg', 'wsj_0171.mrg',
'wsj_0172.mrg', 'wsj_0173.mrg', 'wsj_0174.mrg', 'wsj_0175.mrg',
'wsj_0176.mrg', 'wsj_0177.mrg', 'wsj_0178.mrg', 'wsj_0179.mrg',
'wsj_0180.mrg', 'wsj_0181.mrg', 'wsj_0182.mrg', 'wsj_0183.mrg',
'wsj_0184.mrg', 'wsj_0185.mrg', 'wsj_0186.mrg', 'wsj_0187.mrg',
'wsj_0188.mrg', 'wsj_0189.mrg', 'wsj_0190.mrg', 'wsj_0191.mrg',
'wsj_0192.mrg', 'wsj_0193.mrg', 'wsj_0194.mrg', 'wsj_0195.mrg',
'wsj_0196.mrg', 'wsj_0197.mrg', 'wsj_0198.mrg', 'wsj_0199.mrg']
>>> from nltk.corpus import treebank
>>> print(treebank.words('wsj_0007.mrg'))
['McDermott', 'International', 'Inc.', 'said', '0', ...]
>>> print(treebank.tagged_words('wsj_0007.mrg'))
[('McDermott', 'NNP'), ('International', 'NNP'), ...]

Let's see the code in NLTK for accessing the Penn Treebank Corpus, which uses the Treebank Corpus
Reader contained in the corpus module:

>>> import nltk
>>> from nltk.corpus import treebank
>>> print(treebank.parsed_sents('wsj_0007.mrg')[2])
(S

(NP-SBJ
(NP (NNP Bailey) (NNP Controls))
(, ,)
(VP

(VBN based)
(NP (-NONE- *))
(PP-LOC-CLR

(IN in)
(NP (NP (NNP Wickliffe)) (, ,) (NP (NNP Ohio)))))

(, ,))
(VP

(VBZ makes)
(NP

(JJ computerized)
(JJ industrial)
(NNS controls)

(NNS systems)))
(. .))

>>> import nltk
>>> from nltk.corpus import treebank_chunk
>>> treebank_chunk.chunked_sents()[1]
Tree('S', [Tree('NP', [('Mr.', 'NNP'), ('Vinken', 'NNP')]), ('is',
'VBZ'), Tree('NP', [('chairman', 'NN')]), ('of', 'IN'), Tree('NP',
[('Elsevier', 'NNP'), ('N.V.', 'NNP')]), (',', ','), Tree('NP',
[('the', 'DT'), ('Dutch', 'NNP'), ('publishing', 'VBG'), ('group',
'NN')]), ('.', '.')])
>>> treebank_chunk.chunked_sents()[1].draw()

The preceding code obtains the following parse tree:

>>> import nltk
>>> from nltk.corpus import treebank_chunk
>>> treebank_chunk.chunked_sents()[1].leaves()
[('Mr.', 'NNP'), ('Vinken', 'NNP'), ('is', 'VBZ'), ('chairman',
'NN'), ('of', 'IN'), ('Elsevier', 'NNP'), ('N.V.', 'NNP'), (',',
','), ('the', 'DT'), ('Dutch', 'NNP'), ('publishing', 'VBG'),
('group', 'NN'), ('.', '.')]
>>> treebank_chunk.chunked_sents()[1].pos()
[(('Mr.', 'NNP'), 'NP'), (('Vinken', 'NNP'), 'NP'), (('is', 'VBZ'),
'S'), (('chairman', 'NN'), 'NP'), (('of', 'IN'), 'S'), (('Elsevier',
'NNP'), 'NP'), (('N.V.', 'NNP'), 'NP'), ((',', ','), 'S'), (('the',
'DT'), 'NP'), (('Dutch', 'NNP'), 'NP'), (('publishing', 'VBG'),
'NP'), (('group', 'NN'), 'NP'), (('.', '.'), 'S')]
>>> treebank_chunk.chunked_sents()[1].productions()
[S -> NP ('is', 'VBZ') NP ('of', 'IN') NP (',', ',') NP ('.', '.'),
NP -> ('Mr.', 'NNP') ('Vinken', 'NNP'), NP -> ('chairman', 'NN'), NP
-> ('Elsevier', 'NNP') ('N.V.', 'NNP'), NP -> ('the', 'DT')
('Dutch', 'NNP') ('publishing', 'VBG') ('group', 'NN')]

Part of speech annotations are included in the tagged_words() method:

>>> nltk.corpus.treebank.tagged_words()
[('Pierre', 'NNP'), ('Vinken', 'NNP'), (',', ','), ...]

The type of tags and the count of these tags used in the Penn Treebank Corpus are shown here:

16

$ 724

''

, 4,886

-LRB- 120

-NONE- 6,592

-RRB- 126

. 384

: 563

`` 712

CC 2,265

CD 3,546

DT 8,165

EX 88

FW 4

IN 9,857

JJ 5,834

JJR 381

JJS 182

LS 13

MD 927

NN 13,166

NNP 9,410

NNPS 244

NNS 6,047

PDT 27

POS 824

PRP 1,716

PRP$ 766

RB 2,822

RBR 136

RBS 35

RP 216

SYM 1

TO 2,179

UH 3

VB 2,554

VBD 3,043

VBG 1,460

VBN 2,134

VBP 1,321

VBZ 2,125

WDT 445

WP 241

WP$ 14

The tags and frequency can be obtained from the following code:

>>> import nltk
>>> from nltk.probability import FreqDist
>>> from nltk.corpus import treebank
>>> fd = FreqDist()
>>> fd.items()
dict_items([])

The preceding code obtains a list of tags and the frequency of each tag in the Treebank corpus.

Let's see the code in NLTK for accessing the Sinica Treebank Corpus:

>>> import nltk
>>> from nltk.corpus import sinica_treebank
>>> print(sinica_treebank.sents())
[['?'], ['??'], ['??', '?', '?', '??', '???', '??'], ...]

>>> sinica_treebank.parsed_sents()[27]
Tree('S', [Tree('NP', [Tree('NP', [Tree('N‧?', [Tree('Nhaa', ['?']),
Tree('DE', ['?'])]), Tree('Ncb', ['??'])]), Tree('Ncda', ['?'])]),
Tree('Dd', ['??']), Tree('DM', ['??']), Tree('VH11', ['??'])])

Extracting Context Free Grammar (CFG) rules
from Treebank
CFG was defined for natural languages in 1957 by Noam Chomsky. A CFG consists of the following
components:

• A set of non terminal nodes (N)
• A set of terminal nodes (T)
• Start symbol (S)
• A set of production rules (P) of the form:

A→a

CFG rules are of two types—Phrase structure rules and Sentence structure rules.

A Phrase Structure Rule can be defined as follows—A→a, where A Î N and a consists of Terminals and
Non terminals.

In Sentence level Construction of CFG, there are four structures:

• Declarative structure: Deals with declarative sentences (the subject is followed by a predicate).
• Imperative structure: Deals with imperative sentences, commands, or suggestions (sentences

begin with a verb phrase and do not include a subject).
• Yes-No structure: Deals with question-answering sentences. The answers to these questions are

either yes or no.
• Wh-question structure: Deals with question-answering sentences. Questions that begin

following Wh words (Who, What, How, When, Where, Why, and Which).

General CFG rules are summarized here:

• S→NP VP
• S→VP
• S→Aux NP VP
• S→Wh-NP VP
• S→Wh-NP Aux NP VP
• NP→(Det) (AP) Nom (PP)
• VP→Verb (NP) (NP) (PP)*
• VP→Verb S
• PP→Prep (NP)
• AP→(Adv) Adj (PP)

Consider an example that depicts the use of Context-free Grammar rules in NLTK:

>>> import nltk
>>> from nltk import Nonterminal, nonterminals, Production, CFG
>>> nonterminal1 = Nonterminal('NP')
>>> nonterminal2 = Nonterminal('VP')

>>> nonterminal3 = Nonterminal('PP')
>>> nonterminal1.symbol()
'NP'
>>> nonterminal2.symbol()
'VP'
>>> nonterminal3.symbol()
'PP'
>>> nonterminal1==nonterminal2
False
>>> nonterminal2==nonterminal3
False
>>> nonterminal1==nonterminal3
False
>>> S, NP, VP, PP = nonterminals('S, NP, VP, PP')
>>> N, V, P, DT = nonterminals('N, V, P, DT')
>>> production1 = Production(S, [NP, VP])
>>> production2 = Production(NP, [DT, NP])
>>> production3 = Production(VP, [V, NP,NP,PP])
>>> production1.lhs()
S
>>> production1.rhs()
(NP, VP)
>>> production3.lhs()
VP
>>> production3.rhs()
(V, NP, NP, PP)
>>> production3 == Production(VP, [V,NP,NP,PP])
True
>>> production2 == production3
False

An example for accessing ATIS grammar in NLTK is as follows:

>>> import nltk
>>> gram1 = nltk.data.load('grammars/large_grammars/atis.cfg')
>>> gram1
<Grammar with 5517 productions>

Extract the testing sentences from ATIS as follows:

>>> import nltk
>>> sent = nltk.data.load('grammars/large_grammars/
atis_sentences.txt')
>>> sent = nltk.parse.util.extract_test_sentences(sent)
>>> len(sent)
98
>>> testingsent=sent[25]

>>> testingsent[1]
11
>>> testingsent[0]
['list', 'those', 'flights', 'that', 'stop', 'over', 'in', 'salt',
'lake', 'city', '.']
>>> sent=testingsent[0]

Bottom-up parsing:

>>> import nltk
>>> gram1 = nltk.data.load('grammars/large_grammars/atis.cfg')
>>> sent = nltk.data.load('grammars/large_grammars/
atis_sentences.txt')
>>> sent = nltk.parse.util.extract_test_sentences(sent)
>>> testingsent=sent[25]
>>> sent=testingsent[0]
>>> parser1 = nltk.parse.BottomUpChartParser(gram1)
>>> chart1 = parser1.chart_parse(sent)
>>> print((chart1.num_edges()))
13454
>>> print((len(list(chart1.parses(gram1.start())))))
11

Bottom-up, Left Corner parsing:

>>> import nltk
>>> gram1 = nltk.data.load('grammars/large_grammars/atis.cfg')
>>> sent = nltk.data.load('grammars/large_grammars/
atis_sentences.txt')
>>> sent = nltk.parse.util.extract_test_sentences(sent)
>>> testingsent=sent[25]
>>> sent=testingsent[0]
>>> parser2 = nltk.parse.BottomUpLeftCornerChartParser(gram1)
>>> chart2 = parser2.chart_parse(sent)
>>> print((chart2.num_edges()))
8781
>>> print((len(list(chart2.parses(gram1.start())))))
11

Left Corner parsing with a Bottom-up filter:

>>> import nltk
>>> gram1 = nltk.data.load('grammars/large_grammars/atis.cfg')
>>> sent = nltk.data.load('grammars/large_grammars/
atis_sentences.txt')
>>> sent = nltk.parse.util.extract_test_sentences(sent)
>>> testingsent=sent[25]

>>> sent=testingsent[0]
>>> parser3 = nltk.parse.LeftCornerChartParser(gram1)
>>> chart3 = parser3.chart_parse(sent)
>>> print((chart3.num_edges()))
1280
>>> print((len(list(chart3.parses(gram1.start())))))
11

Top-down parsing:

>>> import nltk
>>> gram1 = nltk.data.load('grammars/large_grammars/atis.cfg')
>>> sent = nltk.data.load('grammars/large_grammars/
atis_sentences.txt')
>>> sent = nltk.parse.util.extract_test_sentences(sent)
>>> testingsent=sent[25]
>>> sent=testingsent[0]
>>>parser4 = nltk.parse.TopDownChartParser(gram1)
>>> chart4 = parser4.chart_parse(sent)
>>> print((chart4.num_edges()))
37763
>>> print((len(list(chart4.parses(gram1.start())))))
11

Incremental Bottom-up parsing:

>>> import nltk
>>> gram1 = nltk.data.load('grammars/large_grammars/atis.cfg')
>>> sent = nltk.data.load('grammars/large_grammars/
atis_sentences.txt')
>>> sent = nltk.parse.util.extract_test_sentences(sent)
>>> testingsent=sent[25]
>>> sent=testingsent[0]
>>> parser5 = nltk.parse.IncrementalBottomUpChartParser(gram1)
>>> chart5 = parser5.chart_parse(sent)
>>> print((chart5.num_edges()))
13454
>>> print((len(list(chart5.parses(gram1.start())))))
11

Incremental Bottom-up, Left Corner parsing:

>>> import nltk
>>> gram1 = nltk.data.load('grammars/large_grammars/atis.cfg')
>>> sent = nltk.data.load('grammars/large_grammars/
atis_sentences.txt')
>>> sent = nltk.parse.util.extract_test_sentences(sent)

>>> testingsent=sent[25]
>>> sent=testingsent[0]
>>> parser6 =
nltk.parse.IncrementalBottomUpLeftCornerChartParser(gram1)
>>> chart6 = parser6.chart_parse(sent)
>>> print((chart6.num_edges()))
8781
>>> print((len(list(chart6.parses(gram1.start())))))
11

Incremental Left Corner parsing with a Bottom-up filter:

>>> import nltk
>>> gram1 = nltk.data.load('grammars/large_grammars/atis.cfg')
>>> sent = nltk.data.load('grammars/large_grammars/
atis_sentences.txt')
>>> sent = nltk.parse.util.extract_test_sentences(sent)
>>> testingsent=sent[25]
>>> sent=testingsent[0]
>>> parser7 = nltk.parse.IncrementalLeftCornerChartParser(gram1)
>>> chart7 = parser7.chart_parse(sent)
>>> print((chart7.num_edges()))
1280
>>> print((len(list(chart7.parses(gram1.start())))))
11

Incremental Top-down parsing:

>>> import nltk
>>> gram1 = nltk.data.load('grammars/large_grammars/atis.cfg')
>>> sent = nltk.data.load('grammars/large_grammars/
atis_sentences.txt')
>>> sent = nltk.parse.util.extract_test_sentences(sent)
>>> testingsent=sent[25]
>>> sent=testingsent[0]
>>> parser8 = nltk.parse.IncrementalTopDownChartParser(gram1)
>>> chart8 = parser8.chart_parse(sent)
>>> print((chart8.num_edges()))
37763
>>> print((len(list(chart8.parses(gram1.start())))))
11

Earley parsing:

>>> import nltk
>>> gram1 = nltk.data.load('grammars/large_grammars/atis.cfg')
>>> sent = nltk.data.load('grammars/large_grammars/

atis_sentences.txt')
>>> sent = nltk.parse.util.extract_test_sentences(sent)
>>> testingsent=sent[25]
>>> sent=testingsent[0]
>>> parser9 = nltk.parse.EarleyChartParser(gram1)
>>> chart9 = parser9.chart_parse(sent)
>>> print((chart9.num_edges()))
37763
>>> print((len(list(chart9.parses(gram1.start())))))
11

Creating a probabilistic Context Free Grammar
from CFG
In Probabilistic Context-free Grammar (PCFG), probabilities are attached to all the production rules
present in CFG. The sum of these probabilities is 1. It generates the same parse structures as CFG, but it
also assigns a probability to each parse tree. The probability of a parsed tree is obtained by taking the
product of probabilities of all the production rules used in building the tree.

Let's see the following code in NLTK, that illustrates the formation of rules in PCFG:

>>> import nltk
>>> from nltk.corpus import treebank
>>> from itertools import islice
>>> from nltk.grammar import PCFG, induce_pcfg, toy_pcfg1, toy_pcfg2
>>> gram2 = PCFG.from string("""
A -> B B [.3] | C B C [.7]
B -> B D [.5] | C [.5]
C -> 'a' [.1] | 'b' [0.9]
D -> 'b' [1.0]
""")
>>> prod1 = gram2.productions()[0]
>>> prod1
A -> B B [0.3]
>>> prod2 = gram2.productions()[1]
>>> prod2
A -> C B C [0.7]
>>> prod2.lhs()
A
>>> prod2.rhs()
(C, B, C)
>>> print((prod2.prob()))
0.7
>>> gram2.start()
A
>>> gram2.productions()
[A -> B B [0.3], A -> C B C [0.7], B -> B D [0.5], B -> C [0.5], C
-> 'a' [0.1], C -> 'b' [0.9], D -> 'b' [1.0]]

Let's see the code in NLTK that illustrates Probabilistic Chart Parsing:

>>> import nltk
>>> from nltk.corpus import treebank
>>> from itertools import islice
>>> from nltk.grammar import PCFG, induce_pcfg, toy_pcfg1, toy_pcfg2
>>> tokens = "Jack told Bob to bring my cookie".split()

>>> grammar = toy_pcfg2
>>> print(grammar)
Grammar with 23 productions (start state = S)

S -> NP VP [1.0]
VP -> V NP [0.59]
VP -> V [0.4]
VP -> VP PP [0.01]
NP -> Det N [0.41]
NP -> Name [0.28]
NP -> NP PP [0.31]
PP -> P NP [1.0]
V -> 'saw' [0.21]
V -> 'ate' [0.51]
V -> 'ran' [0.28]
N -> 'boy' [0.11]
N -> 'cookie' [0.12]
N -> 'table' [0.13]
N -> 'telescope' [0.14]
N -> 'hill' [0.5]
Name -> 'Jack' [0.52]
Name -> 'Bob' [0.48]
P -> 'with' [0.61]
P -> 'under' [0.39]
Det -> 'the' [0.41]
Det -> 'a' [0.31]
Det -> 'my' [0.28]

CYK chart parsing algorithm
The drawback of Recursive Descent Parsing is that it causes the Left Recursion Problem and is very
complex. So, CYK chart parsing was introduced. It uses the Dynamic Programming approach. CYK is
one of the simplest chart parsing algorithms. The CYK algorithm is capable of constructing a chart in
O(n3) time. Both CYK and Earley are Bottom-up chart parsing algorithms. But, the Earley algorithm
also makes use of Top-down predictions when invalid parses are constructed.

Consider the following example of CYK parsing:

tok = ["the", "kids", "opened", "the", "box", "on", "the", "floor"]
gram = nltk.parse_cfg("""
S -> NP VP
NP -> Det N | NP PP
VP -> V NP | VP PP
PP -> P NP
Det -> 'the'
N -> 'kids' | 'box' | 'floor'
V -> 'opened' P -> 'on'
""")

Consider the following code to construct the initializing table:

def init_nfst(tok, gram):
numtokens1 = len(tok)
fill w/ dots

nfst = [["." for i in range(numtokens1+1)] !!!!!!! for j in
range(numtokens1+1)]
fill in diagonal
for i in range(numtokens1):
prod= gram.productions(rhs=tok[i])
nfst[i][i+1] = prod[0].lhs()
return nfst

Consider the following code to fill in the table:

def complete_nfst(nfst, tok, trace=False):
index1 = {} for prod in gram.productions():
#make lookup reverse
index1[prod.rhs()] = prod.lhs()
numtokens1 = len(tok) for span in range(2, numtokens1+1):
for start in range(numtokens1+1-span):
#go down towards diagonal
end1 = start1 + span for mid in range(start1+1, end1):
nt1, nt2 = nfst[start1][mid001], nfst[mid001][end1]
if (nt1,nt2) in index1:

if trace:
print "[%s] %3s [%s] %3s [%s] ==> [%s] %3s [%s]" % \ (start, nt1,
mid001, nt2, end1, start1, index[(nt1,nt2)], end) nfst[start1][end1]
= index[(nt1,nt2)]
return nfst

Following is the code in Python for constructing the display table:

def display(wfst, tok):
print '\nWFST ' + ' '.join([("%-4d" % i) for i in range(1,
len(wfst))])
for i in range(len(wfst)-1):
print "%d " % i,
for j in range(1, len(wfst)):
print "%-4s" % wfst[i][j],
print

The result can be obtained from the following code:

tok = ["the", "kids", "opened", "the", "box", "on", "the", "floor"]
res1 = init_wfst(tok, gram)
display(res1, tok)
res2 = complete_wfst(res1,tok)
display(res2, tok)

Earley chart parsing algorithm
Earley algorithm was given by Earley in 1970. This algorithm is similar to Top-down parsing. It can
handle left-recursion, and it doesn't need CNF. It fills in a chart in the left to right manner.

Consider an example that illustrates parsing using the Earley chart parser:

>>> import nltk
>>> nltk.parse.earleychart.demo(print_times=False, trace=1,sent='I
saw a dog', numparses=2)
* Sentence:
I saw a dog
['I', 'saw', 'a', 'dog']

|. I . saw . a . dog .|
|[---------] . . .| [0:1] 'I'
|. [---------] . .| [1:2] 'saw'
|. . [---------] .| [2:3] 'a'
|. . . [---------]| [3:4] 'dog'
|> | [0:0] S -> * NP VP
|> | [0:0] NP -> * NP PP
|> | [0:0] NP -> * Det Noun
|> | [0:0] NP -> * 'I'
|[---------] . . .| [0:1] NP -> 'I' *
|[---------> . . .| [0:1] S -> NP * VP
|[---------> . . .| [0:1] NP -> NP * PP
|. > . . .| [1:1] VP -> * VP PP
|. > . . .| [1:1] VP -> * Verb NP
|. > . . .| [1:1] VP -> * Verb
|. > . . .| [1:1] Verb -> * 'saw'
|. [---------] . .| [1:2] Verb -> 'saw' *
|. [---------> . .| [1:2] VP -> Verb * NP
|. [---------] . .| [1:2] VP -> Verb *
|[-------------------] . .| [0:2] S -> NP VP *
|. [---------> . .| [1:2] VP -> VP * PP
|. . > . .| [2:2] NP -> * NP PP
|. . > . .| [2:2] NP -> * Det Noun
|. . > . .| [2:2] Det -> * 'a'
|. . [---------] .| [2:3] Det -> 'a' *
|. . [---------> .| [2:3] NP -> Det * Noun
|. . . > .| [3:3] Noun -> * 'dog'
|. . . [---------]| [3:4] Noun -> 'dog' *
|. . [-------------------]| [2:4] NP -> Det Noun *
|. [-----------------------------]| [1:4] VP -> Verb NP *
|. . [------------------->| [2:4] NP -> NP * PP

|[=======================================]| [0:4] S -> NP VP *
|. [----------------------------->| [1:4] VP -> VP * PP

Consider an example that illustrates parsing using the Chart parser in NLTK:

>>> import nltk
>>> nltk.parse.chart.demo(2, print_times=False, trace=1,sent='John
saw a dog', numparses=1)
* Sentence:
John saw a dog
['John', 'saw', 'a', 'dog']

* Strategy: Bottom-up

|. John . saw . a . dog .|
|[---------] . . .| [0:1] 'John'
|. [---------] . .| [1:2] 'saw'
|. . [---------] .| [2:3] 'a'
|. . . [---------]| [3:4] 'dog'
|> | [0:0] NP -> * 'John'
|[---------] . . .| [0:1] NP -> 'John' *
|> | [0:0] S -> * NP VP
|> | [0:0] NP -> * NP PP
|[---------> . . .| [0:1] S -> NP * VP
|[---------> . . .| [0:1] NP -> NP * PP
|. > . . .| [1:1] Verb -> * 'saw'
|. [---------] . .| [1:2] Verb -> 'saw' *
|. > . . .| [1:1] VP -> * Verb NP
|. > . . .| [1:1] VP -> * Verb
|. [---------> . .| [1:2] VP -> Verb * NP
|. [---------] . .| [1:2] VP -> Verb *
|. > . . .| [1:1] VP -> * VP PP
|[-------------------] . .| [0:2] S -> NP VP *
|. [---------> . .| [1:2] VP -> VP * PP
|. . > . .| [2:2] Det -> * 'a'
|. . [---------] .| [2:3] Det -> 'a' *
|. . > . .| [2:2] NP -> * Det Noun
|. . [---------> .| [2:3] NP -> Det * Noun
|. . . > .| [3:3] Noun -> * 'dog'
|. . . [---------]| [3:4] Noun -> 'dog' *
|. . [-------------------]| [2:4] NP -> Det Noun *
|. . > . .| [2:2] S -> * NP VP
|. . > . .| [2:2] NP -> * NP PP
|. [-----------------------------]| [1:4] VP -> Verb NP *
|. . [------------------->| [2:4] S -> NP * VP
|. . [------------------->| [2:4] NP -> NP * PP
|[=======================================]| [0:4] S -> NP VP *

|. [----------------------------->| [1:4] VP -> VP * PP
Nr edges in chart: 33
(S (NP John) (VP (Verb saw) (NP (Det a) (Noun dog))))

Consider an example that illustrates parsing using the Stepping Chart parser in NLTK:

>>> import nltk
>>> nltk.parse.chart.demo(5, print_times=False, trace=1,sent='John
saw a dog', numparses=2)
* Sentence:
John saw a dog
['John', 'saw', 'a', 'dog']

* Strategy: Stepping (top-down vs bottom-up)

*** SWITCH TO TOP DOWN
|[---------] . . .| [0:1] 'John'
|. [---------] . .| [1:2] 'saw'
|. . [---------] .| [2:3] 'a'
|. . . [---------]| [3:4] 'dog'
|> | [0:0] S -> * NP VP
|> | [0:0] NP -> * NP PP
|> | [0:0] NP -> * Det Noun
|> | [0:0] NP -> * 'John'
|[---------] . . .| [0:1] NP -> 'John' *
|[---------> . . .| [0:1] S -> NP * VP
|[---------> . . .| [0:1] NP -> NP * PP
|. > . . .| [1:1] VP -> * VP PP
|. > . . .| [1:1] VP -> * Verb NP
|. > . . .| [1:1] VP -> * Verb
|. > . . .| [1:1] Verb -> * 'saw'
|. [---------] . .| [1:2] Verb -> 'saw' *
|. [---------> . .| [1:2] VP -> Verb * NP
|. [---------] . .| [1:2] VP -> Verb *
|[-------------------] . .| [0:2] S -> NP VP *
|. [---------> . .| [1:2] VP -> VP * PP
|. . > . .| [2:2] NP -> * NP PP
|. . > . .| [2:2] NP -> * Det Noun
*** SWITCH TO BOTTOM UP
|. . > . .| [2:2] Det -> * 'a'
|. . . > .| [3:3] Noun -> * 'dog'
|. . [---------] .| [2:3] Det -> 'a' *
|. . . [---------]| [3:4] Noun -> 'dog' *
|. . [---------> .| [2:3] NP -> Det * Noun
|. . [-------------------]| [2:4] NP -> Det Noun *
|. [-----------------------------]| [1:4] VP -> Verb NP *
|. . [------------------->| [2:4] NP -> NP * PP

|[=======================================]| [0:4] S -> NP VP *
|. [----------------------------->| [1:4] VP -> VP * PP
|. . > . .| [2:2] S -> * NP VP
|. . [------------------->| [2:4] S -> NP * VP
*** SWITCH TO TOP DOWN
|. . . . >| [4:4] VP -> * VP PP
|. . . . >| [4:4] VP -> * Verb NP
|. . . . >| [4:4] VP -> * Verb
*** SWITCH TO BOTTOM UP
*** SWITCH TO TOP DOWN
*** SWITCH TO BOTTOM UP
*** SWITCH TO TOP DOWN
*** SWITCH TO BOTTOM UP
*** SWITCH TO TOP DOWN
*** SWITCH TO BOTTOM UP
Nr edges in chart: 37

Let's see the code for Feature chart parsing in NLTK:

>>> import nltk
>>>nltk.parse.featurechart.demo(print_times=False,print_grammar=True,
parser=nltk.parse.featurechart.FeatureChartParser,sent='I saw a dog')

Grammar with 18 productions (start state = S[])
S[] -> NP[] VP[]
PP[] -> Prep[] NP[]
NP[] -> NP[] PP[]
VP[] -> VP[] PP[]
VP[] -> Verb[] NP[]
VP[] -> Verb[]
NP[] -> Det[pl=?x] Noun[pl=?x]
NP[] -> 'John'
NP[] -> 'I'
Det[] -> 'the'
Det[] -> 'my'
Det[-pl] -> 'a'
Noun[-pl] -> 'dog'
Noun[-pl] -> 'cookie'
Verb[] -> 'ate'
Verb[] -> 'saw'
Prep[] -> 'with'
Prep[] -> 'under'

* FeatureChartParser
Sentence: I saw a dog
|. I .saw. a .dog.|
|[---] . . .| [0:1] 'I'

|. [---] . .| [1:2] 'saw'
|. . [---] .| [2:3] 'a'
|. . . [---]| [3:4] 'dog'
|[---] . . .| [0:1] NP[] -> 'I' *
|[---> . . .| [0:1] S[] -> NP[] * VP[] {}
|[---> . . .| [0:1] NP[] -> NP[] * PP[] {}
|. [---] . .| [1:2] Verb[] -> 'saw' *
|. [---> . .| [1:2] VP[] -> Verb[] * NP[] {}
|. [---] . .| [1:2] VP[] -> Verb[] *
|. [---> . .| [1:2] VP[] -> VP[] * PP[] {}
|[-------] . .| [0:2] S[] -> NP[] VP[] *
|. . [---] .| [2:3] Det[-pl] -> 'a' *
|. . [---> .| [2:3] NP[] -> Det[pl=?x] * Noun[pl=?x] {?x:
False}
|. . . [---]| [3:4] Noun[-pl] -> 'dog' *
|. . [-------]| [2:4] NP[] -> Det[-pl] Noun[-pl] *
|. . [------->| [2:4] S[] -> NP[] * VP[] {}
|. . [------->| [2:4] NP[] -> NP[] * PP[] {}
|. [-----------]| [1:4] VP[] -> Verb[] NP[] *
|. [----------->| [1:4] VP[] -> VP[] * PP[] {}
|[===============]| [0:4] S[] -> NP[] VP[] *
(S[]

(NP[] I)
(VP[] (Verb[] saw) (NP[] (Det[-pl] a) (Noun[-pl] dog))))

The following code is found in NLTK for the implementation of the Earley algorithm:

def demo(print_times=True, print_grammar=False,
print_trees=True, trace=2,
sent='I saw John with a dog with my cookie', numparses=5):

"""
A demonstration of the Earley parsers.
"""
import sys, time
from nltk.parse.chart import demo_grammar

The grammar for ChartParser and SteppingChartParser:
grammar = demo_grammar()
if print_grammar:

print("* Grammar")
print(grammar)

Tokenize the sample sentence.
print("* Sentence:")
print(sent)
tokens = sent.split()
print(tokens)

print()

Do the parsing.
earley = EarleyChartParser(grammar, trace=trace)
t = time.clock()
chart = earley.chart_parse(tokens)
parses = list(chart.parses(grammar.start()))
t = time.clock()-t

Print results.
if numparses:

assert len(parses)==numparses, 'Not all parses found'
if print_trees:

for tree in parses: print(tree)
else:

print("Nr trees:", len(parses))
if print_times:

print("Time:", t)

if __name__ == '__main__': demo()

Summary
In this chapter, we discussed Parsing, accessing the Treebank Corpus, and the implementation of
Context-free Grammar, Probabilistic Context-free Grammar, the CYK algorithm, and the Earley
algorithm. Hence, in this chapter, we discussed about the syntactic analysis phase of NLP.

In the next chapter, we will discuss about semantic analysis, which is another phase of NLP. We will
discuss about NER using different approaches and obtain ways for performing disambiguation tasks.

Chapter 6. Semantic Analysis – Meaning
Matters
Semantic analysis, or meaning generation is one of the tasks in NLP. It is defined as the process of
determining the meaning of character sequences or word sequences. It may be used for performing the
task of disambiguation.

This chapter will include the following topics:

• NER
• NER system using the HMM
• Training NER using machine learning toolkits
• NER using POS tagging
• Generation of the synset id from Wordnet
• Disambiguating senses using Wordnet

Introducing semantic analysis
NLP means performing computations on natural language. One of the steps performed while processing
a natural language is semantic analysis. While analyzing an input sentence, if the syntactic structure of a
sentence is built, then the semantic analysis of a sentence will be done. Semantic interpretation means
mapping a meaning to a sentence. Contextual interpretation is mapping the logical form to the
knowledge representation. The primitive or the basic unit of semantic analysis is referred to as meaning
or sense. One of the tools dealing with senses is ELIZA. ELIZA was developed in the sixties by Joseph
Weizenbaum. It made use of substitution and pattern matching techniques to analyze the sentence and
provide an output to the given input. MARGIE was developed by Robert Schank in the seventies. It
could represent all the English verbs using 11 primitives. MARGIE could interpret the sense of a
sentence and represent it with the help of primitives. It further gave way to the concept of scripts. From
MARGIE, Script Applier Mechanism (SAM) was developed. It could translate a sentence from
different languages, such as English, Chinese, Russian, Dutch, and Spanish. In order to perform
processing on textual data, a Python library or TextBlob is used. TextBlob provides APIs for performing
NLP tasks, such as Part-of-Speech tagging, extraction of Noun Phrases, classification, machine
translation, sentiment analysis.

Semantic analysis can be used to query a database and retrieve information. Another Python library,
Gensim, can be used to perform document indexing, topic modeling, and similarity retrieval. Polyglot is
an NLP tool that supports various multilingual applications. It provides NER for 40 different languages,
tokenization for 165 different languages, language detection for 196 different languages, sentiment
analysis for 136 different languages, POS tagging for 16 different languages, Morphological Analysis
for 135 different languages, word embedding for 137 different languages, and transliteration for 69
different languages. MontyLingua is an NLP tool that is used to perform the semantic interpretation of
English text. From English sentences, it extracts semantic information, such as verbs, nouns, adjectives,
dates, phrases, and so on.

Sentences can be formally represented using logics. The basic expressions or sentences in propositional
logic are represented using propositional symbols, such as P,Q, R, and so on. Complex expressions in

propositional logic can be represented using Boolean operators. For example, to represent the sentence If
it is raining, I'll wear a raincoat using propositional logic:

• P: It is raining.
• Q: I'll wear raincoat.
• P→Q: If it is raining, I'll wear a raincoat.

Consider the following code to represent operators used in NLTK:

>>> import nltk
>>> nltk.boolean_ops()
negation -
conjunction &
disjunction |
implication ->
equivalence <->

Well-formed Formulas (WFF) are formed using propositional symbols or using a combination of
propositional symbols and Boolean operators.

Let's see the following code in NLTK, that categorizes logical expressions into different subclasses:

>>> import nltk
>>> input_expr = nltk.sem.Expression.from string
>>> input_expr('X | (Y -> Z)')
<OrExpression (X | (Y -> Z))>
>>> input_expr('-(X & Y)')
<NegatedExpression -(X & Y)>
>>> input_expr('X & Y')
<AndExpression (X & Y)>
>>> input_expr('X <-> -- X')
<IffExpression (X <-> --X)>

For mapping True or False values to logical expressions, the Valuation function is used in
NLTK:

>>> import nltk
>>> value = nltk.Valuation([('X', True), ('Y', False), ('Z', True)])
>>> value['Z']
True
>>> domain = set()
>>> v = nltk.Assignment(domain)
>>> u = nltk.Model(domain, value)
>>> print(u.evaluate('(X & Y)', v))
False
>>> print(u.evaluate('-(X & Y)', v))
True
>>> print(u.evaluate('(X & Z)', v))

True
>>> print(u.evaluate('(X | Y)', v))
True

First order predicate logic involving constants and predicates in NLTK are depicted in the following
code:

>>> import nltk
>>> input_expr = nltk.sem.Expression.from string
>>> expression = input_expr('run(marcus)', type_check=True)
>>> expression.argument
<ConstantExpressionmarcus>
>>> expression.argument.type
e
>>> expression.function
<ConstantExpression run>
>>> expression.function.type
<e,?>
>>> sign = {'run': '<e, t>'}
>>> expression = input_expr('run(marcus)', signature=sign)
>>> expression.function.type
e

The signature is used in NLTK to map associated types and non-logical constants. Consider the
following code in NLTK that helps to generate a query and retrieve data from the database:

>>> import nltk
>>> nltk.data.show_cfg('grammars/book_grammars/sql1.fcfg')
% start S
S[SEM=(?np + WHERE + ?vp)] -> NP[SEM=?np] VP[SEM=?vp]
VP[SEM=(?v + ?pp)] -> IV[SEM=?v] PP[SEM=?pp]
VP[SEM=(?v + ?ap)] -> IV[SEM=?v] AP[SEM=?ap]
VP[SEM=(?v + ?np)] -> TV[SEM=?v] NP[SEM=?np]
VP[SEM=(?vp1 + ?c + ?vp2)] -> VP[SEM=?vp1] Conj[SEM=?c] VP[SEM=?vp2]
NP[SEM=(?det + ?n)] ->Det[SEM=?det] N[SEM=?n]
NP[SEM=(?n + ?pp)] -> N[SEM=?n] PP[SEM=?pp]
NP[SEM=?n] -> N[SEM=?n] | CardN[SEM=?n]
CardN[SEM='1000'] -> '1,000,000'
PP[SEM=(?p + ?np)] -> P[SEM=?p] NP[SEM=?np]
AP[SEM=?pp] -> A[SEM=?a] PP[SEM=?pp]
NP[SEM='Country="greece"'] -> 'Greece'
NP[SEM='Country="china"'] -> 'China'
Det[SEM='SELECT'] -> 'Which' | 'What'
Conj[SEM='AND'] -> 'and'
N[SEM='City FROM city_table'] -> 'cities'
N[SEM='Population'] -> 'populations'
IV[SEM=''] -> 'are'

TV[SEM=''] -> 'have'
A -> 'located'
P[SEM=''] -> 'in'
P[SEM='>'] -> 'above'
>>> from nltk import load_parser
>>> test = load_parser('grammars/book_grammars/sql1.fcfg')
>>> q=" What cities are in Greece"
>>> t = list(test.parse(q.split()))
>>> ans = t[0].label()['SEM']
>>> ans = [s for s in ans if s]
>>> q = ' '.join(ans)
>>> print(q)
SELECT City FROM city_table WHERE Country="greece"
>>> from nltk.sem import chat80
>>> r = chat80.sql_query('corpora/city_database/city.db', q)
>>> for p in r:
print(p[0], end=" ")

athens

Introducing NER

Named entity recognition (NER) is the process in which proper nouns or named entities are located in a
document. Then, these Named Entities are classified into different categories, such as Name of Person,
Location, Organization, and so on.

There are 12 NER tagsets defined by IIIT-Hyderabad IJCNLP 2008. These are described here:

SNO. Named entity tag Meaning

1 NEP Name of Person

2 NED Name of Designation

3 NEO Name of Organization

4 NEA Name of Abbreviation

5 NEB Name of Brand

6 NETP Title of Person

SNO. Named entity tag Meaning

7 NETO Title of Object

8 NEL Name of Location

9 NETI Time

10 NEN Number

11 NEM Measure

12 NETE Terms

One of the applications of NER is information extraction. In NLTK, we can perform the task of
information extraction by storing the tuple (entity, relation, entity), and then, the entity value can be
retrieved.

Consider an example in NLTK that shows how information extraction is performed:

>>> import nltk
>>> locations=[('Jaipur', 'IN', 'Rajasthan'),('Ajmer', 'IN',
'Rajasthan'),('Udaipur', 'IN', 'Rajasthan'),('Mumbai', 'IN',
'Maharashtra'),('Ahmedabad', 'IN', 'Gujrat')]
>>> q = [x1 for (x1, relation, x2) in locations if x2=='Rajasthan']
>>> print(q)
['Jaipur', 'Ajmer', 'Udaipur']

The nltk.tag.stanford module is used that makes use of stanford taggers to perform NER. We
can download tagger models from http://nlp.stanford.edu/software.

Let's see the following example in NLTK that can be used to perform NER using the Stanford tagger:

>>> from nltk.tag import StanfordNERTagger
>>> sentence =
StanfordNERTagger('english.all.3class.distsim.crf.ser.gz')
>>> sentence.tag('John goes to NY'.split())
[('John', 'PERSON'), ('goes', 'O'), ('to', 'O'),('NY', 'LOCATION')]

A classifier has been trained in NLTK to detect Named Entities. Using the function
nltk.ne.chunk(), named entities can be identified from a text. If the parameter binary is set to

http://nlp.stanford.edu/software

true, then the named entities are detected and tagged with the NE tag; otherwise the named entities are
tagged with tags such as PERSON, GPE, and ORGANIZATION.

Let's see the following code, that detects Named Entities, if they exist, and tags them with the NE tag:

>>> import nltk
>>> sentences1 = nltk.corpus.treebank.tagged_sents()[17]
>>> print(nltk.ne_chunk(sentences1, binary=True))
(S

The/DT
total/NN
of/IN

18/CD
deaths/NNS
from/IN
malignant/JJ
mesothelioma/NN

,/,
lung/NN
cancer/NN
and/CC
asbestosis/NN
was/VBD
far/RB
higher/JJR
than/IN

*/-NONE-
expected/VBN

?/-NONE-
,/,

the/DT
researchers/NNS
said/VBD

0/-NONE-
T-1/-NONE-
./.)

>>> sentences2 = nltk.corpus.treebank.tagged_sents()[7]
>>> print(nltk.ne_chunk(sentences2, binary=True))
(S

A/DT
(NE Lorillard/NNP)

spokewoman/NN
said/VBD

,/,
``/``
This/DT

is/VBZ

an/DT
old/JJ
story/NN

./.)
>>> print(nltk.ne_chunk(sentences2))
(S

A/DT
(ORGANIZATION Lorillard/NNP)

spokewoman/NN
said/VBD

,/,
``/``
This/DT

is/VBZ
an/DT
old/JJ
story/NN

./.)

Consider another example in NLTK that can be used to detect named entities:

>>> import nltk
>>> from nltk.corpus import conll2002
>>> for documents in conll2002.chunked_sents('ned.train')[25]:
print(documents)

(PER Vandenbussche/Adj)
('zelf', 'Pron')
('besloot', 'V')
('dat', 'Conj')
('het', 'Art')
('hof', 'N')
('"', 'Punc')
('de', 'Art')
('politieke', 'Adj')
('zeden', 'N')
('uit', 'Prep')
('het', 'Art')
('verleden', 'N')
('"', 'Punc')
('heeft', 'V')
('willen', 'V')
('veroordelen', 'V')
('.', 'Punc')

A chunker is a program that is used to partition plain text into a sequence of semantically related
words. To perform NER in NLTK, default chunkers are used. Default chunkers are chunkers based on
classifiers that have been trained on the ACE corpus. Other chunkers have been trained on parsed or
chunked NLTK corpora. The languages covered by these NLTK chunkers are as follows:

• Dutch
• Spanish
• Portuguese
• English

Consider another example in NLTK that identifies named entities and categorizes into different named
entity classes:

>>> import nltk
>>> sentence = "I went to Greece to meet John";
>>> tok=nltk.word_tokenize(sentence)
>>> pos_tag=nltk.pos_tag(tok)
>>> print(nltk.ne_chunk(pos_tag))
(S

I/PRP
went/VBD
to/TO

(GPE Greece/NNP)
to/TO
meet/VB

(PERSON John/NNP))

A NER system using Hidden Markov Model

HMM is one of the popular statistical approaches of NER. An HMM is defined as a Stochastic Finite
State Automaton (SFSA) consisting of a finite set of states that are associated with the definite
probability distribution. States are unobserved or hidden. HMM generates optimal state sequences as an
output. HMM is based on the Markov Chain property. According to the Markov Chain property, the
probability of the occurrence of the next state is dependent on the previous tag. It is the simplest
approach to implement. The drawback of HMM is that it requires a large amount of training and it
cannot be used for large dependencies. HMM consists of the following:

• Set of states, S, where |S|=N. Here, N is the total number of states.
• Start state, S0.
• Output alphabet, O;|O|=k. k is the total number of output alphabets.
• Transition probability, A.
• Emission probability, B.
• Initial state probabilities, π.

HMM is represented by the following tuple—λ= (A, B, π).

Start probability or initial state probability may be defined as the probability that a particular tag occurs
first in a sentence.

Transition probability (A=aij) may be defined as the probability of the occurrence of the next tag j in a
sentence given the occurrence of the particular tag i at present.

A=aij= the number of transitions from state si to sj /the number of transitions from state si

Emission probability (B=bj(O)) may be defined as the probability of the occurrence of an output
sequence given a state j.

B=bj(k)= the number of times in state j and observing the symbol k /the expected number of times in
state j.

The Baum Welch algorithm is used to find the maximum likelihood and the posterior mode estimates for
HMM parameters. The forward-backward algorithm is used to find the posterior marginals of all the
hidden state variables given a sequence of emissions or observations.

There are three steps involved in performing NER using HMM—Annotation, HMM train, and HMM
test. The Annotation module converts raw text into annotated or trainable data. During HMM train, we
compute HMM parameters—start probability, transition probability, and emission probability. During
HMM test, the Viterbi algorithm is used. that finds out the optimal tag sequence.

Consider an example of chunking using the HMM in NLTK. Using chunking, the NP and VP chunks
can be obtained. NP chunks can further be processed to obtain proper nouns or named entities:

>>> import nltk
>>> nltk.tag.hmm.demo_pos()

HMM POS tagging demo

Training HMM...
Testing...
Test: the/AT fulton/NP county/NN grand/JJ jury/NN said/VBD friday/NR
an/AT investigation/NN of/IN atlanta's/NP$ recent/JJ primary/NN
election/NN produced/VBD ``/`` no/AT evidence/NN ''/'' that/CS any/
DTI irregularities/NNS took/VBD place/NN ./.

Untagged: the fulton county grand jury said friday an investigation
of atlanta's recent primary election produced `` no evidence '' that
any irregularities took place .

HMM-tagged: the/AT fulton/NP county/NN grand/JJ jury/NN said/VBD
friday/NR an/AT investigation/NN of/IN atlanta's/NP$ recent/JJ
primary/NN election/NN produced/VBD ``/`` no/AT evidence/NN ''/''
that/CS any/DTI irregularities/NNS took/VBD place/NN ./.

Entropy: 18.7331739705

--

Test: the/AT jury/NN further/RBR said/VBD in/IN term-end/NN
presentments/NNS that/CS the/AT city/NN executive/JJ committee/NN
,/, which/WDT had/HVD over-all/JJ charge/NN of/IN the/AT election/NN
,/, ``/`` deserves/VBZ the/AT praise/NN and/CC thanks/NNS of/IN the/
AT city/NN of/IN atlanta/NP ''/'' for/IN the/AT manner/NN in/IN
which/WDT the/AT election/NN was/BEDZ conducted/VBN ./.

Untagged: the jury further said in term-end presentments that the
city executive committee , which had over-all charge of the election
, `` deserves the praise and thanks of the city of atlanta '' for
the manner in which the election was conducted .

HMM-tagged: the/AT jury/NN further/RBR said/VBD in/IN term-end/AT
presentments/NN that/CS the/AT city/NN executive/NN committee/NN ,/,
which/WDT had/HVD over-all/VBN charge/NN of/IN the/AT election/NN
,/, ``/`` deserves/VBZ the/AT praise/NN and/CC thanks/NNS of/IN the/
AT city/NN of/IN atlanta/NP ''/'' for/IN the/AT manner/NN in/IN
which/WDT the/AT election/NN was/BEDZ conducted/VBN ./.

Entropy: 27.0708725519

--
Test: the/AT september-october/NP term/NN jury/NN had/HVD been/BEN
charged/VBN by/IN fulton/NP superior/JJ court/NN judge/NN durwood/NP
pye/NP to/TO investigate/VB reports/NNS of/IN possible/JJ ``/``
irregularities/NNS ''/'' in/IN the/AT hard-fought/JJ primary/NN
which/WDT was/BEDZ won/VBN by/IN mayor-nominate/NN ivan/NP allen/NP
jr./NP ./.

Untagged: the september-october term jury had been charged by fulton
superior court judge durwoodpye to investigate reports of possible
`` irregularities '' in the hard-fought primary which was won by
mayor-nominate ivanallenjr. .

HMM-tagged: the/AT september-october/JJ term/NN jury/NN had/HVD been/
BEN charged/VBN by/IN fulton/NP superior/JJ court/NN judge/NN
durwood/TO pye/VB to/TO investigate/VB reports/NNS of/IN possible/JJ
``/`` irregularities/NNS ''/'' in/IN the/AT hard-fought/JJ primary/
NN which/WDT was/BEDZ won/VBN by/IN mayor-nominate/NP ivan/NP allen/
NP jr./NP ./.

Entropy: 33.8281874237

--
Test: ``/`` only/RB a/AT relative/JJ handful/NN of/IN such/JJ
reports/NNS was/BEDZ received/VBN ''/'' ,/, the/AT jury/NN said/VBD
,/, ``/`` considering/IN the/AT widespread/JJ interest/NN in/IN the/

AT election/NN ,/, the/AT number/NN of/IN voters/NNS and/CC the/AT
size/NN of/IN this/DT city/NN ''/'' ./.

Untagged: `` only a relative handful of such reports was received ''
, the jury said , `` considering the widespread interest in the
election , the number of voters and the size of this city '' .

HMM-tagged: ``/`` only/RB a/AT relative/JJ handful/NN of/IN such/JJ
reports/NNS was/BEDZ received/VBN ''/'' ,/, the/AT jury/NN said/VBD
,/, ``/`` considering/IN the/AT widespread/JJ interest/NN in/IN the/
AT election/NN ,/, the/AT number/NN of/IN voters/NNS and/CC the/AT
size/NN of/IN this/DT city/NN ''/'' ./.

Entropy: 11.4378198596

--
Test: the/AT jury/NN said/VBD it/PPS did/DOD find/VB that/CS many/AP
of/IN georgia's/NP$ registration/NN and/CC election/NN laws/NNS
``/`` are/BER outmoded/JJ or/CC inadequate/JJ and/CC often/RB
ambiguous/JJ ''/'' ./.

Untagged: the jury said it did find that many of georgia's
registration and election laws `` are outmoded or inadequate and
often ambiguous '' .

HMM-tagged: the/AT jury/NN said/VBD it/PPS did/DOD find/VB that/CS
many/AP of/IN georgia's/NP$ registration/NN and/CC election/NN laws/
NNS ``/`` are/BER outmoded/VBG or/CC inadequate/JJ and/CC often/RB
ambiguous/VB ''/'' ./.
Entropy: 20.8163623192

--
Test: it/PPS recommended/VBD that/CS fulton/NP legislators/NNS act/
VB ``/`` to/TO have/HV these/DTS laws/NNS studied/VBN and/CC revised/
VBN to/IN the/AT end/NN of/IN modernizing/VBG and/CC improving/VBG
them/PPO ''/'' ./.

Untagged: it recommended that fulton legislators act `` to have
these laws studied and revised to the end of modernizing and
improving them '' .

HMM-tagged: it/PPS recommended/VBD that/CS fulton/NP legislators/NNS
act/VB ``/`` to/TO have/HV these/DTS laws/NNS studied/VBD and/CC
revised/VBD to/IN the/AT end/NN of/IN modernizing/NP and/CC
improving/VBG them/PPO ''/'' ./.

Entropy: 20.3244921203

--
Test: the/AT grand/JJ jury/NN commented/VBD on/IN a/AT number/NN of/
IN other/AP topics/NNS ,/, among/IN them/PPO the/AT atlanta/NP and/
CC fulton/NP county/NN purchasing/VBG departments/NNS which/WDT it/
PPS said/VBD ``/`` are/BER well/QL operated/VBN and/CC follow/VB
generally/RB accepted/VBN practices/NNS which/WDT inure/VB to/IN the/
AT best/JJT interest/NN of/IN both/ABX governments/NNS ''/'' ./.

Untagged: the grand jury commented on a number of other topics ,
among them the atlanta and fulton county purchasing departments
which it said `` are well operated and follow generally accepted
practices which inure to the best interest of both governments '' .

HMM-tagged: the/AT grand/JJ jury/NN commented/VBD on/IN a/AT number/
NN of/IN other/AP topics/NNS ,/, among/IN them/PPO the/AT atlanta/NP
and/CC fulton/NP county/NN purchasing/NN departments/NNS which/WDT
it/PPS said/VBD ``/`` are/BER well/RB operated/VBN and/CC follow/VB
generally/RB accepted/VBN practices/NNS which/WDT inure/VBZ to/IN
the/AT best/JJT interest/NN of/IN both/ABX governments/NNS ''/'' ./.

Entropy: 31.3834231469

--
Test: merger/NN proposed/VBN

Untagged: merger proposed

HMM-tagged: merger/PPS proposed/VBD

Entropy: 5.6718203946

--
Test: however/WRB ,/, the/AT jury/NN said/VBD it/PPS believes/VBZ
``/`` these/DTS two/CD offices/NNS should/MD be/BE combined/VBN to/
TO achieve/VB greater/JJR efficiency/NN and/CC reduce/VB the/AT cost/
NN of/IN administration/NN ''/'' ./.

Untagged: however , the jury said it believes `` these two offices
should be combined to achieve greater efficiency and reduce the cost
of administration '' .

HMM-tagged: however/WRB ,/, the/AT jury/NN said/VBD it/PPS believes/
VBZ ``/`` these/DTS two/CD offices/NNS should/MD be/BE combined/VBN
to/TO achieve/VB greater/JJR efficiency/NN and/CC reduce/VB the/AT
cost/NN of/IN administration/NN ''/'' ./.

Entropy: 8.27545943909

--
Test: the/AT city/NN purchasing/VBG department/NN ,/, the/AT jury/NN
said/VBD ,/, ``/`` is/BEZ lacking/VBG in/IN experienced/VBN clerical/
JJ personnel/NNS as/CS a/AT result/NN of/IN city/NN personnel/NNS
policies/NNS ''/'' ./.

Untagged: the city purchasing department , the jury said , `` is
lacking in experienced clerical personnel as a result of city
personnel policies '' .

HMM-tagged: the/AT city/NN purchasing/NN department/NN ,/, the/AT
jury/NN said/VBD ,/, ``/`` is/BEZ lacking/VBG in/IN experienced/AT
clerical/JJ personnel/NNS as/CS a/AT result/NN of/IN city/NN
personnel/NNS policies/NNS ''/'' ./.

Entropy: 16.7622537278

--
accuracy over 284 tokens: 92.96

The outcome of an NER tagger may be defined as a response and an interpretation of human beings as
answer key. So, we provide the following definitions:

• Correct: If the response is exactly the same as answer key
• Incorrect: If the response is not same as answer key
• Missing: If answer key is found tagged, but response is not tagged
• Spurious: If response is found tagged, but answer key is not tagged

Performance of an NER-based system can be judged by using the following parameters:

• Precision (P): It is defined as follows:

P=Correct/ (Correct+Incorrect+Missing)
• Recall (R): It is defined as follows:

R=Correct/ (Correct+Incorrect+Spurious)
• F-Measure: It is defined as follows:

F-Measure = (2*PREC*REC)/(PRE+REC)

Training NER using Machine Learning Toolkits

NER can be performed using the following approaches:

• Rule-based or Handcrafted approach:
◦ List Lookup approach
◦ Linguistic approach

• Machine Learning-based approach or Automated approach:
◦ Hidden Markov Model
◦ Maximum Entropy Markov Model
◦ Conditional Random Fields
◦ Support Vector Machine
◦ Decision Trees

It has been proved experimentally that Machine learning-based approaches outperform Rule-based
approaches. Also, if a combination of Rule-based approaches and Machine Learning-based approaches
is used, then the performance of NER will increase.

NER using POS tagging

Using POS tagging, NER can be performed. The POS tags that can be used are as follows (they are
available at https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html):

Tag Description

CC Coordinating conjunction

CD Cardinal number

DT Determiner

EX Existential there

FW Foreign word

IN Preposition or subordinating conjunction

JJ Adjective

JJR Adjective, comparative

JJS Adjective, superlative

LS List item marker

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

Tag Description

MD Modal

NN Noun, singular or mass

NNS Noun, plural

NNP Proper noun, singular

NNPS Proper noun, plural

PDT Predeterminer

POS Possessive ending

PRP Personal pronoun

PRP$ Possessive pronoun

RB Adverb

RBR Adverb, comparative

RBS Adverb, superlative

RP Particle

SYM Symbol

TO To

UH Interjection

Tag Description

VB Verb, base form

VBD Verb, past tense

VBG Verb, gerund or present participle

VBN Verb, past participle

VBP Verb, non-3rd person singular present

VBZ Verb, 3rd person singular present

WDT Wh-determiner

WP Wh-pronoun

WP$ Possessive wh-pronoun

WRB Wh-adverb

If POS tagging is performed, then using POS information, named entities can be identified. The tokens
tagged with the NNP tag are Named Entities.

Consider the following example in NLTK in which POS tagging is used to perform NER:

>>> import nltk
>>> from nltk import pos_tag, word_tokenize
>>> pos_tag(word_tokenize("John and Smith are going to NY and
Germany"))
[('John', 'NNP'), ('and', 'CC'), ('Smith', 'NNP'), ('are', 'VBP'),
('going', 'VBG'), ('to', 'TO'), ('NY', 'NNP'), ('and', 'CC'),
('Germany', 'NNP')]

Here, the named entities are—John, Smith, NY, and Germany since they are tagged with the NNP
tag.

Let's see another example in which POS tagging is performed in NLTK and the POS tag information is
used to detect Named Entities:

>>> import nltk
>>> from nltk.corpus import brown
>>> from nltk.tag import UnigramTagger
>>> tagger =
UnigramTagger(brown.tagged_sents(categories='news')[:700])
>>> sentence =
['John','and','Smith','went','to','NY','and','Germany']
>>> for word, tag in tagger.tag(sentence):
print(word,'->',tag)

John -> NP
and -> CC
Smith -> None
went -> VBD
to -> TO
NY -> None
and -> CC
Germany -> None

Here, John has been tagged with the NP tag, so it is identified as a named entity. Some of the tokens here
are tagged with the None tag because these tokens have not been trained.

Generation of the synset id from Wordnet
Wordnet may be defined as an English lexical database. The conceptual dependency between words,
such as hypernym, synonym, antonym, and hyponym, can be found using synsets.

Consider the following code in NLTK for the generation of synsets:

def all_synsets(self, pos=None):
"""Iterate over all synsets with a given part of speech tag.
If no pos is specified, all synsets for all parts of speech
will be loaded.
"""
if pos is None:

pos_tags = self._FILEMAP.keys()
else:

pos_tags = [pos]

cache = self._synset_offset_cache
from_pos_and_line = self._synset_from_pos_and_line

generate all synsets for each part of speech
for pos_tag in pos_tags:

Open the file for reading. Note that we can not re-use
the file poitners from self._data_file_map here,

because
we're defining an iterator, and those file pointers

might
be moved while we're not looking.
if pos_tag == ADJ_SAT:

pos_tag = ADJ
fileid = 'data.%s' % self._FILEMAP[pos_tag]
data_file = self.open(fileid)

try:
generate synsets for each line in the POS file
offset = data_file.tell()
line = data_file.readline()
while line:

if not line[0].isspace():
if offset in cache[pos_tag]:

See if the synset is cached
synset = cache[pos_tag][offset]

else:
Otherwise, parse the line
synset = from_pos_and_line(pos_tag, line)
cache[pos_tag][offset] = synset

adjective satellites are in the same file
as

adjectives so only yield the synset if
it's actually

a satellite
if synset._pos == ADJ_SAT:

yield synset

for all other POS tags, yield all synsets
(this means

that adjectives also include adjective
satellites)

else:
yield synset

offset = data_file.tell()
line = data_file.readline()

close the extra file handle we opened
except:

data_file.close()
raise

else:
data_file.close()

Let's see the following code in NLTK, that is used to look up a word using synsets:

>>> import nltk
>>> from nltk.corpus import wordnet
>>> from nltk.corpus import wordnet as wn
>>> wn.synsets('cat')
[Synset('cat.n.01'), Synset('guy.n.01'), Synset('cat.n.03'),
Synset('kat.n.01'), Synset('cat-o'-nine-tails.n.01'),
Synset('caterpillar.n.02'), Synset('big_cat.n.01'),
Synset('computerized_tomography.n.01'), Synset('cat.v.01'),
Synset('vomit.v.01')]

>>> wn.synsets('cat', pos=wn.VERB)
[Synset('cat.v.01'), Synset('vomit.v.01')]
>>> wn.synset('cat.n.01')
Synset('cat.n.01')

Here, cat.n.01 means that cat is of the noun category and only one meaning of cat exists:

>>> print(wn.synset('cat.n.01').definition())
feline mammal usually having thick soft fur and no ability to roar:
domestic cats; wildcats

>>> len(wn.synset('cat.n.01').examples())
0
>>> wn.synset('cat.n.01').lemmas()
[Lemma('cat.n.01.cat'), Lemma('cat.n.01.true_cat')]
>>> [str(lemma.name()) for lemma in wn.synset('cat.n.01').lemmas()]
['cat', 'true_cat']
>>> wn.lemma('cat.n.01.cat').synset()
Synset('cat.n.01')

Let's see the following example in NLTK, that depicts the use of Synsets and Open Multilingual
Wordnet using ISO 639 language codes:

>>> import nltk
>>> from nltk.corpus import wordnet
>>> from nltk.corpus import wordnet as wn
>>> sorted(wn.langs())
['als', 'arb', 'cat', 'cmn', 'dan', 'eng', 'eus', 'fas', 'fin',
'fra', 'fre', 'glg', 'heb', 'ind', 'ita', 'jpn', 'nno', 'nob',
'pol', 'por', 'spa', 'tha', 'zsm']
>>> wn.synset('cat.n.01').lemma_names('ita')
['gatto']
>>> sorted(wn.synset('cat.n.01').lemmas('dan'))
[Lemma('cat.n.01.kat'), Lemma('cat.n.01.mis'),
Lemma('cat.n.01.missekat')]
>>> sorted(wn.synset('cat.n.01').lemmas('por'))
[Lemma('cat.n.01.Gato-doméstico'), Lemma('cat.n.01.Gato_doméstico'),
Lemma('cat.n.01.gato'), Lemma('cat.n.01.gato')]
>>> len(wordnet.all_lemma_names(pos='n', lang='jpn'))
66027
>>> cat = wn.synset('cat.n.01')
>>> cat.hypernyms()
[Synset('feline.n.01')]
>>> cat.hyponyms()
[Synset('domestic_cat.n.01'), Synset('wildcat.n.03')]
>>> cat.member_holonyms()
[]
>>> cat.root_hypernyms()
[Synset('entity.n.01')]
>>>
wn.synset('cat.n.01').lowest_common_hypernyms(wn.synset('dog.n.01'))
[Synset('carnivore.n.01')]

Disambiguating senses using Wordnet
Disambiguation is the task of distinguishing two or more of the same spellings or the same sounding
words on the basis of their sense or meaning.

Following are the implementations of disambiguation or the WSD task using Python technologies:

• Lesk algorithms:
◦ Original Lesk
◦ Cosine Lesk (use cosines to calculate overlaps instead of using raw counts)
◦ Simple Lesk (with definitions, example(s), and hyper+hyponyms)
◦ Adapted/extended Lesk
◦ Enhanced Lesk

• Maximizing similarity:
◦ Information content
◦ Path similarity

• Supervised WSD:
◦ It Makes Sense (IMS)
◦ SVM WSD

• Vector Space models:
◦ Topic Models, LDA
◦ LSI/LSA
◦ NMF

• Graph-based models:
◦ Babelfly
◦ UKB

• Baselines:
◦ Random sense
◦ Highest lemma counts
◦ First NLTK sense

Wordnet sense similarity in NLTK involves the following algorithms:

• Resnik Score: On comparing two tokens, a score (Least Common Subsumer) is returned that
decides the similarity of two tokens

• Wu-Palmer Similarity: Defines the similarity between two tokens on the basis of the depth of
two senses and Least Common Subsumer

• Path Distance Similarity: The similarity of two tokens is determined on the basis of the
shortest distance that is computed in the is-a taxonomy

• Leacock Chodorow Similarity: A similarity score is returned on the basis of the shortest path
and the depth (maximum) in which the senses exist in the taxonomy

• Lin Similarity: A similarity score is returned on the basis of the information content of the
Least Common Subsumer and two input Synsets

• Jiang-Conrath Similarity: A similarity score is returned on the basis of the content
information of Least Common Subsumer and two input Synsets

Consider the following example in NLTK, which depicts path similarity:

>>> import nltk
>>> from nltk.corpus import wordnet
>>> from nltk.corpus import wordnet as wn
>>> lion = wn.synset('lion.n.01')
>>> cat = wn.synset('cat.n.01')
>>> lion.path_similarity(cat)
0.25

Consider the following example in NLTK that depicts Leacock Chodorow Similarity:

>>> import nltk
>>> from nltk.corpus import wordnet
>>> from nltk.corpus import wordnet as wn
>>> lion = wn.synset('lion.n.01')
>>> cat = wn.synset('cat.n.01')
>>> lion.lch_similarity(cat)
2.2512917986064953

Consider the following example in NLTK that depicts Wu-Palmer Similarity:

>>> import nltk
>>> from nltk.corpus import wordnet
>>> from nltk.corpus import wordnet as wn
>>> lion = wn.synset('lion.n.01')
>>> cat = wn.synset('cat.n.01')
>>> lion.wup_similarity(cat)
0.896551724137931

Consider the following example in NLTK that depicts Resnik Similarity, Lin Similarity, and Jiang-
Conrath Similarity:

>>> import nltk
>>> from nltk.corpus import wordnet
>>> from nltk.corpus import wordnet as wn
>>> from nltk.corpus import wordnet_ic
>>> brown_ic = wordnet_ic.ic('ic-brown.dat')
>>> semcor_ic = wordnet_ic.ic('ic-semcor.dat')
>>> from nltk.corpus import genesis
>>> genesis_ic = wn.ic(genesis, False, 0.0)
>>> lion = wn.synset('lion.n.01')
>>> cat = wn.synset('cat.n.01')
>>> lion.res_similarity(cat, brown_ic)
8.663481537685325
>>> lion.res_similarity(cat, genesis_ic)
7.339696591781995
>>> lion.jcn_similarity(cat, brown_ic)
0.36425897775957294

>>> lion.jcn_similarity(cat, genesis_ic)
0.3057800856788946
>>> lion.lin_similarity(cat, semcor_ic)
0.8560734335071154

Let's see the following code in NLTK based on Wu-Palmer Similarity and Path Distance Similarity:

from nltk.corpus import wordnet as wn
def getSenseSimilarity(worda,wordb):
"""
find similarity betwwn word senses of two words
"""
wordasynsets = wn.synsets(worda)
wordbsynsets = wn.synsets(wordb)
synsetnamea = [wn.synset(str(syns.name)) for syns in wordasynsets]

synsetnameb = [wn.synset(str(syns.name)) for syns in
wordbsynsets]

for sseta, ssetb in [(sseta,ssetb) for sseta in synsetnamea\
for ssetb in synsetnameb]:
pathsim = sseta.path_similarity(ssetb)
wupsim = sseta.wup_similarity(ssetb)
if pathsim != None:
print "Path Sim Score: ",pathsim," WUP Sim Score: ",wupsim,\
"\t",sseta.definition, "\t", ssetb.definition

if __name__ == "__main__":
#getSenseSimilarity('walk','dog')
getSenseSimilarity('cricket','ball')

Consider the following code of a Lesk algorithm in NLTK , which is used to perform the disambiguation
task:

from nltk.corpus import wordnet

def lesk(context_sentence, ambiguous_word, pos=None, synsets=None):
"""Return a synset for an ambiguous word in a context.

:param iter context_sentence: The context sentence where the
ambiguous word

occurs, passed as an iterable of words.
:param str ambiguous_word: The ambiguous word that requires WSD.
:param str pos: A specified Part-of-Speech (POS).
:param iter synsets: Possible synsets of the ambiguous word.
:return: ``lesk_sense`` The Synset() object with the highest

signature overlaps.

// This function is an implementation of the original Lesk
algorithm (1986) [1].

Usage example::

>>> lesk(['I', 'went', 'to', 'the', 'bank', 'to', 'deposit',
'money', '.'], 'bank', 'n')

Synset('savings_bank.n.02')

context = set(context_sentence)
if synsets is None:

synsets = wordnet.synsets(ambiguous_word)

if pos:
synsets = [ss for ss in synsets if str(ss.pos()) == pos]

if not synsets:
return None

_, sense = max(
(len(context.intersection(ss.definition().split())), ss) for

ss in synsets
)

return sense

Summary
In this chapter, we have discussed Semantic Analysis, which is also one of the phase of Natural
Language Processing. We have discussed NER, NER using HMM, NER using Machine Learning
Toolkits, Performance Metrics of NER, NER using POS tagging, and WSD using Wordnet and the
Generation of Synsets.

In the next chapter, we will discuss sentiment analysis using NER and machine learning approaches. We
will also discuss the evaluation of the NER system.

Chapter 7. Sentiment Analysis – I Am Happy
Sentiment analysis or sentiment generation is one of the tasks in NLP. It is defined as the process of
determining the sentiments behind a character sequence. It may be used to determine whether the
speaker or the person expressing the textual thoughts is in a happy or sad mood, or it represents a neutral
expression.

This chapter will include the following topics:

• Introducing sentiment analysis
• Sentiment analysis using NER
• Sentiment analysis using machine learning
• Evaluation of the NER system

Introducing sentiment analysis
Sentiment analysis may be defined as a task performed on natural languages. Here, computations are
performed on the sentences or words expressed in natural language to determine whether they express a
positive, negative, or a neutral sentiment. Sentiment analysis is a subjective task, since it provides the
information about the text being expressed. Sentiment analysis may be defined as a classification
problem in which classification may be of two types—binary categorization (positive or negative) and
multi-class categorization (positive, negative, or neutral). Sentiment analysis is also referred to as text
sentiment analysis. It is a text mining approach in which we determine the sentiments or the emotions
behind the text. When we combine sentiment analysis with topic mining, then it is referred to as topic-
sentiment analysis. Sentiment analysis can be performed using a lexicon. The lexicon could be domain-
specific or of a general purpose nature. Lexicon may contain a list of positive expressions, negative
expressions, neutral expressions, and stop words. When a testing sentence appears, then a simple look
up operation can be performed through this lexicon.

One example of the word list is—Affective Norms for English Words (ANEW). It is an English word
list found at the University of Florida. It consists of 1034 words for dominance, valence, and arousal. It
was formed by Bradley and Lang. This word list was constructed for academic purposes and not for
research purposes. Other variants are DANEW (Dutch ANEW) and SPANEW (Spanish ANEW).

AFINN consists of 2477 words (earlier 1468 words). This word list was formed by Finn Arup Nielson.
The main purpose for creating this word list was to perform sentiment analysis for Twitter texts. A
valence value ranging from -5 to +5 is allotted to each word.

The Balance Affective word list consists of 277 English words. The valence code ranges from 1 to 4. 1
means positive, 2 means negative, 3 means anxious, and 4 means neutral.

Berlin Affective Word List (BAWL) consists of 2,200 words in German. Another version of BAWL is
Berlin Affective Word List Reloaded (BAWL-R) that comprises of additional arousal for words.

Bilingual Finnish Affective Norms comprises 210 British English as well as Finnish nouns. It also
comprises taboo words.

Compass DeRose Guide to Emotion Words consists of emotional words in English. This was formed
by Steve J. DeRose. Words were classified, but there was no valence and arousal.

Dictionary of Affect in Language (DAL) comprises emotional words that can be used for sentiment
analysis. It was formed by Cynthia M. Whissell. So, it is also referred to as Whissell's Dictionary of
Affect in Language (WDAL).

General Inquirer consists of many dictionaries. In this, the positive list comprises 1915 words and the
negative list comprises 2291 words.

Hu-Liu opinion Lexicon (HL) comprises a list of 6800 words (positive and negative).

Leipzig Affective Norms for German (LANG) is a list that consists of 1000 nouns in German, and the
rating has been done based on valence, concreteness, and arousal.

Loughran and McDonald Financial Sentiment Dictionaries were created by Tim Loughran and Bill
McDonald. These dictionaries consist of words for financial documents, which are positive, negative, or
modal words.

Moors consist of a list of words in Dutch related to dominance, arousal, and valence.

NRC Emotion Lexicon comprises of a list of words developed through Amazon Mechanical Turk by
Saif M. Mohammad.

OpinionFinder's Subjectivity Lexicon comprises a list of 8221 words (positive or negative).

SentiSense comprises 2,190 synsets and 5,496 words based on 14 emotional categories.

Warringer comprises 13,915 words in English collected from Amazon Mechanical Turk that are related
to dominance, arousal, and valence.

labMT is a word list consisting of 10,000 words.

Let's consider the following example in NLTK, which performs sentiment analysis for movie reviews:

import nltk
import random
from nltk.corpus import movie_reviews
docs = [(list(movie_reviews.words(fid)), cat)

for cat in movie_reviews.categories()
for fid in movie_reviews.fileids(cat)]

random.shuffle(docs)

all_tokens = nltk.FreqDist(x.lower() for x in movie_reviews.words())
token_features = all_tokens.keys()[:2000]
print token_features[:100]

[',', 'the', '.', 'a', 'and', 'of', 'to', "'", 'is', 'in', 's',
'"', 'it', 'that', '-', ')', '(', 'as', 'with', 'for', 'his',

'this', 'film', 'i', 'he', 'but', 'on', 'are', 't', 'by', 'be',
'one', 'movie', 'an', 'who', 'not', 'you', 'from', 'at', 'was',
'have', 'they', 'has', 'her', 'all', '?', 'there', 'like', 'so',
'out', 'about', 'up', 'more', 'what', 'when', 'which', 'or', 'she',
'their', ':', 'some', 'just', 'can', 'if', 'we', 'him', 'into',
'even', 'only', 'than', 'no', 'good', 'time', 'most', 'its', 'will',
'story', 'would', 'been', 'much', 'character', 'also', 'get',
'other', 'do', 'two', 'well', 'them', 'very', 'characters', ';',
'first', '--', 'after', 'see', '!', 'way', 'because', 'make', 'life']

def doc_features(doc):
doc_words = set(doc)
features = {}
for word in token_features:

features['contains(%s)' % word] = (word in doc_words)
return features

print doc_features(movie_reviews.words('pos/cv957_8737.txt
feature_sets = [(doc_features(d), c) for (d,c) in doc]
train_sets, test_sets = feature_sets[100:], feature_sets[:100]
classifiers = nltk.NaiveBayesClassifier.train(train_sets)
print nltk.classify.accuracy(classifiers, test_sets)

0.86

classifier.show_most_informative_features(5)

Most Informative Features
contains(damon) = True pos : neg = 11.2 : 1.0
contains(outstanding) = True pos : neg = 10.6 : 1.0
contains(mulan) = True pos : neg = 8.8 : 1.0
contains(seagal) = True neg : pos = 8.4 : 1.0
contains(wonderfully) = True pos : neg = 7.4 : 1.0

Here, it is checked whether the informative features are present in the document or not.

Consider another example of semantic analysis. First, the preprocessing of text is performed. In this,
individual sentences are identified in a given text. Then, tokens are identified in the sentences. Each
token further comprises three entities, namely, word, lemma, and tag.

Let's see the following code in NLTK for the preprocessing of text:

importnltk

class Splitter(object):
def __init__(self):
self.nltk_splitter = nltk.data.load('tokenizers/punkt/

english.pickle')
self.nltk_tokenizer = nltk.tokenize.TreebankWordTokenizer()

def split(self, text):
sentences = self.nltk_splitter.tokenize(text)
tokenized_sentences = [self.nltk_tokenizer.tokenize(sent) for sent
in sentences]
return tokenized_sentences
classPOSTagger(object):
def __init__(self):
pass

def pos_tag(self, sentences):

pos = [nltk.pos_tag(sentence) for sentence in sentences]
pos = [[(word, word, [postag]) for (word, postag) in sentence] for
sentence in pos]
returnpos

The lemmas generated will be same as the word forms. Tags are the POS tags. Consider the following
code, which generates three tuples for each token, that is, word, lemma, and the POS tag:

text = """Why are you looking disappointed. We will go to restaurant
for dinner."""
splitter = Splitter()
postagger = POSTagger()
splitted_sentences = splitter.split(text)
print splitted_sentences
[['Why','are','you','looking','disappointed','.'],
['We','will','go','to','restaurant','for','dinner','.']]

pos_tagged_sentences = postagger.pos_tag(splitted_sentences)

print pos_tagged_sentences
[[('Why','Why',['WP']),('are','are',['VBZ']),('you','you',['PRP']),('
looking','looking',['VB']),('disappointed','disappointed',['VB']),('.
','.',['.'])],[('We','We',['PRP']),('will','will',['VBZ']),('go','go'
,['VB']),('to','to',['TO']),('restaurant','restaurant',['NN']),('for'
,'for',['IN']),('dinner','dinner',['NN']),('.','.',['.'])]]

We can construct two kinds of dictionary consisting of positive and negative expressions. We can then
perform tagging on our processed text using dictionaries.

Let's consider the following NLTK code for tagging using dictionaries:

classDictionaryTagger(object):
def __init__(self, dictionary_paths):

files = [open(path, 'r') for path in dictionary_paths]
dictionaries = [yaml.load(dict_file) for dict_file in files]
map(lambda x: x.close(), files)
self.dictionary = {}
self.max_key_size = 0
forcurr_dict in dictionaries:
for key in curr_dict:
if key in self.dictionary:
self.dictionary[key].extend(curr_dict[key])
else:
self.dictionary[key] = curr_dict[key]
self.max_key_size = max(self.max_key_size, len(key))

def tag(self, postagged_sentences):
return [self.tag_sentence(sentence) for sentence in
postagged_sentences]

def tag_sentence(self, sentence, tag_with_lemmas=False):
tag_sentence = []

N = len(sentence)
ifself.max_key_size == 0:
self.max_key_size = N
i = 0
while (i< N):
j = min(i + self.max_key_size, N) #avoid overflow
tagged = False
while (j >i):
expression_form = ' '.join([word[0] for word in
sentence[i:j]]).lower()
expression_lemma = ' '.join([word[1] for word in
sentence[i:j]]).lower()
iftag_with_lemmas:
literal = expression_lemma
else:
literal = expression_form
if literal in self.dictionary:

is_single_token = j - i == 1
original_position = i
i = j
taggings = [tag for tag in self.dictionary[literal]]
tagged_expression = (expression_form, expression_lemma, taggings)
ifis_single_token: #if the tagged literal is a single token,
conserve its previous taggings:
original_token_tagging = sentence[original_position][2]
tagged_expression[2].extend(original_token_tagging)
tag_sentence.append(tagged_expression)
tagged = True

else:
j = j - 1

if not tagged:
tag_sentence.append(sentence[i])
i += 1
return tag_sentence

Here, words in the preprocessed text are tagged as positive or negative with the help of dictionaries.

Let's see the following code in NLTK, which can be used to compute the number of positive expressions
and negative expressions:

def value_of(sentiment):
if sentiment == 'positive': return 1
if sentiment == 'negative': return -1
return 0
def sentiment_score(review):
return sum ([value_of(tag) for sentence in dict_tagged_sentences for
token in sentence for tag in token[2]])

The nltk.sentiment.util module is used in NLTK to perform sentiment analysis using Hu-Liu
lexicon. This module counts the number of positive, negative, and neutral expressions, with the help of
the lexicon, and then decides on the basis of majority counts whether the text consist of a positive,
negative, or neutral sentiment. The words which are not available in the lexicon are considered neutral.

Sentiment analysis using NER

NER is the process of finding named entities and then categorizing named entities into different named
entity classes. NER can be performed using different techniques, such as the Rule-based approach, List
look up approach, and Statistical approaches (Hidden Markov Model, Maximum Entropy Markov
Model, Support Vector Machine, Conditional Random Fields, and Decision Trees).

If named entities are identified in the list, then they may be removed or filtered out from the sentences.
Similarly, stop words may also be removed. Now, sentiment analysis may be performed on the
remaining words, since named entities are words that do not contribute to sentiment analysis.

Sentiment analysis using machine learning

The nltk.sentiment.sentiment_analyzer module in NLTK is used to perform sentiment
analysis. It is based on machine learning techniques.

Let's see the following code of the nltk.sentiment.sentiment_analyzer module in NLTK:

from __future__ import print_function
from collections import defaultdict

from nltk.classify.util import apply_features, accuracy as

eval_accuracy
from nltk.collocations import BigramCollocationFinder
from nltk.metrics import (BigramAssocMeasures, precision as
eval_precision,

recall as eval_recall, f_measure as eval_f_measure)

from nltk.probability import FreqDist

from nltk.sentiment.util import save_file, timer
class SentimentAnalyzer(object):

"""
A tool for Sentiment Analysis which is based on machine learning

techniques.
"""
def __init__(self, classifier=None):

self.feat_extractors = defaultdict(list)
self.classifier = classifier

Consider the following code, which will return all the words (duplicates) from a text:

def all_words(self, documents, labeled=None):
all_words = []
if labeled is None:

labeled = documents and isinstance(documents[0], tuple)
if labeled == True:

for words, sentiment in documents:
all_words.extend(words)

elif labeled == False:
for words in documents:

all_words.extend(words)
return all_words

Consider the following code, which will apply the feature extraction function to the text:

def apply_features(self, documents, labeled=None):

return apply_features(self.extract_features, documents,
labeled)

Consider the following code, which will return the word's features:

def unigram_word_feats(self, words, top_n=None, min_freq=0):
unigram_feats_freqs = FreqDist(word for word in words)
return [w for w, f in unigram_feats_freqs.most_common(top_n)

if unigram_feats_freqs[w] > min_freq]

The following code returns the bigram features:

def bigram_collocation_feats(self, documents, top_n=None, min_freq=3,

assoc_measure=BigramAssocMeasures.pmi):
finder = BigramCollocationFinder.from_documents(documents)
finder.apply_freq_filter(min_freq)
return finder.nbest(assoc_measure, top_n)

Let's see the following code, which can be used to classify a given instance using the available feature
set:

def classify(self, instance):
instance_feats = self.apply_features([instance],

labeled=False)
return self.classifier.classify(instance_feats[0])

Let's see the following code, which can be used for the extraction of features from the text:

def add_feat_extractor(self, function, **kwargs):
self.feat_extractors[function].append(kwargs)

def extract_features(self, document):
all_features = {}
for extractor in self.feat_extractors:

for param_set in self.feat_extractors[extractor]:
feats = extractor(document, **param_set)

all_features.update(feats)
return all_features

Let's see the following code that can be used to perform training on the training file.
Save_classifier is used to save the output in a file:

def train(self, trainer, training_set, save_classifier=None,
**kwargs):

print("Training classifier")
self.classifier = trainer(training_set, **kwargs)
if save_classifier:

save_file(self.classifier, save_classifier)

return self.classifier

Let's see the following code that can be used to perform testing and performance evaluation of our
classifier using test data:

def evaluate(self, test_set, classifier=None, accuracy=True,
f_measure=True,

precision=True, recall=True, verbose=False):
if classifier is None:

classifier = self.classifier
print("Evaluating {0}

results...".format(type(classifier).__name__))
metrics_results = {}
if accuracy == True:

accuracy_score = eval_accuracy(classifier, test_set)
metrics_results['Accuracy'] = accuracy_score

gold_results = defaultdict(set)
test_results = defaultdict(set)
labels = set()
for i, (feats, label) in enumerate(test_set):

labels.add(label)
gold_results[label].add(i)
observed = classifier.classify(feats)
test_results[observed].add(i)

for label in labels:
if precision == True:

precision_score = eval_precision(gold_results[label],
test_results[label])

metrics_results['Precision [{0}]'.format(label)] =
precision_score

if recall == True:
recall_score = eval_recall(gold_results[label],

test_results[label])
metrics_results['Recall [{0}]'.format(label)] =

recall_score
if f_measure == True:

f_measure_score = eval_f_measure(gold_results[label],
test_results[label])

metrics_results['F-measure [{0}]'.format(label)] =
f_measure_score

if verbose == True:
for result in sorted(metrics_results):

print('{0}: {1}'.format(result,
metrics_results[result]))

return metrics_results

Twitter can be considered as one of the most popular blogging services that is used to create messages
referred to as tweets. These tweets comprise words that are either related to positive, negative, or neutral
sentiments.

For performing sentiment analysis, we can use machine learning classifiers, statistical classifiers, or
automated classifiers, such as the Naive Bayes Classifier, Maximum Entropy Classifier, Support Vector
Machine Classifier, and so on.

These machine learning classifiers or automated classifiers are used to perform supervised classification,
since they require training data for classification.

Let's see the following code in NLTK for feature extraction:

stopWords = []

#If there is occurrence of two or more same character, then replace
it with the character itself.
def replaceTwoOrMore(s):

pattern = re.compile(r"(.)\1{1,}", re.DOTALL)
return pattern.sub(r"\1\1", s)

def getStopWordList(stopWordListFileName):
This function will read the stopwords from a file and builds a

list.
stopWords = []
stopWords.append('AT_USER')
stopWords.append('URL')

fp = open(stopWordListFileName, 'r')
line = fp.readline()
while line:

word = line.strip()
stopWords.append(word)
line = fp.readline()

fp.close()
return stopWords

def getFeatureVector(tweet):
featureVector = []
#Tweets are firstly split into words
words = tweet.split()
for w in words:

#replace two or more with two occurrences
w = replaceTwoOrMore(w)
#strip punctuation
w = w.strip('\'"?,.')
#Words begin with alphabet is checked.
val = re.search(r"^[a-zA-Z][a-zA-Z0-9]*$", w)
#If there is a stop word, then it is ignored.
if(w in stopWords or val is None):

continue
else:

featureVector.append(w.lower())
return featureVector

#end

#Tweets are read one by one and then processed.
fp = open('data/sampleTweets.txt', 'r')
line = fp.readline()

st = open('data/feature_list/stopwords.txt', 'r')
stopWords = getStopWordList('data/feature_list/stopwords.txt')

while line:
processedTweet = processTweet(line)
featureVector = getFeatureVector(processedTweet)
print featureVector
line = fp.readline()

#end loop
fp.close()

#Tweets are read one by one and then processed.
inpTweets = csv.reader(open('data/sampleTweets.csv', 'rb'),
delimiter=',', quotechar='|')
tweets = []
for row in inpTweets:

sentiment = row[0]
tweet = row[1]
processedTweet = processTweet(tweet)
featureVector = getFeatureVector(processedTweet, stopWords)
tweets.append((featureVector, sentiment));

#Features Extraction takes place using following method
def extract_features(tweet):

tweet_words = set(tweet)
features = {}
for word in featureList:

features['contains(%s)' % word] = (word in tweet_words)
return features

During the training of a classifier, the input to the machine learning algorithm is a label and features.
Features are obtained from the feature extractor when the input is given to the feature extractor. During
prediction, a label is provided as an output of a classifier model and the input of the classifier model is
the features that are obtained using the feature extractor. Let's have a look at a diagram explaining the
same process:

Now, let's see the following code that can be used to perform sentiment analysis using the Naive Bayes
Classifier:

NaiveBClassifier = nltk.NaiveBayesClassifier.train(training_set)
Testing the classifiertestTweet = 'I liked this book on Sentiment
Analysis a lot.'
processedTestTweet = processTweet(testTweet)
print
NaiveBClassifier.classify(extract_features(getFeatureVector(processed
TestTweet)))
testTweet = 'I am so badly hurt'
processedTestTweet = processTweet(testTweet)
print
NBClassifier.classify(extract_features(getFeatureVector(processedTest
Tweet)))

Let's see the following code on sentiment analysis using maximum entropy:

MaxEntClassifier =
nltk.classify.maxent.MaxentClassifier.train(training_set, 'GIS',
trace=3, \

encoding=None, labels=None, sparse=True,
gaussian_prior_sigma=0, max_iter = 10)
testTweet = 'I liked the book on sentiment analysis a lot'
processedTestTweet = processTweet(testTweet)
print
MaxEntClassifier.classify(extract_features(getFeatureVector(processed

TestTweet)))
print MaxEntClassifier.show_most_informative_features(10)

Evaluation of the NER system

Performance metrics or evaluation helps to show the performance of an NER system. The outcome of an
NER tagger may be defined as the response and the interpretation of human beings as the answer key.
So, we will provide the following definitions:

• Correct: If the response is exactly the same as the answer key
• Incorrect: If the response is not the same as the answer key
• Missing: If the answer key is found tagged, but the response is not tagged
• Spurious: If the response is found tagged, but the answer key is not tagged

The performance of an NER-based system can be judged by using the following parameters:

• Precision (P): P=Correct/(Correct+Incorrect+Missing)
• Recall (R): R=Correct/(Correct+Incorrect+Spurious)
• F-Measure: F-Measure = (2*P*R)/(P+R)

Let's see the code for NER using the HMM:

#******* Function to find all tags in corpus **********

def find_tag_set(tra_lines):
global tag_set

tag_set = []

for line in tra_lines:
tok = line.split()
for t in tok:
wd = t.split("/")
if not wd[1] in tag_set:
tag_set.append(wd[1])

return

#******* Function to find frequency of each tag in tagged corpus

defcnt_tag(tr_ln):
global start_li
global li
global tag_set
global c
global line_cnt
global lines

lines = tr_ln

start_li = [] # list of starting tags

find_tag_set(tr_ln)

line_cnt = 0
for line in lines:
tok = line.split()
x = tok[0].split("/")
if not x[1] in start_li:
start_li.append(x[1])
line_cnt = line_cnt + 1

find_freq_tag()

find_freq_srttag()

return

def find_freq_tag():
global tag_cnt
global tag_set
tag_cnt={}
i = 0
for w in tag_set:
cal_freq_tag(tag_set[i])
i = i + 1
tag_cnt.update({w:freq_tg})
return

defcal_freq_tag(tg):
global freq_tg
global lines
freq_tg = 0

for line in lines:
freq_tg = freq_tg + line.count(tg)

return

#******* Function to find frequency of each starting tag in tagged
corpus **********

def find_freq_srttag():
global lst
lst = {} # start probability

i = 0
for w in start_li:

cc = freq_srt_tag(start_li[i])
prob = cc / line_cnt

lst.update({start_li[i]:prob})
i = i + 1
return
def freq_srt_tag(stg):
global lines
freq_srt_tg = 0

for line in lines:
tok = line.split()
ifstg in tok[0]:
freq_srt_tg = freq_srt_tg + 1

return(freq_srt_tg)

import tkinter as tk
import vit
import random
import cal_start_p
import calle_prob
import trans_mat
import time
import trans
import dict5
from tkinter import *
from tkinter import ttk
from tkinter.filedialog import askopenfilename
from tkinter.messagebox import showerror
import languagedetect1
import languagedetect3
e_dict = dict()
t_dict = dict()

def calculate1(*args):
import listbox1
def calculate2(*args):
import listbox2
def calculate3(*args):

import listbox3

def dispdlg():
global file_name
root = tk.Tk()
root.withdraw()
file_name = askopenfilename()
return

def tranhmm():
ttk.Style().configure("TButton", padding=6,
relief="flat",background="Pink",foreground="Red")
ttk.Button(mainframe, text="BROWSE",
command=find_train_corpus).grid(column=7, row=5, sticky=W)

The following code will be used to display or accept the testing
corpus from the user.
def testhmm():
ttk.Button(mainframe, text="Develop a new testing Corpus",
command=calculate3).grid(column=9, row=5, sticky=E)

ttk.Button(mainframe, text="BROWSE",
command=find_obs).grid(column=9, row=7, sticky=E)

#In HMM, We require parameters such as Start Probability, Transition
Probability and Emission Probability. The following code is used to
calculate emission probability matrix

def cal_emit_mat():
global emission_probability
global corpus
global tlines

calle_prob.m_prg(e_dict,corpus,tlines)

emission_probability = e_dict

return

to calculate states

def cal_states():
global states
global tlines

cal_start_p.cnt_tag(tlines)

states = cal_start_p.tag_set

return

to take observations

def find_obs():
global observations
global test_lines
global tra
global w4
global co
global tra
global wo1
global wo2
global testl
global wo3
global te
global definitionText
global definitionScroll
global dt2
global ds2
global dt11
global ds11

wo3=[]
woo=[]
wo1=[]
wo2=[]

co=0
w4=[]
if(flag2!=0):
definitionText11.pack_forget()
definitionScroll11.pack_forget()
dt1.pack_forget()
ds1.pack_forget()
dispdlg()
f = open(file_name,"r+",encoding = 'utf-8')
test_lines = f.readlines()
f.close()
fname="C:/Python32/file_name1"

for x in states:
if not x in start_probability:
start_probability.update({x:0.0})
for line in test_lines:
ob = line.split()
observations = (ob)

fe=open("C:\Python32\output3_file","w+",encoding = 'utf-8')
fe.write("")
fe.close()
ff=open("C:\Python32\output4_file","w+",encoding = 'utf-8')

ff.write("")
ff.close()
ff7=open("C:\Python32\output5_file","w+",encoding = 'utf-8')
ff7.write("")
ff7.close()
ff8=open("C:\Python32\output6_file","w+",encoding = 'utf-8')
ff8.write("")
ff8.close()
ff81=open("C:\Python32\output7_file","w+",encoding = 'utf-8')
ff81.write("")
ff81.close()
dict5.search_obs_train_corpus(file1,fname,tlines,test_lines,observati
ons, states, start_probability, transition_probability,
emission_probability)

f20 = open("C:\Python32\output5_file","r+",encoding = 'utf-8')
te = f20.readlines()
tee=f20.read()
f = open(fname,"r+",encoding = 'utf-8')
train_llines = f.readlines()

ds11 = Scrollbar(root)
dt11 = Text(root, width=10,
height=20,fg='black',bg='pink',yscrollcommand=ds11.set)
ds11.config(command=dt11.yview)
dt11.insert("1.0",train_llines)
dt11.insert("1.0","\n")

dt11.insert("1.0","\n")
dt11.insert("1.0","******TRAINING SENTENCES******")

an example of how to add new text to the text area
dt11.pack(padx=10,pady=150)
ds11.pack(padx=10,pady=150)

ds11.pack(side=LEFT, fill=BOTH)
dt11.pack(side=LEFT, fill=BOTH, expand=True)

ds2 = Scrollbar(root)
dt2 = Text(root, width=10,
height=10,fg='black',bg='pink',yscrollcommand=ds2.set)
ds2.config(command=dt2.yview)
dt2.insert("1.0",test_lines)
dt2.insert("1.0","\n")
dt2.insert("1.0","\n")
dt2.insert("1.0","*********TESTING SENTENCES*********")

an example of how to add new text to the text area
dt2.pack(padx=10,pady=150)
ds2.pack(padx=10,pady=150)

ds2.pack(side=LEFT, fill=BOTH)
dt2.pack(side=LEFT, fill=BOTH, expand=True)

definitionScroll = Scrollbar(root)
definitionText = Text(root, width=10,
height=10,fg='black',bg='pink',yscrollcommand=definitionScroll.set)
definitionScroll.config(command=definitionText.yview)
definitionText.insert("1.0",te)
definitionText.insert("1.0","\n")
definitionText.insert("1.0","\n")
definitionText.insert("1.0","*********OUTPUT*********")

an example of how to add new text to the text area
definitionText.pack(padx=10,pady=150)
definitionScroll.pack(padx=10,pady=150)

definitionScroll.pack(side=LEFT, fill=BOTH)
definitionText.pack(side=LEFT, fill=BOTH, expand=True)

l = tk.Label(root, text="NOTE:*****The Entities which are not tagged
in Output are not Named Entities*****" , fg='black', bg='pink')
l.place(x = 500, y = 650, width=500, height=25)

#ttk.Button(mainframe, text="View Parameters",
command=parame).grid(column=11, row=10, sticky=E)

#definitionText.place(x= 19, y = 200,height=25)

f20.close()

f14 = open("C:\Python32\output2_file","r+",encoding = 'utf-8')
testl = f14.readlines()
for lines in testl:
toke = lines.split()
for t in toke:
w4.append(t)
f14.close()
f12 = open("C:\Python32\output_file","w+",encoding = 'utf-8')
f12.write("")
f12.close()

ttk.Button(mainframe, text="SAVE OUTPUT",
command=save_output).grid(column=11, row=7, sticky=E)
ttk.Button(mainframe, text="NER EVALUATION",
command=evaluate).grid(column=13, row=7, sticky=E)
ttk.Button(mainframe, text="REFRESH", command=ref).grid(column=15,
row=7, sticky=E)

return
def ref():
root.destroy()
import new1
return

Let's see the following code in Python, which will be used to evaluate the output produced by NER
using HMM:

def evaluate():
global wDict
global woe
global woe1
global woe2
woe1=[]

woe=[]
woe2=[]
ws=[]
wDict = {}
i=0

j=0
k=0

sp=0
f141 = open("C:\Python32\output1_file","r+",encoding = 'utf-8')
tesl = f141.readlines()
for lines in tesl:
toke = lines.split()
for t in toke:
ws.append(t)
if t in wDict: wDict[t] += 1
else: wDict[t] = 1
for line in tlines:
tok = line.split()

for t in tok:
wd = t.split("/")
if(wd[1]!='OTHER'):
if t in wDict: wDict[t] += 1
else: wDict[t] = 1
print ("words in train corpus ",wDict)
for key in wDict:
i=i+1
print("total words in Dictionary are:",i)
for line in train_lines:
toe=line.split()
for t1 in toe:
if '/' not in t1:
sp=sp+1
woe2.append(t1)
print("Spurious words are")
for w in woe2:
print(w)
print("Total spurious words are:",sp)
for l in te:
to=l.split()
for t1 in to:
if '/' in t1:

#print(t1)
if t1 in ws or t1 in wDict:
woe.append(t1)

j=j+1
if t1 not in wDict:

wdd=t1.split("/")
ifwdd[0] not in woe2:
woe1.append(t1)

k=k+1
print("Word found in Dict are:")
for w in woe:
print(w)
print("Word not found in Dict are:")
for w in woe1:
print(w)
print("Total correctly tagged words are:",j)
print("Total incorrectly tagged words are:",k)
pr=(j)/(j+k)
re=(j)/(j+k+sp)
f141.close()
root=Tk()
root.title("NER EVALUATION")
root.geometry("1000x1000")

ds21 = Scrollbar(root)
dt21 = Text(root, width=10,
height=10,fg='black',bg='pink',yscrollcommand=ds21.set)
ds21.config(command=dt21.yview)
dt21.insert("1.0",(2*pr*re)/(pr+re))
dt21.insert("1.0","\n")
dt21.insert("1.0","F-MEASURE=")
dt21.insert("1.0","\n")
dt21.insert("1.0","F-MEASURE=(2*PRECISION*RECALL)/(PRECISION+RECALL)"
)
dt21.insert("1.0","\n")
dt21.insert("1.0","\n")
dt21.insert("1.0",re)
dt21.insert("1.0","RECALL=")
dt21.insert("1.0","\n")
dt21.insert("1.0","RECALL= CORRECT/(CORRECT +INCORRECT +SPURIOUS)")
dt21.insert("1.0","\n")
dt21.insert("1.0","\n")
dt21.insert("1.0",pr)
dt21.insert("1.0","PRECISION=")
dt21.insert("1.0","\n")
dt21.insert("1.0","PRECISION= CORRECT/(CORRECT +INCORRECT +MISSING)")
dt21.insert("1.0","\n")
dt21.insert("1.0","\n")
dt21.insert("1.0","Total No. of Missing words are: 0")
dt21.insert("1.0","\n")
dt21.insert("1.0","\n")
dt21.insert("1.0",sp)

dt21.insert("1.0","Total No. of Spurious Words are:")
dt21.insert("1.0","\n")
for w in woe2:
dt21.insert("1.0",w)
dt21.insert("1.0"," ")
dt21.insert("1.0","Total Spurious Words are:")
dt21.insert("1.0","\n")
dt21.insert("1.0","\n")
dt21.insert("1.0",k)
dt21.insert("1.0","Total No. of Incorrectly tagged words are:")
dt21.insert("1.0","\n")
for w in woe1:
dt21.insert("1.0",w)
dt21.insert("1.0"," ")
dt21.insert("1.0","Total Incorrectly tagged words are:")
dt21.insert("1.0","\n")
dt21.insert("1.0","\n")
dt21.insert("1.0",j)
dt21.insert("1.0","Total No. of Correctly tagged words are:")
dt21.insert("1.0","\n")
for w in woe:
dt21.insert("1.0",w)
dt21.insert("1.0"," ")
dt21.insert("1.0","Total Correctly tagged words are:")
dt21.insert("1.0","\n")
dt21.insert("1.0","\n")
dt21.insert("1.0","***************PERFORMANCE EVALUATION OF
NERHMM***************")

an example of how to add new text to the text area
dt21.pack(padx=5,pady=5)
ds21.pack(padx=5,pady=5)

ds21.pack(side=LEFT, fill=BOTH)
dt21.pack(side=LEFT, fill=BOTH, expand=True)
root.mainloop()
return
def save_output():

#dispdlg()
f = open("C:\Python32\save","w+",encoding = 'utf-8')
f20 = open("C:\Python32\output5_file","r+",encoding = 'utf-8')
te = f20.readlines()
for t in te:
f.write(t)
f.close()

f20.close()

to calculate start probability matrix

def cal_srt_prob():
global start_probability

start_probability = cal_start_p.lst

return

to print vitarbi parameter if required

def pr_param():
l1 = tk.Label(root, text="HMM Training is going on.....Don't Click
any Button!!",fg='black',bg='pink')
l1.place(x = 300, y = 150,height=25)

print("states")
print(states)
print(" ")
print(" ")
print("start probability")
print(start_probability)
print(" ")
print(" ")
print("transition probability")
print(transition_probability)
print(" ")
print(" ")
print("emission probability")
print(emission_probability)
l1 = tk.Label(root,
text="

")
l1.place(x = 300, y = 150,height=25)
global flag1

flag1=0
global flag2

flag2=0
ttk.Button(mainframe, text="View Parameters",
command=parame).grid(column=7, row=5, sticky=W)
return

def parame():
global flag2

flag2=flag1+1

global definitionText11
global definitionScroll11
definitionScroll11 = Scrollbar(root)
definitionText11 = Text(root, width=10,
height=10,fg='black',bg='pink',yscrollcommand=definitionScroll11.set)

#definitionText.place(x= 19, y = 200,height=25)
definitionScroll11.config(command=definitionText11.yview)

definitionText11.delete("1.0", END) # an example of how to delete
all current text
definitionText11.insert("1.0",emission_probability)
definitionText11.insert("1.0","\n")
definitionText11.insert("1.0","Emission Probability")
definitionText11.insert("1.0","\n")
definitionText11.insert("1.0",transition_probability)
definitionText11.insert("1.0","Transition Probability")
definitionText11.insert("1.0","\n")
definitionText11.insert("1.0",start_probability)
definitionText11.insert("1.0","Start Probability")

an example of how to add new text to the text area
definitionText11.pack(padx=10,pady=175)
definitionScroll11.pack(padx=10,pady=175)

definitionScroll11.pack(side=LEFT, fill=BOTH)
definitionText11.pack(side=LEFT, fill=BOTH, expand=True)

return

to calculate transition probability matrix

def cat_trans_prob():
global transition_probability
global corpus
global tlines

trans_mat.main_prg(t_dict,corpus,tlines)

transition_probability = t_dict
return

def find_train_corpus():
global train_lines
global tlines

global c
global corpus
global words1
global w1
global train1
global fname
global file1
global ds1
global dt1
global w21
words1=[]

c=0
w1=[]
w21=[]
f11 = open("C:\Python32\output1_file","w+",encoding='utf-8')
f11.write("")
f11.close()
fr = open("C:\Python32\output_file","w+",encoding='utf-8')
fr.write("")
fr.close()
fgl=open("C:\Python32\ladetect1","w+",encoding = 'utf-8')
fgl.write("")
fgl.close()

fgl=open("C:\Python32\ladetect","w+",encoding = 'utf-8')
fgl.write("")
fgl.close()
dispdlg()
f = open(file_name,"r+",encoding = 'utf-8')
train_lines = f.readlines()

ds1 = Scrollbar(root)
dt1 = Text(root, width=10,
height=10,fg='black',bg='pink',yscrollcommand=ds1.set)
ds1.config(command=dt1.yview)
dt1.insert("1.0",train_lines)
dt1.insert("1.0","\n")
dt1.insert("1.0","\n")
dt1.insert("1.0","*********TRAINING SENTENCES*********")

an example of how to add new text to the text area
dt1.pack(padx=10,pady=175)
ds1.pack(padx=10,pady=175)

ds1.pack(side=LEFT, fill=BOTH)
dt1.pack(side=LEFT, fill=BOTH, expand=True)

fname="C:/Python32/file_name1"
f = open(file_name,"r+",encoding = 'utf-8')

file1=file_name
p = open(fname,"w+",encoding = 'utf-8')

corpus = f.read()
for line in train_lines:
tok = line.split()
for t in tok:
n=t.split()

le=len(t)
i=0

j=0
for n1 in n:
while(j<le):

if(n1[j]!='/'):
i=i+1

j=j+1
else:

j=j+1
if(i==le):
p.write(t)
p.write("/OTHER ") #Handling Spurious words
else:
p.write(t)
p.write(" ")

p.write("\n")

p.close()
fname="C:/Python32/file_name1"
f00 = open(fname,"r+",encoding = 'utf-8')
tlines = f00.readlines()
for line in tlines:
tok = line.split()
for t in tok:
wd = t.split("/")
if(wd[1]!='OTHER'):
if not wd[0] in words1:
words1.append(wd[0])
w1.append(wd[1])
f00.close()

f157 = open("C:\Python32\input_file","w+",encoding='utf-8')
f157.write("")
f157.close()
f1 = open("C:\Python32\input_file","w+",encoding='utf-8')
#input_file has list of Named Entities of training file
for w in words1:
f1.write(w)
f1.write("\n")
f1.close()
fr=open("C:\Python32\detect","w+",encoding = 'utf-8')
fr.write("")
fr.close()

f.close()
f.close()

cal_states()
cal_emit_mat()
cal_srt_prob()
cat_trans_prob()
pr_param()

return

root=Tk()
root.title("NAMED ENTITY RECOGNITION IN NATURAL LANGUAGES USING
HIDDEN MARKOV MODEL")
root.geometry("1000x1000")

mainframe = ttk.Frame(root, padding="20 20 12 12")
mainframe.grid(column=0, row=0, sticky=(N, W, E, S))

b=StringVar()
a=StringVar()

ttk.Style().configure("TButton", padding=6,
relief="flat",background="Pink", foreground="Red")
ttk.Button(mainframe, text="ANNOTATION",
command=calculate1).grid(column=5, row=3, sticky=W)

ttk.Button(mainframe, text="TRAIN HMM",
command=tranhmm).grid(column=7, row=3, sticky=E)

ttk.Button(mainframe, text="TEST HMM",

command=testhmm).grid(column=9, row=3, sticky=E)

ttk.Button(mainframe, text="HELP", command=hmmhelp).grid(column=11,
row=3, sticky=E)

To call viterbi for particular observations find in find_obs

def call_vitar():
global test_lines
global train_lines
global corpus
global observations
global states
global start_probability
global transition_probability
global emission_probability

find_train_corpus()

cal_states()
find_obs()
cal_emit_mat()
cal_srt_prob()
cat_trans_prob()

print("Vitarbi Parameters are for selected corpus")
pr_param()

-----------------To add all states not in start probability

for x in states:
if not x in start_probability:
start_probability.update({x:0.0})

for line in test_lines:

ob = line.split()
observations = (ob)
print(" ")
print(" ")
print(line)
print("**************************")
print(vit.viterbi(observations, states, start_probability,
transition_probability, emission_probability),bg='Pink',fg='Red')

return

root.mainloop()

The preceding code in Python shows how NER is performed using the HMM, and how an NER system
is evaluated using performance metrics (Precision, Recall and F-Measure).

Summary
In this chapter, we have discussed sentiment analysis using NER and machine learning techniques. We
have also discussed the evaluation of an NER-based system..

In the next chapter, we'll discuss information retrieval, text summarization, stop word removal, question-
answering system, and more.

Chapter 8. Information Retrieval – Accessing
Information
Information retrieval is one of the many applications of natural language processing. Information
retrieval may be defined as the process of retrieving information (for example, the number of times the
word Ganga has appeared in the document) corresponding to a query that has been made by the user.

This chapter will include the following topics:

• Introducing information retrieval
• Stop word removal
• Information retrieval using a vector space model
• Vector space scoring and query operator interactions
• Developing an IR system using latent semantic indexing
• Text summarization
• Question-answering system

Introducing information retrieval
Information retrieval may be defined as the process of retrieving the most suitable information as a
response to the query being made by the user. In information retrieval, the search is performed based on
metadata or context-based indexing. One example of information retrieval is Google Search in which,
corresponding to each user query, a response is provided on the basis of the information retrieval
algorithm being used. An indexing mechanism is used by the information retrieval algorithm. The
indexing mechanism used is known as an inverted index. An IR system builds an index postlist to
perform the information retrieval task.

Boolean retrieval is an information retrieval task in which a Boolean operation is applied to the postlist
in order to retrieve relevant information.

The accuracy of an information retrieval task is measured in terms of precision and recall.

Suppose that a given IR system returns X documents when a query is fired. But the actual or gold set of
documents that needs to be returned is Y.

Recall may be defined as the fraction of gold documents that a system finds. It may be defined as the
ratio of true positives to the combination of true positives and false negatives.

Recall (R) = (X ∩ Y) / Y

Precision may be defined as the fraction of documents that an IR system detects and are correct.

Precision (P) = (X ∩ Y) / X

F-Measure may be defined as the harmonic mean of precision and recall.

F-Measure = 2 * (X ∩ Y) / (X + Y)

Stop word removal

While performing information retrieval , it is important to detect the stop words in a document and
eliminate them.

Let's see the following code that can be used to provide the collection of stop words that can be detected
in the English text in NLTK:

>>> import nltk
>>> fromnltk.corpus import stopwords
>>> stopwords.words('english')
['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you',
'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his',
'himself', 'she', 'her', 'hers', 'herself', 'it', 'its', 'itself',
'they', 'them', 'their', 'theirs', 'themselves', 'what', 'which',
'who', 'whom', 'this', 'that', 'these', 'those', 'am', 'is', 'are',
'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had',
'having', 'do', 'does', 'did', 'doing', 'a', 'an', 'the', 'and',
'but', 'if', 'or', 'because', 'as', 'until', 'while', 'of', 'at',
'by', 'for', 'with', 'about', 'against', 'between', 'into',
'through', 'during', 'before', 'after', 'above', 'below', 'to',
'from', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under',
'again', 'further', 'then', 'once', 'here', 'there', 'when',
'where', 'why', 'how', 'all', 'any',
'both', 'each', 'few', 'more', 'most', 'other', 'some', 'such',
'no', 'nor', 'not', 'only', 'own', 'same', 'so', 'than', 'too',
'very', 's', 't', 'can', 'will', 'just', 'don', 'should', 'now']

NLTK consists of stop word corpus that comprises of 2,400 stop words from 11 different languages.

Let's see the following code in NLTK that can be used to find the fraction of words in a text that are not
stop words:

>>> def not_stopwords(text):
stopwords = nltk.corpus.stopwords.words('english')
content = [w for w in text if w.lower() not in stopwords]
return len(content) / len(text)

>>> not_stopwords(nltk.corpus.reuters.words())
0.7364374824583169

Let's see the following code in NLTK that can be used to remove the stop words from a given text. Here,
the lower() function is used prior to the elimination of stop words so that the stop words in capital
letters, such as A, are first converted into lower case letters and then eliminated:

import nltk
from collections import Counter
import string
fromnltk.corpus import stopwords

def get_tokens():
with open('/home/d/TRY/NLTK/STOP.txt') as stopl:

tokens =
nltk.word_tokenize(stopl.read().lower().translate(None,
string.punctuation))

return tokens

if __name__ == "__main__":

tokens = get_tokens()
print("tokens[:20]=%s") %(tokens[:20])

count1 = Counter(tokens)
print("before: len(count1) = %s") %(len(count1))

filtered1 = [w for w in tokens if not w in
stopwords.words('english')]

print("filtered1 tokens[:20]=%s") %(filtered1[:20])

count1 = Counter(filtered1)
print("after: len(count1) = %s") %(len(count1))

print("most_common = %s") %(count.most_common(10))

tagged1 = nltk.pos_tag(filtered1)
print("tagged1[:20]=%s") %(tagged1[:20])

Information retrieval using a vector space model

In a vector space model, documents are represented as vectors. One of the methods of representing
documents as vectors is using TF-IDF (Term Frequency-Inverse Document Frequency).

Term frequency may be defined as the total number of times a given token exists in a document divided
by the total number of tokens. It may also be defined as the frequency of the occurrence of certain terms
in a given document.

The formula for term frequency (TF) is given as follows:

TF(t,d) = 0.5 + (0.5 * f(t,d)) / max {f(w,d) : wϵd}

IDF may be defined as the inverse of document frequency. It is also defined as the document count that
lies in the corpus in which a given term coexists.

IDF can be computed by finding the logarithm of the total number of documents present in a given
corpus divided by the number of documents in which a particular token exists.

The formula for IDF(t,d) may be stated as follows:

IDF(t,D)= log(N/{dϵD :tϵd})

The TF-IDF score can be obtained by multiplying both scores. This is written as follows:

TF-IDF(t, d, D) = TF(t,d) * IDF(t,D)

TF-IDF provides the estimate of the frequency of a term as present in the given document and how
much it is being spread across the corpus.

In order to compute TF-IDF for a given document, the following steps are required:

• Tokenization of documents
• Computation of vector space model
• Computation of TF-IDF for each document

The process of tokenization involves tokenizing the text into sentences first. The individual sentences
are then tokenized into words. The words, which are of no significance during information retrieval, also
known as stop words, can then be removed.

Let's see the following code that can be used for performing tokenization on each document in a corpus:

authen = OAuthHandler(CLIENT_ID, CLIENT_SECRET, CALLBACK)
authen.set_access_token(ACCESS_TOKEN)
ap = API(authen)

venue = ap.venues(id='4bd47eeb5631c9b69672a230')
stopwords = nltk.corpus.stopwords.words('english')
tokenizer = RegexpTokenizer("[\w']+", flags=re.UNICODE)

def freq(word, tokens):
return tokens.count(word)

#Compute the frequency for each term.
vocabulary = []
docs = {}
all_tips = []
for tip in (venue.tips()):

tokens = tokenizer.tokenize(tip.text)

bitokens = bigrams(tokens)
tritokens = trigrams(tokens)
tokens = [token.lower() for token in tokens if len(token) > 2]
tokens = [token for token in tokens if token not in stopwords]

bitokens = [' '.join(token).lower() for token in bitokens]
bitokens = [token for token in bitokens if token not in stopwords]

tritokens = [' '.join(token).lower() for token in tritokens]
tritokens = [token for token in tritokens if token not in stopwords]

ftokens = []
ftokens.extend(tokens)
ftokens.extend(bitokens)
ftokens.extend(tritokens)
docs[tip.text] = {'freq': {}}

for token in ftokens:
docs[tip.text]['freq'][token] = freq(token, ftokens)

print docs

The next step performed after tokenization is the normalization of the tf vector. Let's see the following
code that performs the normalization of the tf vector:

authen = OAuthHandler(CLIENT_ID, CLIENT_SECRET, CALLBACK)
authen.set_access_token(ACCESS_TOKEN)
ap = API(auth)

venue = ap.venues(id='4bd47eeb5631c9b69672a230')
stopwords = nltk.corpus.stopwords.words('english')
tokenizer = RegexpTokenizer("[\w']+", flags=re.UNICODE)

def freq(word, tokens):
return tokens.count(word)

def word_count(tokens):
return len(tokens)

def tf(word, tokens):
return (freq(word, tokens) / float(word_count(tokens)))

#Compute the frequency for each term.
vocabulary = []
docs = {}
all_tips = []
for tip in (venue.tips()):
tokens = tokenizer.tokenize(tip.text)

bitokens = bigrams(tokens)
tritokens = trigrams(tokens)
tokens = [token.lower() for token in tokens if len(token) > 2]
tokens = [token for token in tokens if token not in stopwords]

bitokens = [' '.join(token).lower() for token in bitokens]
bitokens = [token for token in bitokens if token not in stopwords]

tritokens = [' '.join(token).lower() for token in tritokens]
tritokens = [token for token in tritokens if token not in stopwords]

ftokens = []
ftokens.extend(tokens)
ftokens.extend(bitokens)
ftokens.extend(tritokens)
docs[tip.text] = {'freq': {}, 'tf': {}}

for token in ftokens:
#The Computed Frequency

docs[tip.text]['freq'][token] = freq(token, ftokens)
Normalized Frequency

docs[tip.text]['tf'][token] = tf(token, ftokens)

print docs

Let's see the following code for computing the TF-IDF:

authen = OAuthHandler(CLIENT_ID, CLIENT_SECRET, CALLBACK)
authen.set_access_token(ACCESS_TOKEN)
ap = API(authen)

venue = ap.venues(id='4bd47eeb5631c9b69672a230')
stopwords = nltk.corpus.stopwords.words('english')
tokenizer = RegexpTokenizer("[\w']+", flags=re.UNICODE)

def freq(word, doc):

return doc.count(word)

def word_count(doc):
return len(doc)

def tf(word, doc):
return (freq(word, doc) / float(word_count(doc)))

def num_docs_containing(word, list_of_docs):
count = 0
for document in list_of_docs:
if freq(word, document) > 0:
count += 1
return 1 + count

def idf(word, list_of_docs):
return math.log(len(list_of_docs) /
float(num_docs_containing(word, list_of_docs)))

#Compute the frequency for each term.
vocabulary = []
docs = {}
all_tips = []
for tip in (venue.tips()):
tokens = tokenizer.tokenize(tip.text)

bitokens = bigrams(tokens)
tritokens = trigrams(tokens)
tokens = [token.lower() for token in tokens if len(token) > 2]
tokens = [token for token in tokens if token not in stopwords]

bitokens = [' '.join(token).lower() for token in bitokens]
bitokens = [token for token in bitokens if token not in stopwords]

tritokens = [' '.join(token).lower() for token in tritokens]
tritokens = [token for token in tritokens if token not in stopwords]

ftokens = []
ftokens.extend(tokens)
ftokens.extend(bitokens)
ftokens.extend(tritokens)
docs[tip.text] = {'freq': {}, 'tf': {}, 'idf': {}}

for token in ftokens:
#The frequency computed for each tip

docs[tip.text]['freq'][token] = freq(token, ftokens)
#The term-frequency (Normalized Frequency)

docs[tip.text]['tf'][token] = tf(token, ftokens)

vocabulary.append(ftokens)

for doc in docs:
for token in docs[doc]['tf']:

#The Inverse-Document-Frequency
docs[doc]['idf'][token] = idf(token, vocabulary)

print docs

TF-IDF is computed by finding the product of TF and IDF. The large value of TF-IDF is computed
when there is an occurrence of high term frequency and low document frequency.

Let's see the following code for computing the TF-IDF for each term in a document:

authen = OAuthHandler(CLIENT_ID, CLIENT_SECRET, CALLBACK)
authen.set_access_token(ACCESS_TOKEN)
ap = API(authen)

venue = ap.venues(id='4bd47eeb5631c9b69672a230')
stopwords = nltk.corpus.stopwords.words('english')
tokenizer = RegexpTokenizer("[\w']+", flags=re.UNICODE)

def freq(word, doc):
return doc.count(word)

def word_count(doc):
return len(doc)

def tf(word, doc):
return (freq(word, doc) / float(word_count(doc)))

def num_docs_containing(word, list_of_docs):
count = 0
for document in list_of_docs:
if freq(word, document) > 0:

count += 1
return 1 + count

def idf(word, list_of_docs):
return math.log(len(list_of_docs) /
float(num_docs_containing(word, list_of_docs)))

def tf_idf(word, doc, list_of_docs):
return (tf(word, doc) * idf(word, list_of_docs))

#Compute the frequency for each term.
vocabulary = []
docs = {}
all_tips = []
for tip in (venue.tips()):
tokens = tokenizer.tokenize(tip.text)

bitokens = bigrams(tokens)
tritokens = trigrams(tokens)
tokens = [token.lower() for token in tokens if len(token) > 2]
tokens = [token for token in tokens if token not in stopwords]

bitokens = [' '.join(token).lower() for token in bitokens]
bitokens = [token for token in bitokens if token not in stopwords]

tritokens = [' '.join(token).lower() for token in tritokens]
tritokens = [token for token in tritokens if token not in stopwords]

ftokens = []
ftokens.extend(tokens)
ftokens.extend(bitokens)
ftokens.extend(tritokens)
docs[tip.text] = {'freq': {}, 'tf': {}, 'idf': {},

'tf-idf': {}, 'tokens': []}

for token in ftokens:
#The frequency computed for each tip

docs[tip.text]['freq'][token] = freq(token, ftokens)
#The term-frequency (Normalized Frequency)

docs[tip.text]['tf'][token] = tf(token, ftokens)
docs[tip.text]['tokens'] = ftokens

vocabulary.append(ftokens)

for doc in docs:

for token in docs[doc]['tf']:
#The Inverse-Document-Frequency

docs[doc]['idf'][token] = idf(token, vocabulary)
#The tf-idf

docs[doc]['tf-idf'][token] = tf_idf(token, docs[doc]['tokens'],
vocabulary)

#Now let's find out the most relevant words by tf-idf.
words = {}
for doc in docs:
for token in docs[doc]['tf-idf']:
if token not in words:
words[token] = docs[doc]['tf-idf'][token]
else:
if docs[doc]['tf-idf'][token] > words[token]:
words[token] = docs[doc]['tf-idf'][token]

for item in sorted(words.items(), key=lambda x: x[1], reverse=True):
print "%f <= %s" % (item[1], item[0])

Let's see the following code for mapping keywords to the vector's dimension:

>>> def getVectkeyIndex(self,documentList):
vocabString=" ".join(documentList)
vocabList=self.parser.tokenise(vocabString)
vocabList=self.parser.removeStopWords(vocabList)
uniquevocabList=util.removeDuplicates(vocabList)
vectorIndex={}
offset=0

for word in uniquevocabList:
vectorIndex[word]=offset
offset+=1

return vectorIndex

Let's see the following code for mapping document strings to vectors:

>>> def makeVect(self,wordString):
vector=[0]*len(self.vectorkeywordIndex)
wordList=self.parser.tokenise(wordString)
wordList=self.parser.removeStopWords(wordList)
for word in wordList:

vector[self.vectorkeywordIndex[word]]+=1;
return vector

Vector space scoring and query operator
interaction
Vector space model is used for the representation of meanings in the form of vectors of lexical items. A
vector space model can easily be modeled using linear algebra. So the similarity between vectors can be
computed easily.

Vector size is used to represent the size of the vector being used that represents a particular context. The
window-based method and dependency-based method are used for the modeling context. In the window-
based method, the context is determined using the occurrence of words within the window of a
particular size. In a dependency-based method, the context is determined when there is an occurrence of
a word in a particular syntactic relation with the corresponding target word. Features or contextual
words are stemmed and lemmatized. Similarity metrics can be used to compute the similarity between
the two vectors.

Let's see the following list of similarity metrics:

Weighting scheme is another term that is very important as it provides information that the given context
is more related to the target word.

Let's see the list of weighting schemes that can be considered:

Developing an IR system using latent semantic
indexing
Latent semantic indexing can be used for performing categorization with the help of minimum training.

Latent semantic indexing is a technique that can be used for processing text. It can perform the
following:

• Automatic categorization of text
• Conceptual information retrieval
• Cross-lingual information retrieval

Latent semantic method may be defined as an information retrieval and indexing method. It makes use
of a mathematical technique known as Singular Value Decomposition (SVD). SVD is used for the
detection of patterns having a certain relation with the concepts contained in a given unstructured text.

Some of the applications of latent semantic indexing include the following:

• Information discovery
• Automated document classification text summarization[20] (eDiscovery, Publishing)
• Relationship discovery
• Automatic generation of the link charts of individuals and organizations
• Matching technical papers and grants with reviewers
• Online customer support
• Determining document authorship
• Automatic keyword annotation of images
• Understanding software source code
• Filtering spam
• Information visualization
• Essay scoring
• Literature-based discovery

Text summarization
Text summarization is the process of generating summaries from a given long text. Based on the Luhn
work, The Automatic Creation of Literature Abstracts (1958), a naïve summarization approach known as
NaiveSumm is developed. It makes use of a word's frequencies for the computation and extraction of
sentences that consist of the most frequent words. Using this approach, text summarization can be
performed by extracting a few specific sentences.

Let's see the following code in NLTK that can be used for performing text summarization:

from nltk.tokenize import sent_tokenize,word_tokenize
from nltk.corpus import stopwords
from collections import defaultdict
from string import punctuation
from heapq import nlargest

class Summarize_Frequency:
def __init__(self, cut_min=0.2, cut_max=0.8):

"""
Initilize the text summarizer.
Words that have a frequency term lower than cut_min
or higer than cut_max will be ignored.

"""
self._cut_min = cut_min
self._cut_max = cut_max
self._stopwords = set(stopwords.words('english') +

list(punctuation))

def _compute_frequencies(self, word_sent):
"""

Compute the frequency of each of word.
Input:
word_sent, a list of sentences already tokenized.

Output:
freq, a dictionary where freq[w] is the frequency of w.

"""
freq = defaultdict(int)
for s in word_sent:

for word in s:
if word not in self._stopwords:

freq[word] += 1
frequencies normalization and fitering
m = float(max(freq.values()))
for w in freq.keys():

freq[w] = freq[w]/m
if freq[w] >= self._cut_max or freq[w] <= self._cut_min:

del freq[w]
return freq

def summarize(self, text, n):
"""

list of (n) sentences are returned.
summary of text is returned.

"""
sents = sent_tokenize(text)
assert n <= len(sents)
word_sent = [word_tokenize(s.lower()) for s in sents]
self._freq = self._compute_frequencies(word_sent)
ranking = defaultdict(int)
for i,sent in enumerate(word_sent):

for w in sent:
if w in self._freq:

ranking[i] += self._freq[w]
sents_idx = self._rank(ranking, n)
return [sents[j] for j in sents_idx]

def _rank(self, ranking, n):
""" return the first n sentences with highest ranking """
return nlargest(n, ranking, key=ranking.get)

The preceding code computes the term frequency for each word and then the most frequent words, such
as determiners, may be eliminated as they are not of much use while performing information retrieval
tasks.

Question-answering system
Question-answering systems are referred to as intelligent systems that can be used to provide responses
for the questions being asked by the user based on certain facts or rules stored in the knowledge base. So
the accuracy of a question-answering system to provide a correct response depends on the rules or facts
stored in the knowledge base.

One of the many issues involved in a question-answering system is how the responses and questions
would be represented in the system. Responses may be retrieved and then represented using text
summarization or parsing. Another issue involved in the question-answering system is how the questions
and the corresponding answers are represented in a knowledge base.

To build a question-answering system, various approaches, such as the named entity recognition,
information retrieval, information extraction, and so on, can be applied.

A question-answering system involves three phases:

• Extraction of facts
• Understanding of questions
• Generation of answers

Extraction of facts is performed in order to understand domain-specific data and generate a response for
a given query.

Extraction of facts can be performed in two ways using: extraction of entity and extraction of relation.
The process of extraction of entity or extraction of proper nouns is referred to as NER. The process of
extraction of relation is based on the extraction of semantic information from the text.

Understanding of questions involves the generation of a parse tree from a given text.

The generation of answers involves obtaining the most likely response for a given query that can be
understood by the user.

Let's see the following code in NLTK that can be used to accept a query from a user user. This query can
be processed by removing stop words from it so that information retrieval can be performed post
processing:

import nltk
from nltk import *
import string
print "Enter your question"
ques=raw input()
ques=ques.lower()
stopwords=nltk.corpus.stopwords.words('english')
cont=nltk.word_tokenize(question)
analysis_keywords=list(set(cont) -set(stopwords))

Summary
In this chapter, we have discussed information retrieval. We have mainly learned about stop words
removal. Stop words are eliminated so that information retrieval and text summarization tasks become
faster. We have also discussed the implementation of text summarization, question-answering systems,
and vector space models.

In the next chapter, we'll study the concepts of discourse analysis and anaphora resolution.

Chapter 9. Discourse Analysis – Knowing Is
Believing
Discourse analysis is another one of the applications of Natural Language Processing. Discourse
analysis may be defined as the process of determining contextual information that is useful for
performing other tasks, such as anaphora resolution (AR) (we will cover this section later in this
chapter), NER, and so on.

This chapter will include the following topics:

• Introducing discourse analysis
• Discourse analysis using Centering Theory
• Anaphora resolution

Introducing discourse analysis
The word discourse in linguistic terms means language in use. Discourse analysis may be defined as the
process of performing text or language analysis, which involves text interpretation and knowing the
social interactions. Discourse analysis may involve dealing with morphemes, n-grams, tenses, verbal
aspects, page layouts, and so on. Discourse may be defined as the sequential set of sentences.

In most cases, we can interpret the meaning of the sentence on the basis of the preceding sentences.

Consider a discourse John went to the club on Saturday. He met Sam." Here, He refers to John.

Discourse Representation Theory (DRT) has been developed to provide a means for performing AR.
A Discourse Representation Structure (DRS) has been developed that provides the meaning of
discourse with the help of discourse referents and conditions. Discourse referents refer to variables used
in first-order logic and things under consideration in a discourse. A discourse representation structure's
conditions refer to the atomic formulas used in first-order predicate logic.

First Order Predicate Logic (FOPL) was developed to extend the idea of propositional logic. FOPL
involves the use of functions, arguments, and quantifiers. Two types of quantifiers are used to represent
the general sentences, namely, universal quantifiers and existential quantifiers. In FOPL, connectives,
constants, and variables are also used. For instance, Robin is a bird can be represented in FOPL
as bird (robin).

Let's see an example of the discourse representation structure:

The preceding diagram is a representation of the following sentences:

1. John went to a club
2. John went to a club. He met Sam.

Here, the discourse consists of two sentences. Discourse Structure Representation may represent the
entire text. For computationally processing DRS, it needs to be converted into a linear format.

The NLTK module that can be used to provide first order predicate logic implementation is
nltk.sem.logic. Its UML diagram is shown here:

The nltk.sem.logic module is used to define the expressions of first order predicate logic. Its
UML diagram is comprised of various classes that are required for the representation of objects in first
order predicate logic as well as their methods. The methods that are included are as follows:

• substitute_bindings(bindings): Here, binding represents variable-to-expression
mapping. It replaces variables present in the expression with a specific value.

• Variables(): This comprises a set of all the variables that need to be replaced. It consists of
constants as well as free variables.

• replace(variable, expression, replace_bound): This is used for substituting
the expression for a variable instance; replace_bound is used to specify whether we need to
replace bound variables or not.

• Normalize(): This is used to rename the autogenerated unique variables.
• Visit(self,function,combinatory,default): This is used to visit subexpression

calling functions; results are passed to the combinator that begins with a default value. Results
of the combination are returned.

• free(indvar_only): This is used to return the set of all the free variables of the object.
Individual variables are returned if indvar_only is set to True.

• Simplify(): This is used to simplify the expression that represents an object.

The NLTK module that provides a base for the discourse representation theory is nltk.sem.drt. It is
built on top of nltk.sem.logic. Its UML class diagram comprises classes that are inherited from
the nltk.sem.logic module. The following are the methods described in this module:

• The get_refs(recursive): This method obtains the referents for the current discourse.
• The fol(): This method is used for the conversion of DRS into first order predicate logic.
• The draw(): This method is used for drawing DRS with the help of the Tkinter graphics

library.

Let's see the UML class diagram of the nltk.sem.drt module:

The NLTK module that provides access to WordNet 3.0 is nltk.corpus.reader.wordnet.

Linear format comprises discourse referents and DRS conditions, for example:

([x], [John(x), Went(x)])

Let's see the following code in NLTK, which can be used for the implementation of DRS:

>>> import nltk
>>> expr_read = nltk.sem.DrtExpression.from string

>>> expr1 = expr_read('([x], [John(x), Went(x)])')
>>> print(expr1)
([x],[John(x), Went(x)])
>>> expr1.draw()
>>> print(expr1.fol())
exists x.(John(x) & Went(x))

The preceding code of NLTK will draw the following image:

Here, the expression is converted into FOPL using the fol() method.

Let's see the following code in NLTK for the other expression:

>>> import nltk
>>> expr_read = nltk.sem.DrtExpression.from string
>>> expr2 = expr_read('([x,y], [John(x), Went(x),Sam(y),Meet(x,y)])')
>>> print(expr2)
([x,y],[John(x), Went(x), Sam(y), Meet(x,y)])
>>> expr2.draw()
>>> print(expr2.fol())
exists x y.(John(x) & Went(x) & Sam(y) & Meet(x,y))

The fol() function is used to obtain the first order predicate logic equivalent of the expression. The
preceding code displays the following image:

We can perform the concatenation of two DRS using the DRS concatenation operator (+). Let's see the
following code in NLTK that can be used to perform the concatenation of two DRS:

>>> import nltk
>>> expr_read = nltk.sem.DrtExpression.from string
>>> expr3 = expr_read('([x], [John(x), eats(x)])+
([y],[Sam(y),eats(y)])')
>>> print(expr3)
(([x],[John(x), eats(x)]) + ([y],[Sam(y), eats(y)]))
>>> print(expr3.simplify())
([x,y],[John(x), eats(x), Sam(y), eats(y)])
>>> expr3.draw()

The preceding code draws the following image:

Here, simplify() is used to simplify the expression.

Let's see the following code in NLTK, which can be used to embed one DRS into another:

>>> import nltk
>>> expr_read = nltk.sem.DrtExpression.from string
>>> expr4 =
expr_read('([],[(([x],[student(x)])->([y],[book(y),read(x,y)]))])')
>>> print(expr4.fol())
all x.(student(x) -> exists y.(book(y) & read(x,y)))

Let's see another example that can be used to combine two sentences. Here, PRO has been used and
resolve_anaphora() is used to perform AR:

>>> import nltk
>>> expr_read = nltk.sem.DrtExpression.from string
>>> expr5 = expr_read('([x,y],[ram(x),food(y),eats(x,y)])')
>>> expr6 = expr_read('([u,z],[PRO(u),coffee(z),drinks(u,z)])')
>>> expr7=expr5+expr6
>>> print(expr7.simplify())
([u,x,y,z],[ram(x), food(y), eats(x,y), PRO(u), coffee(z),
drinks(u,z)])

>>> print(expr7.simplify().resolve_anaphora())
([u,x,y,z],[ram(x), food(y), eats(x,y), (u = [x,y,z]), coffee(z),
drinks(u,z)])

Discourse analysis using Centering Theory

Discourse analysis using Centering Theory is the first step toward corpus annotation. It also involves the
task of AR. In Centering Theory, we perform the task of segmenting discourse into various units for
analysis.

Centering Theory involves the following:

• Interaction between purposes or intentions of discourse participants and discourse
• Attention of participants
• Discourse structure

Centering is related to participants attention and how the local as well as global structures affect
expressions and the coherence of discourse.

Anaphora resolution

AR may be defined as the process by which a pronoun or a noun phrase used in the sentence is resolved
and refers to a specific entity on the basis of discourse knowledge.

For example:

John helped Sara. He was kind.

Here, He refers to John.

AR is of three types, namely:

• Pronominal: Here, the referent is referred to by a pronoun. For example, Sam found the love of
his life. Here, 'his' refers to 'Sam'.

• Definite noun phrase: Here, the antecedent may be referred to by the phrase of the form,
<the><noun phrase>. For example, The relationship could not last
long. Here, The relationship refers to the love in the previous sentence.

• Quantifier/ordinal: The quantifier, such as one, and the ordinal, such as first, are also examples
of AR. For example, He began a new one. Here, one refers to the relationship.

In cataphora, the referent precedes the antecedent. For example, After his class, Sam will go
home. Here, his refers to Sam.

For integrating some extensions in a NLTK architecture, a new module is developed on top of the
existing modules, nltk.sem.logic and nltk.sem.drt. The new module acts like a replacement
for the nltk.sem.drt module. There is a replacement of all the classes with the enhanced classes.

A method called resolve() can be called indirectly and directly from a class called
AbstractDRS(). It then provides a list consisting of resolved copies of a particular object. An object
that needs to be resolved must override the readings() method. The resolve() method is used to
generate readings using the traverse() function. The traverse() function is used to perform
sorting on the list of operations. A priority order list includes the following:

• Binding operations
• Local accommodation operations
• Intermediate accommodation operations
• Global accommodation operations

Let's see the flow diagram of the traverse() function:

After the priority order of operations is generated, the following takes place:

• Readings are generated from the operation with the help of the deepcopy() method. The
current operation is taken as an argument.

• When the readings() method runs, a list of operations are performed.
• Till the list of operations is not empty, run is performed on those operations.
• If there are no operations left to be performed, admissibility check will be run on the final

reading; if the check is successful, it will be stored.

In AbstractDRS(), the resolve() method is defined. It is defined as follows:

def resolve(self, verbose=False)

The PresuppositionDRS class includes the following methods:

• find_bindings(drs_list, collect_event_data): Bindings are found from the
list of DRS instances using the is_possible_binding method. Collection of participation
information is done if collect_event_data is set to True.

• is_possible_binding(cond): This finds out whether the condition is a binding
candidate and makes sure that it is an unary predicate with the features that match the trigger
conditions.

• is_presupposition.cond(cond): This is used to identify a trigger condition among all
the conditions.

• presupposition_readings(trail): This is like readings in the subclasses of
PresuppositionDRS.

Let's see the classes that are inherited from AbstractDRS:

Let's see the classes that are inherited in DRTAbstractVariableExpression:

Let's see the classes inherited from DrtBooleanExpression:

Let's see the classes inherited from DrtApplicationExpression:

Let's see the classes inherited from DRS:

Summary
In this chapter, we have discussed discourse analysis, discourse analysis using Centering Theory, and
anaphora resolution. We have discussed the discourse representation structure that is built using first
order predicate logic. We have also discussed how NLTK can be used to implement first order predicate
logic using UML diagrams.

In the next chapter, we will discuss the evaluation of NLP Tools. We will also discuss various metrics
for error identification, lexical matching, syntactic matching, and shallow semantic matching.

Chapter 10. Evaluation of NLP Systems –
Analyzing Performance
The evaluation of NLP systems is performed so that we can analyze whether a given NLP system
produces the desired result or not and the desired performance is achieved or not. Evaluation may be
performed automatically using predefined metrics, or it may be performed manually by comparing
human output with the output obtained by an NLP system.

This chapter will include the following topics:

• The need for the evaluation of NLP systems
• Evaluation of NLP tools (POS Taggers, Stemmers, and Morphological Analyzers)
• Parser evaluation using gold data
• The evaluation of an IR system
• Metrics for error identification
• Metrics based on lexical matching
• Metrics based on syntactic matching
• Metrics using shallow semantic matching

The need for evaluation of NLP systems
Evaluation of NLP systems is done so as to analyze whether the output given by the NLP systems is
similar to the one expected from the human output. If errors in the module are identified at an early
stage, then the cost of correcting the NLP system is reduced to quite an extent.

Suppose we want to evaluate a tagger. We can do this by comparing the output of the tagger with the
human output. Many a times, we do not have access to an impartial or expert human. So we can
construct a gold standard test data to perform the evaluation of our tagger. This is a corpus, which has
been tagged manually and is considered as a standard corpus that can be used for the evaluation of our
tagger. The tagger is considered as correct if the output in the form of a tag given by the tagger is the
same as that provided by the gold standard test data.

Creation of a gold standard annotated corpus is a major task and is also very expensive. It is performed
by manually tagging a given test data. The tags chosen in this manner are taken as standard tags that can
be used to represent a wide range of information.

Evaluation of NLP tools (POS taggers, stemmers, and
morphological analyzers)

We can perform the evaluation of NLP systems, such as POS taggers, stemmers, morphological
analyzers, NER-based systems, machine translators, and so on. Consider the following code in NLTK
that can be used to train a unigram tagger. Sentence tagging is performed and then an evaluation is done
to check whether the output given by the tagger is the same as the gold standard test data:

>>> import nltk
>>>from nltk.corpus import brown
>>> sentences=brown.tagged_sents(categories='news')
>>> sent=brown.sents(categories='news')
>>> unigram_sent=nltk.UnigramTagger(sentences)
>>> unigram_sent.tag(sent[2008])
[('Others', 'NNS'), (',', ','), ('which', 'WDT'), ('are', 'BER'),
('reached', 'VBN'), ('by', 'IN'), ('walking', 'VBG'), ('up', 'RP'),
('a', 'AT'), ('single', 'AP'), ('flight', 'NN'), ('of', 'IN'),
('stairs', 'NNS'), (',', ','), ('have', 'HV'), ('balconies', 'NNS'),
('.', '.')]
>>> unigram_sent.evaluate(sentences)
0.9349006503968017

Consider the following code in NLTK in which the training and testing of Unigram tagger is performed
on separate data. A given data is split into 80% training data and 20% testing data:

>>> import nltk
>>> from nltk.corpus import brown
>>> sentences=brown.tagged_sents(categories='news')
>>> sz=int(len(sentences)*0.8)
>>> sz
3698
>>> training_sents = sentences[:sz]
>>> testing_sents=sentences[sz:]
>>> unigram_tagger=nltk.UnigramTagger(training_sents)
>>> unigram_tagger.evaluate(testing_sents)
0.8028325063827737

Consider the following code in NLTK that demonstrates the use of N-Gram tagger. Here, Training
corpus consists of tagged data. Also, in the following example, we have used a special case of n-gram
tagger, that is, bigram tagger:

>>> import nltk
>>> from nltk.corpus import brown
>>> sentences=brown.tagged_sents(categories='news')
>>> sz=int(len(sentences)*0.8)
>>> training_sents = sentences[:sz]
>>> testing_sents=sentences[sz:]
>>> bigram_tagger=nltk.UnigramTagger(training_sents)
>>> bigram_tagger=nltk.BigramTagger(training_sents)
>>> bigram_tagger.tag(sentences[2008])
[(('Others', 'NNS'), None), ((',', ','), None), (('which', 'WDT'),
None), (('are', 'BER'), None), (('reached', 'VBN'), None), (('by',
'IN'), None), (('walking', 'VBG'), None), (('up', 'IN'), None),
(('a', 'AT'), None), (('single', 'AP'), None), (('flight', 'NN'),
None), (('of', 'IN'), None), (('stairs', 'NNS'), None), ((',', ','),

None), (('have', 'HV'), None), (('balconies', 'NNS'), None), (('.',
'.'), None)]
>>> un_sent=sentences[4203]
>>> bigram_tagger.tag(un_sent)
[(('The', 'AT'), None), (('population', 'NN'), None), (('of', 'IN'),
None), (('the', 'AT'), None), (('Congo', 'NP'), None), (('is',
'BEZ'), None), (('13.5', 'CD'), None), (('million', 'CD'), None),
((',', ','), None), (('divided', 'VBN'), None), (('into', 'IN'),
None), (('at', 'IN'), None), (('least', 'AP'), None), (('seven',
'CD'), None), (('major', 'JJ'), None), (('``', '``'), None),
(('culture', 'NN'), None), (('clusters', 'NNS'), None), (("''",
"''"), None), (('and', 'CC'), None), (('innumerable', 'JJ'), None),
(('tribes', 'NNS'), None), (('speaking', 'VBG'), None), (('400',
'CD'), None), (('separate', 'JJ'), None), (('dialects', 'NNS'),
None), (('.', '.'), None)]
>>> bigram_tagger.evaluate(testing_sents)
0.09181559805385615

Another way of tagging can be performed by means of bootstrapping different methods. In this
approach, tagging can be performed using a bigram Tagger. If the tag is not found using the bigram
Tagger, then a back-off method involving a unigram Tagger can be used. Also, if a tag is not found
using a unigram Tagger, then a back-off method involving a default tagger can be used.

Let's see the following code in NLTK that implements combined Tagger:

>>> import nltk
>>> from nltk.corpus import brown
>>> sentences=brown.tagged_sents(categories='news')
>>> sz=int(len(sentences)*0.8)
>>> training_sents = sentences[:sz]
>>> testing_sents=sentences[sz:]
>>> s0=nltk.DefaultTagger('NNP')
>>> s1=nltk.UnigramTagger(training_sents,backoff=s0)
>>> s2=nltk.BigramTagger(training_sents,backoff=s1)
>>> s2.evaluate(testing_sents)
0.8122260224480948

The linguists use the following clues to determine the category of a word:

• Morphological clues
• Syntactic clues
• Semantic clues

Morphological clues are those in which prefix, suffix, infix, and affix information are used to determine
the category of a word. For example, ment is a suffix that combines with a verb to form a noun, such as
establish + ment = establishment and achieve + ment = achievement.

Syntactic clues can be useful in determining the category of a word. For example, let's assume that
nouns are already known. Now, adjectives can be determined. Adjectives can occur either after a noun
or after a word, such as very, in a sentence.

Semantic information can also be used to determine the category of a word. If the meaning of a word is
known, then its category can easily be known.

Let's see the following code in NLTK that can be used for the evaluation of a chunk parser:

>>> import nltk
>>> chunkparser = nltk.RegexpParser("")
>>> print(nltk.chunk.accuracy(chunkparser,
nltk.corpus.conll2000.chunked_sents('train.txt',
chunk_types=('NP',))))
0.44084599507856814

Let's see another code in NLTK that is based on the evaluation of a naïve chunk parser that looks for
tags, such as CD, JJ, and so on:

>>> import nltk
>>> grammar = r"NP: {<[CDJNP].*>+}"
>>> cp = nltk.RegexpParser(grammar)
>>> print(nltk.chunk.accuracy(cp,
nltk.corpus.conll2000.chunked_sents('train.txt',
chunk_types=('NP',))))
0.8744798726662164

The following code in NLTK is used to compute the conditional frequency distribution for chunked data:

def chunk_tags(train):
"""Generate a following tags list that appears inside chunks"""
cfreqdist = nltk.ConditionalFreqDist()
for t in train:

for word, tag, chunktag in nltk.chunk.tree2conlltags(t):
if chtag == "O":

cfreqdist[tag].inc(False)
else:

cfreqdist[tag].inc(True)
return [tag for tag in cfreqdist.conditions() if

cfreqdist[tag].max() == True]
>>> training_sents =
nltk.corpus.conll2000.chunked_sents('train.txt', chunk_types=('NP',))
>>> print chunked_tags(train_sents)
['PRP$', 'WDT', 'JJ', 'WP', 'DT', '#', '$', 'NN', 'FW', 'POS',
'PRP', 'NNS', 'NNP', 'PDT', 'RBS', 'EX', 'WP$', 'CD', 'NNPS', 'JJS',
'JJR']

Let's see the following code for performing the evaluation of chunker in NLTK. Here, two entities,
namely guessed and correct, are used. Guessed entities are those that are returned by a chunk
parser. Correct entities are those set of chunks that are defined in the test corpus:

>>> import nltk
>>> correct = nltk.chunk.tagstr2tree(
"[the/DT little/JJ cat/NN] sat/VBD on/IN [the/DT mat/NN]")
>>> print(correct.flatten())
(S the/DT little/JJ cat/NN sat/VBD on/IN the/DT mat/NN)
>>> grammar = r"NP: {<[CDJNP].*>+}"
>>> cp = nltk.RegexpParser(grammar)
>>> grammar = r"NP: {<PRP|DT|POS|JJ|CD|N.*>+}"
>>> chunk_parser = nltk.RegexpParser(grammar)
>>> tagged_tok = [("the", "DT"), ("little", "JJ"), ("cat",
"NN"),("sat", "VBD"), ("on", "IN"), ("the", "DT"), ("mat", "NN")]
>>> chunkscore = nltk.chunk.ChunkScore()
>>> guessed = cp.parse(correct.flatten())
>>> chunkscore.score(correct, guessed)
>>> print(chunkscore)
ChunkParse score:

IOB Accuracy: 100.0%
Precision: 100.0%
Recall: 100.0%
F-Measure: 100.0%

Let's see the following code in NLTK that can be used for the evaluation of unigram chunker and
bigram chunker:

>>>chunker_data = [[(t,c) for w,t,c in
nltk.chunk.tree2conlltags(chtree)]
>>> for chtree in
nltk.corpus.conll2000.chunked_sents('train.txt')]
>>> unigram_chunk = nltk.UnigramTagger(chunker_data)
>>> print nltk.tag.accuracy(unigram_chunk, chunker_data)
0.781378851068
>>> bigram_chunk = nltk.BigramTagger(chunker_data,
backoff=unigram_chunker)
>>> print nltk.tag.accuracy(bigram_chunk, chunker_data)
0.893220987404

Consider the following code in which the suffix of a word is used to determine the part of a speech tag.
A classifier is trained to provide a list of informative suffixes. A feature extractor function has been used
that checks the suffixes that are present in a given word:

>>> from nltk.corpus import brown
>>> suffix_freqdist = nltk.FreqDist()
>>> for wrd in brown.words():

... wrd = wrd.lower()

... suffix_freqdist[wrd[-1:]] += 1

... suffix_fdist[wrd[-2:]] += 1

... suffix_fdist[wrd[-3:]] += 1
>>> common_suffixes = [suffix for (suffix, count) in
suffix_freqdist.most_common(100)]
>>> print(common_suffixes)
['e', ',', '.', 's', 'd', 't', 'he', 'n', 'a', 'of', 'the',
'y', 'r', 'to', 'in', 'f', 'o', 'ed', 'nd', 'is', 'on', 'l',
'g', 'and', 'ng', 'er', 'as', 'ing', 'h', 'at', 'es', 'or',
're', 'it', '``', 'an', "''", 'm', ';', 'i', 'ly', 'ion', ...]

>>> def pos_feature(wrd):
... feature = {}
... for suffix in common_suffixes:
... feature['endswith({})'.format(suffix)] =
wrd.lower().endswith(suffix)
... return feature
>>> tagged_wrds = brown.tagged_wrds(categories='news')
>>> featureset = [(pos_feature(n), g) for (n,g) in tagged_wrds]
>>> size = int(len(featureset) * 0.1)
>>> train_set, test_set = featureset[size:], featureset[:size]
>>> classifier1 = nltk.DecisionTreeClassifier.train(train_set)
>>> nltk.classify.accuracy(classifier1, test_set)
0.62705121829935351

>>> classifier.classify(pos_features('cats'))
'NNS'

>>> print(classifier.pseudocode(depth=4))
if endswith(,) == True: return ','
if endswith(,) == False:

if endswith(the) == True: return 'AT'
if endswith(the) == False:

if endswith(s) == True:
if endswith(is) == True: return 'BEZ'
if endswith(is) == False: return 'VBZ'

if endswith(s) == False:
if endswith(.) == True: return '.'
if endswith(.) == False: return 'NN'

Consider the following code in NLTK for building a regular expression tagger. Here, tags are assigned
on the basis of matching patterns:

>>> import nltk
>>> from nltk.corpus import brown
>>> sentences = brown.tagged_sents(categories='news')
>>> sent = brown.sents(categories='news')
>>> pattern = [
(r'.*ing$', 'VBG'), # for gerunds
(r'.*ed$', 'VBD'), # for simple past
(r'.*es$', 'VBZ'), # for 3rd singular present
(r'.*ould$', 'MD'), # for modals
(r'.*\'s$', 'NN$'), # for possessive nouns
(r'.*s$', 'NNS'), # for plural nouns
(r'^-?[0-9]+(.[0-9]+)?$', 'CD'), # for cardinal numbers
(r'.*', 'NN') # for nouns (default)

]
>>> regexpr_tagger = nltk.RegexpTagger(pattern)
>>> regexpr_tagger.tag(sent[3])
[('``', 'NN'), ('Only', 'NN'), ('a', 'NN'), ('relative', 'NN'),

('handful', 'NN'), ('of', 'NN'), ('such', 'NN'), ('reports', 'NNS'),
('was', 'NNS'), ('received', 'VBD'), ("''", 'NN'), (',', 'NN'),
('the', 'NN'), ('jury', 'NN'), ('said', 'NN'), (',', 'NN'), ('``',
'NN'), ('considering', 'VBG'), ('the', 'NN'), ('widespread', 'NN'),
('interest', 'NN'), ('in', 'NN'), ('the', 'NN'), ('election', 'NN'),
(',', 'NN'), ('the', 'NN'), ('number', 'NN'), ('of', 'NN'),
('voters', 'NNS'), ('and', 'NN'), ('the', 'NN'), ('size', 'NN'),
('of', 'NN'), ('this', 'NNS'), ('city', 'NN'), ("''", 'NN'), ('.',
'NN')]
>>> regexp_tagger.evaluate(sentences)
0.20326391789486245

Consider the following code to build a lookup tagger. In building up a lookup tagger, a list of frequently
used words is maintained along with their tag information. Some of the words have been assigned the
None tag because they do not exist among the list of the most frequently occurring words:

>>> import nltk
>>> from nltk.corpus import brown
>>> freqd = nltk.FreqDist(brown.words(categories='news'))
>>> cfreqd =
nltk.ConditionalFreqDist(brown.tagged_words(categories='news'))
>>> mostfreq_words = freqd.most_common(100)
>>> likelytags = dict((word, cfreqd[word].max()) for (word, _) in
mostfreq_words)
>>> baselinetagger = nltk.UnigramTagger(model=likelytags)
>>> baselinetagger.evaluate(brown_tagged_sents)
0.45578495136941344
>>> sent = brown.sents(categories='news')[3]
>>> baselinetagger.tag(sent)
[('``', '``'), ('Only', None), ('a', 'AT'), ('relative', None),

('handful', None), ('of', 'IN'), ('such', None), ('reports', None),
('was', 'BEDZ'), ('received', None), ("''", "''"), (',', ','),
('the', 'AT'), ('jury', None), ('said', 'VBD'), (',', ','),
('``', '``'), ('considering', None), ('the', 'AT'), ('widespread',
None),
('interest', None), ('in', 'IN'), ('the', 'AT'), ('election', None),
(',', ','), ('the', 'AT'), ('number', None), ('of', 'IN'),
('voters', None), ('and', 'CC'), ('the', 'AT'), ('size', None),
('of', 'IN'), ('this', 'DT'), ('city', None), ("''", "''"), ('.',
'.')]
>>> baselinetagger = nltk.UnigramTagger(model=likely_tags,
...
backoff=nltk.DefaultTagger('NN'))
def performance(cfreqd, wordlist):

lt = dict((word, cfreqd[word].max()) for word in wordlist)
baseline_tagger = nltk.UnigramTagger(model=lt,

backoff=nltk.DefaultTagger('NN'))
return

baseline_tagger.evaluate(brown.tagged_sents(categories='news'))

def display():
import pylab
word_freqs =

nltk.FreqDist(brown.words(categories='news')).most_common()
words_by_freq = [w for (w, _) in word_freqs]
cfd =

nltk.ConditionalFreqDist(brown.tagged_words(categories='news'))
sizes = 2 ** pylab.arange(15)
perfs = [performance(cfd, words_by_freq[:size]) for size in

sizes]
pylab.plot(sizes, perfs, '-bo')
pylab.title('Lookup Tagger Performance with Varying Model Size')
pylab.xlabel('Model Size')
pylab.ylabel('Performance')
pylab.show()

display()

Let's see the following stemming code in NLTK using lancasterstemmer. The evaluation of such a
stemmer can be done using gold test data:

>>> import nltk
>>> from nltk.stem.lancaster import LancasterStemmer
>>> stri=LancasterStemmer()
>>> stri.stem('achievement')
'achiev'

Consider the following code in NLTK that can be used for designing a classifier-based chunker. It
makes use of the Maximum Entropy classifier:

class ConseNPChunkTagger(nltk.TaggerI):

def __init__(self, train_sents):
train_set = []
for tagsent in train_sents:

untagsent = nltk.tag.untag(tagsent)
history = []
for i, (word, tag) in enumerate(tagsent):

featureset = npchunk_features(untagsent, i, history)
train_set.append((featureset, tag))
history.append(tag)

self.classifier = nltk.MaxentClassifier.train(
train_set, algorithm='megam', trace=0)

def tag(self, sentence):
history = []
for i, word in enumerate(sentence):

featureset = npchunk_features(sentence, i, history)
tag = self.classifier.classify(featureset)
history.append(tag)

return zip(sentence, history)

class ConseNPChunker(nltk.ChunkParserI): [4]
def __init__(self, train_sents):

tagsent = [[((w,t),c) for (w,t,c) in
nltk.chunk.tree2conlltags(sent)]

for sent in train_sents]
self.tagger = ConseNPChunkTagger(tagsent)

def parse(self, sentence):
tagsent = self.tagger.tag(sentence)
conlltags = [(w,t,c) for ((w,t),c) in tagsent]
return nltk.chunk.conlltags2tree(conlltags)

In the following code, the evaluation of chunker is performed with the use of a feature extractor. The
resultant chunker is similar to the unigram chunker:

>>> def npchunk_features(sentence, i, history):
... word, pos = sentence[i]
... return {"pos": pos}
>>> chunker = ConseNPChunker(train_sents)
>>> print(chunker.evaluate(test_sents))
ChunkParse score:

IOB Accuracy: 92.9%

Precision: 79.9%
Recall: 86.7%
F-Measure: 83.2%

In the following code, the features of the previous part of the speech tag are also added. This involves
the interaction between tags. So the resultant chunker is similar to the bigram chunker:

>>> def npchunk_features(sentence, i, history):
... word, pos = sentence[i]
... if i == 0:
... previword, previpos = "<START>", "<START>"
... else:
... previword, previpos = sentence[i-1]
... return {"pos": pos, "previpos": previpos}
>>> chunker = ConseNPChunker(train_sents)
>>> print(chunker.evaluate(test_sents))
ChunkParse score:

IOB Accuracy: 93.6%
Precision: 81.9%
Recall: 87.2%
F-Measure: 84.5%

Consider the following code for chunker in which features for the current word are added to improve
the performance of a chunker:

>>> def npchunk_features(sentence, i, history):
... word, pos = sentence[i]
... if i == 0:
... previword, previpos = "<START>", "<START>"
... else:
... previword, previpos = sentence[i-1]
... return {"pos": pos, "word": word, "previpos": previpos}
>>> chunker = ConseNPChunker(train_sents)
>>> print(chunker.evaluate(test_sents))
ChunkParse score:

IOB Accuracy: 94.5%
Precision: 84.2%
Recall: 89.4%
F-Measure: 86.7%

Let's consider the code in NLTK in which the collection of features, such as paired features, lookahead
features, complex contextual features, and so on, are added to enhance the performance of a chunker:

>>> def npchunk_features(sentence, i, history):
... word, pos = sentence[i]
... if i == 0:
... previword, previpos = "<START>", "<START>"

... else:

... previword, previpos = sentence[i-1]

... if i == len(sentence)-1:

... nextword, nextpos = "<END>", "<END>"

... else:

... nextword, nextpos = sentence[i+1]

... return {"pos": pos,

... "word": word,

... "previpos": previpos,

... "nextpos": nextpos,

... "previpos+pos": "%s+%s" % (previpos, pos),

... "pos+nextpos": "%s+%s" % (pos, nextpos),

... "tags-since-dt": tags_since_dt(sentence, i)}
>>> def tags_since_dt(sentence, i):
... tags = set()
... for word, pos in sentence[:i]:
... if pos == 'DT':
... tags = set()
... else:
... tags.add(pos)
... return '+'.join(sorted(tags))

>>> chunker = ConsecutiveNPChunker(train_sents)
>>> print(chunker.evaluate(test_sents))
ChunkParse score:

IOB Accuracy: 96.0%
Precision: 88.6%
Recall: 91.0%
F-Measure: 89.8%

The evaluation of Morphological Analyzer can also be performed using gold data. The human expected
output is already stored to form a gold set and then the output of the morphological analyzer is compared
with the gold data.

Parser evaluation using gold data

Parser evaluation can be done using the gold data or the standard data against which the output of the
parser is matched.

Firstly, training of parser model is performed on the training data. Then parsing is done on the unseen
data or testing data.

The following two measures can be used to evaluate the performance of a parser:

• Labelled Attachment Score (LAS)
• Labelled Exact Match (LEM)

In both cases, parser's output is compared with testing data. A good parsing algorithm is one that gives
the highest LAS and LEM scores. The training and testing data that we use for parsing may consist of
parts of speech tags that are gold standard tags, since they have been assigned manually. Parser
evaluation can be done using metrics, such as Recall, Precision, and F-Measure.

Here, precision may be defined as the number of correct entities produced by parser divided by the total
number of entities produced by parser.

Recall may be defined as the number of correct entities produced by parser divided by the total number
of entities in the gold standard parse trees.

F-Score may be defined as the harmonic mean of recall and precision.

Evaluation of IR system
IR is also one of the applications of Natural Language Processing.

Following are the aspects that can be considered while performing the evaluation of the IR system:

• Resources required
• Presentation of documents
• Market evaluation or appealing to the user
• Retrieval speed
• Assistance in constituting queries
• Ability to find required documents

Evaluation is usually done by comparing one system with another.

IR systems can be compared on the basis of a set of documents, set of queries, techniques used, and so
on. Metrics used for performance evaluation are Precision, Recall, and F-Measure. Let's learn a bit more
about them:

• Precision: It is defined as the proportion of a retrieved set that is relevant.

Precision = |relevant ∩ retrieved| ÷ |retrieved| = P(relevant | retrieved)
• Recall: It is defined as the proportion of all the relevant documents in the collection included in

the retrieved set.

Recall = |relevant ∩ retrieved| ÷ |relevant| = P(retrieved | relevant)
• F-Measure: It can be obtained using Precision and Recall as follows:

F-Measure = (2*Precision*Recall) / (Precision + Recall)

Metrics for error identification
Error identification is a very important aspect that affects the performance of an NLP system. Searching
tasks may involve the following terminologies:

• True Positive (TP): This may be defined as the set of relevant documents that is correctly
identified as the relevant document.

• True Negative (TN): This may be defined as the set of irrelevant documents that is correctly
identified as the irrelevant document.

• False Positive (FP): This is also referred to as Type I error and is the set of irrelevant
documents that is incorrectly identified as the relevant document.

• False Negative (FN): This is also referred to as Type II error and is the set of relevant
documents that is incorrectly identified as the irrelevant document.

On the basis of the previously mentioned terminologies, we have the following metrics:

• Precision (P) - TP/(TP+FP)
• Recall (R) - TP/(TP+FN)
• F-Measure – 2*P*R/(P+R)

Metrics based on lexical matching
We can also perform the analysis of performance at word level or lexical level.

Consider the following code in NLTK in which movie reviews have been taken and marked as either
positive or negative. A feature extractor is constructed that checks whether a given word is present in a
document or not:

>>> from nltk.corpus import movie_reviews
>>> docs = [(list(movie_reviews.words(fileid)), category)
... for category in movie_reviews.categories()
... for fileid in movie_reviews.fileids(category)]
>>> random.shuffle(docs)
all_wrds = nltk.FreqDist(w.lower() for w in movie_reviews.words())
word_features = list(all_wrds)[:2000]

def doc_features(doc):
doc_words = set(doc)
features = {}
for word in word_features:

features['contains({})'.format(word)] = (word in doc_words)
return features

>>> print(doc_features(movie_reviews.words('pos/cv957_8737.txt')))
{'contains(waste)': False, 'contains(lot)': False, ...}
featuresets = [(doc_features(d), c) for (d,c) in docs]
train_set, test_set = featuresets[100:], featuresets[:100]
classifier = nltk.NaiveBayesClassifier.train(train_set)
>>> print(nltk.classify.accuracy(classifier, test_set))
0.81
>>> classifier.show_most_informative_features(5)
Most Informative Features

contains(outstanding) = True pos : neg = 11.1
: 1.0

contains(seagal) = True neg : pos = 7.7
: 1.0

contains(wonderfully) = True pos : neg = 6.8
: 1.0

contains(damon) = True pos : neg = 5.9
: 1.0

contains(wasted) = True neg : pos = 5.8
: 1.0

Consider the following code in NLTK that describes nltk.metrics.distance, which provides
metrics to determine whether a given output is the same as the expected output:

from __future__ import print_function
from __future__ import division
def _edit_dist_init(len1, len2):

lev = []
for i in range(len1):

lev.append([0] * len2) # initialization of 2D array to zero
for i in range(len1):

lev[i][0] = i # column 0: 0,1,2,3,4,...
for j in range(len2):

lev[0][j] = j # row 0: 0,1,2,3,4,...
return lev

def _edit_dist_step(lev, i, j, s1, s2, transpositions=False):
c1 = s1[i - 1]
c2 = s2[j - 1]

skipping a character in s1
a = lev[i - 1][j] + 1
skipping a character in s2
b = lev[i][j - 1] + 1
substitution
c = lev[i - 1][j - 1] + (c1 != c2)

transposition
d = c + 1 # never picked by default
if transpositions and i > 1 and j > 1:

if s1[i - 2] == c2 and s2[j - 2] == c1:
d = lev[i - 2][j - 2] + 1

pick the cheapest
lev[i][j] = min(a, b, c, d)

def edit_distance(s1, s2, transpositions=False):

set up a 2-D array
len1 = len(s1)
len2 = len(s2)
lev = _edit_dist_init(len1 + 1, len2 + 1)

iterate over the array
for i in range(len1):

for j in range(len2):
_edit_dist_step(lev, i + 1, j + 1, s1, s2,

transpositions=transpositions)
return lev[len1][len2]

def binary_distance(label1, label2):
"""Simple equality test.

0.0 if the labels are identical, 1.0 if they are different.

>>> from nltk.metrics import binary_distance
>>> binary_distance(1,1)

0.0

>>> binary_distance(1,3)
1.0
"""

return 0.0 if label1 == label2 else 1.0

def jaccard_distance(label1, label2):
"""Distance metric comparing set-similarity.
"""
return (len(label1.union(label2)) -

len(label1.intersection(label2)))/len(label1.union(label2))

def masi_distance(label1, label2)

len_intersection = len(label1.intersection(label2))
len_union = len(label1.union(label2))
len_label1 = len(label1)
len_label2 = len(label2)
if len_label1 == len_label2 and len_label1 == len_intersection:

m = 1
elif len_intersection == min(len_label1, len_label2):

m = 0.67
elif len_intersection > 0:

m = 0.33
else:

m = 0
return 1 - (len_intersection / len_union) * m

def interval_distance(label1,label2):

try:
return pow(label1 - label2, 2)

return pow(list(label1)[0]-list(label2)[0],2)
except:

print("non-numeric labels not supported with interval

distance")

def presence(label):

return lambda x, y: 1.0 * ((label in x) == (label in y))

def fractional_presence(label):
return lambda x, y:\

abs(((1.0 / len(x)) - (1.0 / len(y)))) * (label in x and
label in y) \

or 0.0 * (label not in x and label not in y) \
or abs((1.0 / len(x))) * (label in x and label not in y) \
or ((1.0 / len(y))) * (label not in x and label in y)

def custom_distance(file):
data = {}
with open(file, 'r') as infile:

for l in infile:
labelA, labelB, dist = l.strip().split("\t")
labelA = frozenset([labelA])
labelB = frozenset([labelB])
data[frozenset([labelA,labelB])] = float(dist)

return lambda x,y:data[frozenset([x,y])]

def demo():
edit_distance_examples = [

("rain", "shine"), ("abcdef", "acbdef"), ("language",
"lnaguaeg"),

("language", "lnaugage"), ("language", "lngauage")]
for s1, s2 in edit_distance_examples:

print("Edit distance between '%s' and '%s':" % (s1, s2),
edit_distance(s1, s2))

for s1, s2 in edit_distance_examples:
print("Edit distance with transpositions between '%s' and

'%s':" % (s1, s2), edit_distance(s1, s2, transpositions=True))

s1 = set([1, 2, 3, 4])
s2 = set([3, 4, 5])
print("s1:", s1)
print("s2:", s2)
print("Binary distance:", binary_distance(s1, s2))
print("Jaccard distance:", jaccard_distance(s1, s2))
print("MASI distance:", masi_distance(s1, s2))

if __name__ == '__main__':
demo()

Metrics based on syntactic matching
Syntactic matching can be done by performing the task of chunking. In NLTK, a module called
nltk.chunk.api is provided that helps to identify chunks and returns a parse tree for a given chunk
sequence.

The module called nltk.chunk.named_entity is used to identify a list of named entities and also
to generate a parse structure. Consider the following code in NLTK based on syntactic matching:

>>> import nltk
>>> from nltk.tree import Tree
>>> print(Tree(1,[2,Tree(3,[4]),5]))
(1 2 (3 4) 5)
>>> ct=Tree('VP',[Tree('V',['gave']),Tree('NP',['her'])])
>>> sent=Tree('S',[Tree('NP',['I']),ct])
>>> print(sent)
(S (NP I) (VP (V gave) (NP her)))
>>> print(sent[1])
(VP (V gave) (NP her))
>>> print(sent[1,1])
(NP her)
>>> t1=Tree.from string("(S(NP I) (VP (V gave) (NP her)))")
>>> sent==t1
True
>>> t1[1][1].set_label('X')
>>> t1[1][1].label()
'X'
>>> print(t1)
(S (NP I) (VP (V gave) (X her)))
>>> t1[0],t1[1,1]=t1[1,1],t1[0]
>>> print(t1)
(S (X her) (VP (V gave) (NP I)))
>>> len(t1)
2

Metrics using shallow semantic matching
WordNet Similarity is used to perform semantic matching. In this, a similarity of a given text is
computed against the hypothesis. The Natural Language Toolkit can be used to compute: path distance,
Leacock-Chodorow Similarity, Wu-Palmer Similarity, Resnik Similarity, Jiang-Conrath Similarity, and
Lin Similarity between words present in the text and the hypothesis. In these metrics, we compare the
similarity between word senses rather than words.

During Shallow Semantic analysis, NER and coreference resolution are also performed.

Consider the following code in NLTK that computes wordnet similarity:

>>> wordnet.N['dog'][0].path_similarity(wordnet.N['cat'][0])
0.20000000000000001
>>> wordnet.V['run'][0].path_similarity(wordnet.V['walk'][0])
0.25

Summary
In this chapter, we discussed the evaluation of NLP systems (POS tagger, stemmer, and morphological
analyzer). You learned about various metrics used for performing the evaluation of NLP systems based
on error identification, lexical matching, syntactic matching, and shallow semantic matching. We also
discussed parser evaluation performed using gold data. Evaluation can be done using three metrics,
namely Precision, Recall, and F-Measure. You also learned about the evaluation of IR system.

Appendix B. Bibliography
This course is a blend of text and quizzes, all packaged up keeping your journey in mind. It includes
content from the following Packt products:

• NLTK Essentials, Nitin Hardeniya
• Python 3 Text Processing with NLTK 3 Cookbook, Jacob Perkins
• Mastering Natural Language Processing with Python, Deepti Chopra, Nisheeth Joshi, Iti

Mathur

Index
A

• AbiWord
◦ about / Getting ready

• above_score(score_fn, min_score) function / Scoring ngrams
• absolute link / There's more...
• AbstractLazySequence class / How it works...
• access token, Facebook

◦ URL / Facebook
• accuracy

◦ evaluating, of tagger / Evaluating accuracy
• a ClassiferBasedTagger class

◦ training / How to do it...
• Add-one smoothing

◦ about / Add-one smoothing
• Affective Norms for English Words (ANEW) / Introducing sentiment analysis
• AffixTagger class / Affix tagging

◦ min_stem_length keyword / Working with min_stem_length
• affix tagging

◦ about / How to do it..., How it works...
• agglutinative languages

◦ about / Introducing morphology
• Anaphora Resolution (AR)

◦ about / Discourse analysis using Centering Theory, Anaphora resolution
◦ pronominal / Anaphora resolution
◦ definite noun phrase / Anaphora resolution
◦ Quantifier/Ordinal / Anaphora resolution

• anchor tag / How it works...
• AntiMorfo

◦ about / Morphological generator
• antonym replacement

◦ about / Replacing negations with antonyms
• AntonymReplacer class

◦ about / How it works...
• antonyms

◦ about / Antonyms, Replacing negations with antonyms
◦ negations, replacing with / Replacing negations with antonyms, How it works...

• antonyms() method / Antonyms
• append_line() function / How to do it..., How it works...
• ASCII

◦ converting / Converting to ASCII
• Aspell

◦ about / Getting ready
◦ URL / Getting ready

• associative arrays/memories
◦ about / Dictionaries

• astimezone() method / How it works...
• atomic, Redis operations

◦ about / Storing a frequency distribution in Redis
• Automatic Content Extraction / How to do it...

B
• Back-off mechanism

◦ developing, for MLE / Develop a back-off mechanism for MLE
• backoff classifier

◦ about / Selecting a machine learning algorithm
• backoff tagging

◦ about / See also
◦ taggers, combining with / Combining taggers with backoff tagging, How it works...

• backoff_tagger function / How it works..., There's more...
• backreference

◦ about / Getting ready
• Bag of word (BOW) representation

◦ about / Text classification
• Bag of words model

◦ about / Bag of words feature extraction
• bag_of_bigrams_words() function / Including significant bigrams
• bag_of_words() function / How to do it..., How it works...
• bar plot

◦ about / A bar plot
• base name

◦ about / How to do it...
• Bayes theorem / Training a Naive Bayes classifier
• BeautifulSoup

◦ about / Introduction
◦ HTML entities, converting with / Converting HTML entities with BeautifulSoup, How

to do it...
◦ URL, for installation / Getting ready
◦ URL, for usage / There's more...
◦ used, for extracting URLs / Extracting URLs with BeautifulSoup

• Berlin Affective Word List (BAWL) / Introducing sentiment analysis
• Berlin Affective Word List Reloaded (BAWL-R) / Introducing sentiment analysis
• BigramCollocationFinder / How it works...
• BigramTagger class / Training and combining ngram taggers
• binary classifier

◦ about / Introduction, How to do it...
/ Getting ready

• binary classifiers / Classifying with multiple binary classifiers
• binary named entity extraction / Binary named entity extraction
• block readers functions, nltk.corpus.reader.util

◦ read_whitespace_block() / Block reader functions

◦ read_wordpunct_block() / Block reader functions
◦ read_line_block() / Block reader functions
◦ read_blankline_block() / Block reader functions
◦ read_regexp_block() / Block reader functions

• Boolean retrieval
◦ about / Boolean retrieval

• BOW (Bag of Word) representation
◦ about / Sampling

• Brill tagger
◦ about / Brill tagger
◦ training / Training a Brill tagger, How it works...

• BrillTagger class
◦ about / Training a Brill tagger

• BrillTaggerTrainer class
◦ about / How it works...
◦ trace parameter, passing / Tracing

C
• cardinal

◦ about / Swapping noun cardinals
• Cardinal number (CD) / Tagging with regular expressions
• CART

◦ about / Decision trees
• categorized chunk corpus read

◦ creating / Getting ready, How it works..., There's more...
• categorized chunk corpus reader

◦ creating / Creating a categorized chunk corpus reader
• CategorizedChunkedCorpusReader class / How it works...
• categorized Conll chunk corpus reader

◦ about / Categorized CoNLL chunk corpus reader
• categorized corpora

◦ about / Categorized corpora
• CategorizedCorpusReader class

◦ about / How to do it...
• CategorizedPlaintextCorpusReader

◦ about / How it works...
• CategorizedPlaintextCorpusReader class

◦ about / How to do it...
• categorized tagged corpus reader

◦ about / Categorized tagged corpus reader
• categorized text corpus

◦ creating / Creating a categorized text corpus, How to do it..., How it works...
• category file

◦ about / Category file
• cess_cat corpora / The cess_esp and cess_cat treebank
• cess_esp corpora / The cess_esp and cess_cat treebank
• channel

◦ about / Distributed tagging with execnet
• character encoding

◦ detecting / Detecting and converting character encodings, How to do it...
◦ converting / Detecting and converting character encodings, How to do it...
◦ UnicodeDammit / UnicodeDammit conversion

• charade
◦ about / Introduction, Getting ready
◦ URL / Getting ready

• chart parser
◦ about / A chart parser

• ChinkRule class
◦ about / Chunking and chinking with regular expressions

/ How it works...
• chinks

◦ about / Chunking and chinking with regular expressions
• chi_sq() function / There's more...
• choose_tag() method / How it works...
• Chrome / The Scrapy shell
• chunk

◦ about / Creating a chunked phrase corpus, Introduction
• chunked corpus

◦ analyzing / Analyzing a chunked corpus
• ChunkedCorpusReader class / How to do it..., How it works...
• chunked phrase corpus

◦ about / See also
◦ creating / Getting ready, How it works...

• chunker
◦ training, with NLTK-Trainer / Training a chunker with NLTK-Trainer, How to do it...,

How it works...
◦ analyzing, against chunked corpus / Analyzing a chunker against a chunked corpus
◦ developing, pos-tagged corpora used / Developing a chunker using pos-tagged corpora

• chunk extraction
◦ about / Introduction

• chunking
◦ about / Chunking, Developing a chunker using pos-tagged corpora

• chunk patterns
◦ about / Chunking and chinking with regular expressions
◦ defining, with regular expressions / Getting ready, How to do it..., How it works...,

There's more...
◦ alternative patterns, parsing / Parsing alternative patterns

• ChunkRule class
◦ about / Chunking and chinking with regular expressions

/ How it works...
• ChunkRule pattern / How to do it...
• chunk rules

◦ creating, with context / Chunk rule with context
◦ looping / Looping and tracing chunk rules

◦ tracing / Looping and tracing chunk rules
• chunks

◦ about / Introduction
◦ merging, with regular expressions / Merging and splitting chunks with regular

expressions, How to do it..., How it works...
◦ splitting, with regular expressions / Merging and splitting chunks with regular

expressions, How to do it..., How it works...
◦ rule descriptions, specifying / Specifying rule descriptions
◦ expanding, with regular expressions / Expanding and removing chunks with regular

expressions, How it works..., There's more...
◦ removing, with regular expressions / Expanding and removing chunks with regular

expressions, How it works..., There's more...
• ChunkScore metrics

◦ about / The ChunkScore metrics
• ChunkString / How it works...
• chunk transformations

◦ chaining / Chaining chunk transformations, How it works...
• chunk transforms

◦ about / Introduction
• chunk tree

◦ converting, to text / Converting a chunk tree to text, How it works...
• chunk types

◦ parsing / Parsing different chunk types
• chunk_tree_to_sent() function / How it works...
• class-imbalance problem / There's more...
• classification

◦ about / Machine learning
• classification-based chunking

◦ about / Classification-based chunking
◦ performing / How to do it...

• classification probability
◦ about / Classification probability

• classifier-based tagging
◦ about / Classifier-based tagging, There's more...
◦ features, detecting with custom feature detector / Detecting features with a custom

feature detector
◦ cutoff probability, setting / Setting a cutoff probability
◦ pre-trained classifier, using / Using a pre-trained classifier

• ClassifierBasedPOSTagger class / Classifier-based tagging
• ClassifierBasedTagger class / Classifier-based tagging, How it works...
• ClassifierChunker class

◦ creating / Classification-based chunking
• classifiers

◦ combining, with voting / Combining classifiers with voting, How to do it..., How it
works...

◦ training, with NLTK-Trainer / Training a classifier with NLTK-Trainer, How it works...
• classify() method / How to do it...

• Cleaner class
◦ about / There's more...
◦ URL / There's more...

• clean_html() function / How to do it...
• clear() method / How it works..., How it works...
• collocations

◦ about / Discovering word collocations
• complex matrix operations, NumPy

◦ performing / Complex matrix operations
◦ reshaping / Reshaping and stacking
◦ stacking / Reshaping and stacking
◦ random numbers, generating / Random numbers

• concatenated corpus view
◦ about / Concatenated corpus view

• conditional exponential classifier
◦ about / Training a maximum entropy classifier

• conditional frequency distribution
◦ storing, in Redis / Storing a conditional frequency distribution in Redis, How to do it...,

How it works...
• Conditional Random Field (CRF)

◦ about / Machine learning based tagger
• CoNLL

◦ about / CoNLL2000 corpus
• CoNLL2000

◦ about / Introduction
• CoNLL2000 corpus

◦ about / CoNLL2000 corpus
◦ URL / CoNLL2000 corpus

• Context Free Grammar (CFG) rules
◦ extracting, from Treebank / Extracting Context Free Grammar (CFG) rules from

Treebank
◦ phrase structure rules / Extracting Context Free Grammar (CFG) rules from Treebank
◦ sentence structure rules / Extracting Context Free Grammar (CFG) rules from Treebank

• ContextTagger
◦ context model, overrding / Overriding the context model
◦ minimum frequency cutoff / Minimum frequency cutoff

• convert() function / How it works...
• convert_tree_labels() function / How to do it..., How it works...
• corpora

◦ about / Setting up a custom corpus
/ Creating POS-tagged corpora

• corpus
◦ about / Introduction, Setting up a custom corpus
◦ editing, with file locking / Corpus editing with file locking, How to do it..., How it

works...
/ Creating POS-tagged corpora

• CorpusReader class / How to do it...

• corpus view
◦ about / Creating a custom corpus view

• corpus views / There's more...
• correct_verbs() function / How to do it..., How it works...
• cross-fold validation

◦ about / Cross-fold validation
• css() method

◦ about / The Scrapy shell
• CSV synonym replacement

◦ about / CSV synonym replacement
• CsvWordReplacer class

◦ about / CSV synonym replacement
• custom corpus

◦ about / Setting up a custom corpus
◦ setting up / How to do it...
◦ YAML file, loading / Loading a YAML file
◦ training / Training on a custom corpus

• custom corpus view
◦ creating / Creating a custom corpus view, How to do it..., How it works...

• custom feature detector
◦ features, detecting with / Detecting features with a custom feature detector

• CustomSpellingReplacer class / Personal word lists
• CYK chart parsing algorithm

◦ about / CYK chart parsing algorithm

D
• 3D plot

◦ about / 3D plots
• D3

◦ about / Geovisualization
• DANEW (Dutch ANEW) / Introducing sentiment analysis
• data collection

◦ about / Data collection
◦ Twitter / Twitter

• data extraction
◦ about / Data extraction
◦ trending topics, searching in Twitter / Trending topics

• data flow, Scrapy
◦ about / Data flow in Scrapy
◦ Scrapy shell / The Scrapy shell
◦ items / Items

• data munging
◦ about / What is text wrangling?

• data skewness
◦ about / Sampling

• data structure server
◦ about / Storing a frequency distribution in Redis

• dates
◦ parsing, with dateutil / Parsing dates and times with dateutil, How it works...

• dateutil
◦ about / Introduction
◦ times, parsing with / Parsing dates and times with dateutil, How it works...
◦ dates, parsing with / Parsing dates and times with dateutil, How it works...
◦ installing / Getting ready
◦ URL, for documentation / Getting ready

• decision tree classifier
◦ training / Training a decision tree classifier, How to do it..., How it works...
◦ uncertainty, controlling with entropy cutoff / Controlling uncertainty with

entropy_cutoff
◦ tree depth, controlling with depth cutoff / Controlling tree depth with depth_cutoff
◦ decisions, controlling with support cutoff / Controlling decisions with support_cutoff

• DecisionTreeClassifier.train()
◦ about / There's more...

• DecisionTreeClassifier class
◦ about / Training a decision tree classifier, How to do it..., How it works...
◦ evaluating, with high information words / The DecisionTreeClassifier class with high

information words
• decision trees

◦ about / Decision trees
• deep parsing

◦ versus shallow parsing / Shallow versus deep parsing
• deep tree

◦ flattening / Flattening a deep tree, How to do it..., How it works..., There's more...
• DefaultTagger class / Default tagging, How it works...
• default tagging

◦ about / Default tagging, How to do it..., How it works...
• delete command / How it works...
• dependencies

◦ about / Dependency parsing
• dependency parser

◦ about / Stemming
• dependency parsing (DP)

◦ about / Dependency parsing
• depth_cutoff value

◦ about / Controlling tree depth with depth_cutoff
• detect() function / How it works...
• dialog systems

◦ about / Dialog systems
• dictionaries

◦ about / Dictionaries
• Dictionary of Affect in Language (DAL) / Introducing sentiment analysis
• dict style feature / Bag of words feature extraction
• DictVectorizer object / How it works...
• different classifier builder

◦ using / Using a different classifier builder
• different tagger classes

◦ using / Using different taggers
• dir() function

◦ about / Helping yourself
• direct translation

◦ about / Machine translation
• Discourse Analysis

◦ about / Introducing discourse analysis
◦ discourse representation structure / Introducing discourse analysis

• Discourse Representation Structure (DRS) / Introducing discourse analysis
• Discourse Representation Theory (DRT) / Introducing discourse analysis
• distributed chunking

◦ used, with execnet / Distributed chunking with execnet, How to do it..., How it works...,
There's more...

◦ Python subprocesses / Python subprocesses
• distributed tagging

◦ used, with execnet / Distributed tagging with execnet, How to do it..., How it works...,
Creating multiple channels, Local versus remote gateways

◦ multiple channels, creating / Creating multiple channels
◦ local gateway versus remote gateway / Local versus remote gateways

• distributed word scoring
◦ used, with Redis / Distributed word scoring with Redis and execnet, How to do it...,

How it works..., See also
◦ used, with execnet / Distributed word scoring with Redis and execnet, How to do it...,

How it works..., See also
• dist_featx.py module

◦ about / How it works...
• done message

◦ about / How it works...

E
• Earley chart parsing algorithm

◦ about / Earley chart parsing algorithm
• eigenvalues

◦ about / eigenvalues and eigenvectors
• eigenvectors

◦ about / eigenvalues and eigenvectors
• ELE (Expected Likelihood Estimate)

◦ about / Training estimator
• ELEProbDist parameter

◦ about / Training estimator
• Enchant

◦ about / Spelling correction with Enchant
◦ spelling issues, correcting with / Getting ready, How it works...
◦ URL / Getting ready

• enchant.list_languages() method / There's more...

• English words corpus / English words corpus
• entropy

◦ about / Controlling uncertainty with entropy_cutoff
• entropy_cutoff value

◦ about / Controlling uncertainty with entropy_cutoff
• en_GB dictionary

◦ about / The en_GB dictionary
• error identification

◦ about / Metrics for error identification
◦ metrics / Metrics for error identification

• estimator
◦ training / Training estimator
◦ about / Training estimator

• evaluate() method / Evaluating accuracy
• execnet

◦ distributed tagging, used with / Distributed tagging with execnet, How to do it..., How it
works..., Creating multiple channels, Local versus remote gateways

◦ about / Distributed tagging with execnet
◦ URL / Getting ready
◦ distributed chunking, used with / Distributed chunking with execnet, How to do it...,

How it works..., There's more...
◦ parallel list processing, used with / Parallel list processing with execnet, How it

works..., There's more...
◦ distributed word scoring, used with / Distributed word scoring with Redis and execnet,

How to do it..., How it works..., See also
• ExpandLeftRule / How to do it...
• ExpandRightRule / How to do it...
• exploratory data analysis (EDA)

◦ about / Diving into NLTK
• extract() method

◦ about / The Scrapy shell

F
• F-Measure / Evaluation of IR system
• F-measure

◦ about / F-measure
• Facebook

◦ about / Facebook
◦ URL, for graph API / Facebook
◦ geo visualization / Facebook

• Facebook SDK
◦ installing / Facebook
◦ URL / Facebook

• False Negative (FN) / Metrics for error identification
• false negatives

◦ about / Measuring precision and recall of a classifier
• False Positive (FP) / Metrics for error identification

• false positives
◦ about / Measuring precision and recall of a classifier

• FastBrillTagger
◦ about / Selecting a machine learning algorithm

• features
◦ detecting, with custom feature detector / Detecting features with a custom feature

detector
• feature set

◦ about / Introduction
• feature_probdist constructor / How it works...
• feature_probdist variable

◦ about / Manual training
• file locking

◦ corpus, editing with / Corpus editing with file locking, How to do it..., How it works...
• filter_insignificant() function / How it works...
• Firebug / The Scrapy shell
• First Order Predicate Logic (FOPL) / Introducing discourse analysis
• first_chunk_index() function / How to do it..., How to do it..., How it works..., How it works...
• flatten_childtrees() function / How to do it..., How it works...
• flatten_deeptree() function / How it works..., How it works...
• frequency analysis

◦ URL, for details / Replacing synonyms
• frequency distribution

◦ storing, in Redis / Storing a frequency distribution in Redis, How to do it..., How it
works..., There's more...

• fromstring() function / How to do it..., Parsing HTML from URLs or files

G
• gateway

◦ about / Distributed tagging with execnet
• gateways, API documentation

◦ URL / Local versus remote gateways
• gensim

◦ installing / Installing gensim
◦ URL / Installing gensim

• geomap
◦ about / Influencers detection

• geo visualization
◦ about / Geovisualization
◦ influencers detection, in Twitter / Influencers detection
◦ Facebook / Facebook
◦ influencer friends, searching in social media / Influencer friends

• Gibbs sampling
◦ applying, in language processing / Applying Gibbs sampling in language processing

• GIS (General Iterative Scaling) / How it works...
• gis algorithm / How to do it...
• Good Turing

◦ about / Good Turing
• Google news

◦ URL / The Scrapy shell

H
• Hadoop

◦ scikit-learn / Scikit-learn on Hadoop
• hash maps

◦ about / Storing a frequency distribution in Redis
• help() function

◦ about / Helping yourself
• Hidden Markov Model (HMM)

◦ about / Machine learning based tagger, A NER system using Hidden Markov Model
• Hidden Markov Model Estimation

◦ about / Hidden Markov Model estimation
◦ using / Hidden Markov Model estimation

• higher order function / How to do it...
• high information words

◦ calculating / Calculating high information words, How to do it..., How it works...
◦ about / Calculating high information words
◦ used, for evaluating MaxentClassifier class / The MaxentClassifier class with high

information words
◦ used, for evaluating DecisionTreeClassifier class / The DecisionTreeClassifier class

with high information words
◦ used, for evaluating SklearnClassifier class / The SklearnClassifier class with high

information words
• high_information_words() function

◦ about / How it works...
• Hindi stemmer

◦ reference link / Stemming
• Hive/Pig UDF

◦ about / Hive/Pig UDF
• Hive UDF

◦ used, for running NLTK on Hadoop / A UDF
• HornMorpho

◦ about / Morphological generator
• HTML

◦ URLs extracting, lxml used / Extracting URLs from HTML with lxml, How it works...
◦ parsing, from URLs / Parsing HTML from URLs or files
◦ cleaning / Cleaning and stripping HTML, How it works...
◦ stripping / Cleaning and stripping HTML, How it works...

• HTML entities
◦ converting, with BeautifulSoup / Converting HTML entities with BeautifulSoup, How

to do it...
• Hu-Liu opinion Lexicon (HL) / Introducing sentiment analysis
• hypernyms

◦ working with / Working with hypernyms

• hypernym tree / Calculating WordNet Synset similarity
• hypernym_paths() method / Working with hypernyms
• hyponyms

◦ about / Working with hypernyms

I
• IE engine

◦ about / Information extraction
• ieer corpus / Training a named entity chunker
• IgnoreHeadingCorpusView class

◦ about / How it works...
• IIS (Improved Iterative Scaling) / How it works...
• importance score

◦ calculating / Building your first NLP application
• infinitive phrases

◦ about / Swapping infinitive phrases
◦ swapping / How to do it..., How it works...

• inflecting languages
◦ about / Introducing morphology

• information extraction
◦ about / Information extraction
◦ named-entity recognition (NER) / Named-entity recognition (NER)

• information extraction (IE)
◦ about / Information extraction
◦ rule-based extraction / Information extraction
◦ machine learning based / Information extraction

• Information Extraction* Entity Recognition / Training a named entity chunker
• information retrieval

◦ about / Introducing information retrieval
◦ stop word removal / Stop word removal
◦ vector space model, using / Information retrieval using a vector space model
◦ Vector Space Model, using / Information retrieval using a vector space model

• information retrieval (IR)
◦ about / Information retrieval
◦ Boolean retrieval / Boolean retrieval
◦ vector space model (VSM) / Vector space model
◦ probabilistic model / The probabilistic model
◦ reference link / The probabilistic model

• insignificant words
◦ filtering, from sentence / Getting ready, How to do it...

• instance
◦ about / Introduction

• International Standards Organization (ISO) / Timezone lookup and conversion
• interpolation

◦ applying, on data / Applying interpolation on data to get mix and match
• inverse document frequency (IDF)

◦ about / Vector space model

• inverted index
◦ about / Information retrieval

• IOB tags
◦ about / There's more...

• IR System
◦ evaluation, performing / Evaluation of IR system

• IR system
◦ developing, with latent semantic indexing / Developing an IR system using latent

semantic indexing
• isolating languages

◦ about / Introducing morphology
• item pipeline

◦ building / The item pipeline
• items

◦ about / Items
◦ rule method / Items

• items() method / How it works..., How it works...
• iterlinks() method / How to do it...

J
• jaccard() function / There's more...
• Jiang-Conrath Similarity / Disambiguating senses using Wordnet
• Json Parser

◦ URL / Data extraction

K
• K-means clustering

◦ about / K-means
• keys() method / How it works..., How it works...
• KLOUT

◦ URL / Influencers detection
• Kneser Ney Estimation

◦ about / Kneser Ney estimation

L
• labeled feature set

◦ about / Introduction
• labeled feature sets

◦ about / Introduction
• LabelEncoder object / How it works...
• Labelled Exact Match(LEM) / Parser evaluation using gold data
• label_feats_from_corpus() function / How to do it..., How it works...
• label_probdist constructor / How it works...
• label_probdist variable

◦ about / Manual training
• LancasterStemmer class

◦ about / There's more..., The LancasterStemmer class
• Lancaster stemming algorithm

◦ about / There's more...
• language detection

◦ about / Language detection
• Language Model Through Perplexity

◦ evaluating / Evaluate a language model through perplexity
• languages

◦ sentences, tokenizing in / Tokenizing sentences in other languages
• Latent Dirichlet allocation (LDA)

◦ about / Topic modeling in text
• latent dirichlet allocation (LDA)

◦ about / Topic modeling
• latent semantic indexing

◦ about / Developing an IR system using latent semantic indexing
◦ applications / Developing an IR system using latent semantic indexing

• latent semantics indexing (LSI)
◦ about / Topic modeling

• LazyCorpusLoader class / Lazy corpus loading
◦ about / How to do it...

• lazy corpus loading
◦ about / Lazy corpus loading, How to do it...

• Leacock Chodorow Similarity / Disambiguating senses using Wordnet
• leaves() method / Tree leaves
• Leipzig Affective Norms for German (LANG) / Introducing sentiment analysis
• lemmas

◦ about / Looking up lemmas and synonyms in WordNet
◦ looking up for / How to do it..., How it works...
◦ finding, with WordNetLemmatizer class / How to do it...

• lemmas() method / How to do it...
• lemmatization

◦ about / What is text wrangling?, Lemmatization, Lemmatizing words with WordNet,
Understanding lemmatization

◦ versus stemming / There's more...
◦ stemming, combining with / Combining stemming with lemmatization

• less informative features
◦ about / Most informative features

• linear algebra
◦ about / Linear algebra
◦ reference link / Linear algebra

• LinearSVC
◦ training with / Training with LinearSVC
◦ about / Training with LinearSVC

• Linguistic Data Consortium (LDC)
◦ about / Diving deep into a tagger
◦ URL / Diving deep into a tagger

• Lin Similarity / Disambiguating senses using Wordnet

• lists
◦ about / Lists

• local gateway
◦ versus remote gateway / Local versus remote gateways

• LocationChunker class / How to do it..., How it works...
• location chunks

◦ extracting / Extracting location chunks, How to do it...
• lockfile library / Getting ready

◦ URL, for documentation / Getting ready
• logistic regression

◦ about / Logistic regression, Training with logistic regression
◦ training with / Training with logistic regression

• logistic regression classifier
◦ about / Training a maximum entropy classifier

• log likelihood / How it works...
• low information words

◦ about / Calculating high information words
• lxml

◦ about / Introduction, Getting ready
◦ used, for extracting URLs from HTML / Extracting URLs from HTML with lxml, How

it works...
◦ URL, for installation / Getting ready, Getting ready
◦ URL, for tutorial / How it works...

M
• machine learning

◦ about / Machine learning
◦ supervised learning / Machine learning
◦ unsupervised learning / Machine learning
◦ semi-supervised learning / Machine learning
◦ reinforcement learning / Machine learning
◦ used, for sentiment analysis / Sentiment analysis using machine learning

• machine learning algorithm
◦ selecting / Selecting a machine learning algorithm

• machine learning based extraction
◦ about / Information extraction

• machine learning based tagger
◦ about / Machine learning based tagger

• machine translation
◦ about / Machine translation
◦ direct translation / Machine translation
◦ syntactic transfer / Machine translation

• MapReduce
◦ reference link / Python streaming

• Markov Chain Monte Carlo (MCMC) / Applying metropolis hastings in modeling languages
• masi distance / How to do it...
• matplotlib

◦ about / matplotlib
◦ subplot / Subplot
◦ axis, adding / Adding an axis
◦ scatter plot / A scatter plot
◦ bar plot / A bar plot
◦ 3D plot / 3D plots
◦ URL / External references

• MaxentClassifier class
◦ about / Training a maximum entropy classifier
◦ evaluating, with high information words / The MaxentClassifier class with high

information words
• maximum entropy (MaxEnt)

◦ about / Stochastic gradient descent
• maximum entropy classifier

◦ training / Training a maximum entropy classifier, How to do it..., How it works...,
There's more...

◦ about / Training a maximum entropy classifier, Selecting a machine learning algorithm
◦ URL / Training a maximum entropy classifier

• Maximum Entropy Classifier (MEC)
◦ about / Machine learning based tagger

• max_iter variable / How it works...
• megam algorithm

◦ about / Megam algorithm
◦ URL / Megam algorithm

• MergeRule class
◦ about / Merging and splitting chunks with regular expressions

• Message Passing Interface (MPI)
◦ about / Distributed tagging with execnet

• metrics, based on lexical matching
◦ about / Metrics based on lexical matching

• metrics, based on shallow semantic matching
◦ about / Metrics using shallow semantic matching

• metrics, based on syntactic matching
◦ about / Metrics based on syntactic matching

• metropolis hastings
◦ applying, in modeling languages / Applying metropolis hastings in modeling languages

• min_lldelta variable / How it works...
• min_stem_length keyword

◦ working with / Working with min_stem_length
• ML (Machine learning)

◦ about / Text classification
• MLE model

◦ smoothing, applying / Applying smoothing on the MLE model
◦ Add-one smoothing / Add-one smoothing
◦ Good Turing / Good Turing
◦ Kneser Ney Estimation / Kneser Ney estimation
◦ Witten Bell Estimation / Witten Bell estimation

◦ Back-off mechanism, developing / Develop a back-off mechanism for MLE
• model

◦ creating, of likely word tags / How to do it..., How it works...
• MongoDB

◦ about / Getting ready
◦ URL, for installation / Getting ready

• MongoDB-backed corpus reader
◦ creating / Creating a MongoDB-backed corpus reader, How it works...

• MongoDBCorpusReader class / How it works...
◦ creating / There's more...

• more informative features
◦ about / Most informative features

• MorfoMelayu
◦ about / Morphological generator

• morphemes
◦ about / Introducing morphology

• morphological analyzer
◦ about / Morphological analyzer
◦ morphological hints / Morphological analyzer
◦ syntactic hints / Morphological analyzer
◦ semantic hints / Morphological analyzer
◦ open class / Morphological analyzer
◦ morphology captured by Part of Speech tagset / Morphological analyzer
◦ Omorfi / Morphological analyzer

• morphology
◦ about / Introducing morphology

• most informative features
◦ about / Most informative features

• most_informative_features() method
◦ about / Most informative features

• movie_reviews corpus / Getting ready
• multi-label classifier

◦ about / Introduction
• multilabel classifier / Classifying with multiple binary classifiers

◦ creating / Classifying with multiple binary classifiers
• MultinomialNB / How it works...
• multiple binary classifiers

◦ classifying with / Classifying with multiple binary classifiers, How to do it...
• multiple channels

◦ creating / Creating multiple channels
• multi_metrics() function / How to do it...

N
• N-gram tagger

◦ about / N-gram tagger
• Naive Bayes

◦ about / Naive Bayes

◦ reference link / Naive Bayes
• Naive Bayes algorithms

◦ comparing / Comparing Naive Bayes algorithms
• Naive Bayes classifier

◦ training / Training a Naive Bayes classifier, Getting ready, How to do it...
• NaiveBayesClassifier.train() method / How it works...
• NaiveBayesClassifier class / Training a Naive Bayes classifier
• NaiveBayesClassifier constructor / How it works...
• NAME chunker / How it works...
• named-entity recognition (NER)

◦ about / Named-entity recognition (NER)
• named entities

◦ extracting / Extracting named entities, How it works...
• named entity chunker

◦ training / Training a named entity chunker, How to do it..., Training a named entity
chunker

• named entity recognition
◦ about / Extracting named entities

• Named Entity Recognition (NER)
◦ about / Introducing NER

• NamesTagger class / How to do it...
• names wordlist corpus / Names wordlist corpus
• National Institute of Standards and Technology (NIST) / How to do it...
• Natural Language Toolkit (NLTK) / Understanding stemmer
• ndarray

◦ about / ndarray
◦ indexing / Indexing
◦ data, extracting / Extracting data from an array

• negations
◦ replacing, with antonyms / Replacing negations with antonyms, How it works...

• negative feature sets / How it works...
• NER

◦ about / Stemming, Named Entity Recognition (NER)
◦ used, for sentiment analysis / Sentiment analysis using NER

• NER system
◦ evaluating / Evaluation of the NER system

• NER tagger
◦ about / NER tagger
◦ reference link / NER tagger

• NetworkX
◦ about / Influencer friends
◦ URL / Influencer friends

• ngram
◦ about / Training and combining ngram taggers

• NgramTagger class / Quadgram tagger
• ngram taggers

◦ training / Training and combining ngram taggers, How it works...

◦ combining / Training and combining ngram taggers, How it works...
• NLP

◦ need for / Why learn NLP?
◦ tools / Why learn NLP?

• NLP application
◦ building / Building your first NLP application
◦ other applications / Other NLP applications
◦ machine translation / Machine translation
◦ statistical machine translation (SMT) / Statistical machine translation
◦ information retrieval (IR) / Information retrieval
◦ speech recognition / Speech recognition
◦ text classification / Text classification
◦ information extraction (IE) / Information extraction
◦ question answering (QA) systems / Question answering systems
◦ dialog systems / Dialog systems
◦ word sense disambiguation (WSD) / Word sense disambiguation
◦ topic modeling / Topic modeling
◦ language detection / Language detection
◦ optical character recognition (OCR) / Optical character recognition

• NLP Systems
◦ evaluation, need for / The need for evaluation of NLP systems

• NLP tools
◦ evaluation, performing / Evaluation of NLP tools (POS taggers, stemmers, and

morphological analyzers)
◦ POS Taggers / Evaluation of NLP tools (POS taggers, stemmers, and morphological

analyzers)
◦ Stemmers / Evaluation of NLP tools (POS taggers, stemmers, and morphological

analyzers)
◦ Morphological Analyzers / Evaluation of NLP tools (POS taggers, stemmers, and

morphological analyzers)
• NLTK

◦ about / Why learn NLP?, Diving into NLTK, Introduction, Introduction
◦ URL / Why learn NLP?
◦ example / Diving into NLTK
◦ URL, for installation instructions / Getting ready
◦ URL, for data installation / Getting ready
◦ URL, for starting Python console / Getting ready

• NLTK, on Hadoop
◦ using / NLTK on Hadoop
◦ Hive UDF, using / A UDF
◦ Python, streaming / Python streaming

• NLTK-Trainer
◦ about / Training a tagger with NLTK-Trainer
◦ URL, for documentation / Training a tagger with NLTK-Trainer
◦ tagger, training with / Training a tagger with NLTK-Trainer, How to do it..., How it

works...
◦ URL, for installation instructions / Training a tagger with NLTK-Trainer

◦ pickled tagger, saving / Saving a pickled tagger
◦ training, on custom corpus / Training on a custom corpus
◦ used, for training chunker / Training a chunker with NLTK-Trainer, How to do it...,

How it works...
◦ used, for training classifier / Training a classifier with NLTK-Trainer, How it works...
◦ pickled classifier, saving / Saving a pickled classifier
◦ training instances, using / Using different training instances
◦ most informative features / The most informative features
◦ Maxent classifier / The Maxent and LogisticRegression classifiers
◦ LogisticRegression classifier / The Maxent and LogisticRegression classifiers
◦ SVM classifiers / SVMs
◦ classifiers, combining / Combining classifiers
◦ high information words / High information words and bigrams
◦ cross-fold validation / Cross-fold validation
◦ classifier, analyzing / Analyzing a classifier

• nltk.chunk functions / How it works...
• nltk.corpus

◦ treebank corpora, defining / There's more...
• nltk.corpus.treebank_chunk corpus / Treebank chunk corpus
• nltk.data.load() function / How it works...
• nltk.metrics module / See also
• nltk.metrics package

◦ about / How it works...
• nltk.sem.logic module

◦ substitute_bindings(bindings) method / Introducing discourse analysis
◦ replace(variable, expression, replace_bound) method / Introducing discourse analysis
◦ Normalize() method / Introducing discourse analysis
◦ Visit(self,function,combinatory,default) method / Introducing discourse analysis
◦ free(indvar_only) method / Introducing discourse analysis
◦ Simplify() method / Introducing discourse analysis
◦ get_refs(recursive) method / Introducing discourse analysis
◦ fol() method / Introducing discourse analysis
◦ draw() method / Introducing discourse analysis

• nltk.tag.untag() function / There's more...
• NLTK functionality

◦ URL, for demos / Introduction
• normalization

◦ about / Normalization
◦ punctuations, eliminating / Eliminating punctuation
◦ conversion, into lowercase and uppercase / Conversion into lowercase and uppercase
◦ stop words, dealing with / Dealing with stop words
◦ stopwords, calculating / Calculate stopwords in English

• noun cardinals
◦ swapping / Swapping noun cardinals, How it works...

• Noun Phrase (NP)
◦ about / Creating a chunked phrase corpus

• noun phrase (NP)

◦ about / Chunking
• Noun Phrase chunk rule / Developing a chunker using pos-tagged corpora
• Noun Phrases (NP)

◦ about / CoNLL2000 corpus
• NumPy

◦ about / NumPy
◦ ndarray / ndarray
◦ basic operations / Basic operations
◦ complex matrix operations / Complex matrix operations
◦ URL / External references

• NumPy array
◦ about / Decision trees

• NumPy package
◦ URL / Getting ready

• n_ii parameter / How it works...
• n_ix parameter / How it works...
• n_xi parameter / How it works...
• n_xx parameter / How it works...

O
• optical character recognition (OCR)

◦ about / Optical character recognition
• ordered dictionary

◦ storing, in Redis / Storing an ordered dictionary in Redis, Getting ready, How to do it...,
How it works..., See also

P
• P(features) parameter / Training a Naive Bayes classifier
• P(features | label) parameter / Training a Naive Bayes classifier
• P(label) parameter / Training a Naive Bayes classifier
• P(label | features) parameter / Training a Naive Bayes classifier
• pandas

◦ about / pandas
◦ data, reading / Reading data
◦ series data / Series data
◦ column transformation / Column transformation
◦ noisy data / Noisy data
◦ URL / External references

• paragraph block reader
◦ customizing / Customizing the paragraph block reader

• parallel list processing
◦ used, with execnet / Parallel list processing with execnet, How it works..., There's

more...
• ParaMorfo

◦ about / Morphological generator
• parsed_docs() method / How it works...

• parser evaluation
◦ about / Parser evaluation using gold data
◦ performing, gold data used / Parser evaluation using gold data

• parsers
◦ about / Different types of parsers
◦ recursive descent parser / A recursive descent parser
◦ shift-reduce parser / A shift-reduce parser
◦ chart parser / A chart parser
◦ regex parser / A regex parser

• parse trees
◦ training / Training on parse trees

• parsing
◦ rule-based approach / The two approaches in parsing
◦ probabilistic approach / The two approaches in parsing
◦ need for / Why we need parsing
◦ dependency parsing (DP) / Dependency parsing
◦ about / Introducing parsing
◦ Treebank construction / Treebank construction

• part-of-speech tagged word corpus
◦ creating / Getting ready, How it works...

• part-of-speech tagging
◦ about / Introduction

• partial parsing
◦ about / Introduction
◦ performing, with regular expressions / Partial parsing with regular expressions, How it

works...
• part of speech (POS) tagging

◦ about / What is Part of speech tagging, Diving deep into a tagger
◦ reference link / What is Part of speech tagging, Machine learning based tagger
◦ Stanford tagger / Stanford tagger
◦ sequential tagger / Sequential tagger
◦ Brill tagger / Brill tagger
◦ machine learning based tagger / Machine learning based tagger

• Part of Speech tagger (POS)
◦ about / Stemming

• part of speech tagging
◦ about / Creating a part-of-speech tagged word corpus

• parts-of-speech tagging
◦ about / Introducing parts-of-speech tagging
◦ default tagging / Default tagging

• Path and Leacock Chordorow (LCH) similarity / Path and Leacock Chordorow (LCH) similarity
• Path Distance Similarity / Disambiguating senses using Wordnet
• pattern creation

◦ about / Parsing alternative patterns
• Penn Treebank

◦ about / Introduction
• Penn Treebank corpus

◦ URL / See also
• Penn Treebank Project

◦ URL / Treebank chunk corpus
• personal word lists / Personal word lists
• PersonChunker class / There's more...
• petabytes

◦ about / Why learn NLP?
• phi_sq() function

◦ about / How it works...
/ There's more...

• phonemes
◦ about / Speech recognition

• phrases
◦ about / Introduction

• phrase structure parsing
◦ about / Dependency parsing

• pickle corpus view
◦ about / Pickle corpus view

• pickled chunker
◦ saving / Saving a pickled chunker

• pickled tagger
◦ trained tagger, loading with / Saving and loading a trained tagger with pickle
◦ saving / Saving a pickled tagger

• pivot point
◦ about / How to do it...

• PlaintextCorpusReader class
◦ about / How to do it...

/ How it works...
• plural nouns

◦ singularizing / Singularizing plural nouns, How it works...
• pmi() function / There's more...
• Polyglotis

◦ about / Developing a stemmer for non-English language
• Porter stemmer

◦ about / Stemming
• PorterStemmer class

◦ about / How it works...
• Porter stemming algorithm

◦ about / Stemming words
• pos-tagged corpora

◦ used, for developing chunker / Developing a chunker using pos-tagged corpora
• positive feature sets / How it works...
• POS tag

◦ about / Part of speech (POS)
• pos tagged corpora

◦ creating / Creating POS-tagged corpora
• pre-trained classifier

◦ using / Using a pre-trained classifier
• Precision / Evaluation of IR system
• precision

◦ about / The ChunkScore metrics, Measuring precision and recall of a classifier, How it
works...

• precision and recall, MaxentClassifier class
◦ calculating / There's more...

• precision and recall, NaiveBayesClassifier class
◦ calculating / How to do it...

• precision_recall() function
◦ about / How to do it..., How it works...

• Prepositional Phrases (PP)
◦ about / CoNLL2000 corpus

• PresuppositionDRS class
◦ find_bindings(drs_list, collect_event_data) method / Anaphora resolution
◦ is_possible_binding(cond) method / Anaphora resolution
◦ is_presupposition.cond(cond) method / Anaphora resolution
◦ presupposition_readings(trail) method / Anaphora resolution

• probabilistic approach, parsing
◦ about / The two approaches in parsing

• Probabilistic Context-free Grammar (PCFG)
◦ creating, from CFG / Creating a probabilistic Context Free Grammar from CFG

• probabilistic context-free grammar (PCFG)
◦ about / Shallow versus deep parsing

• probabilistic dependency parser
◦ about / Dependency parsing

• probabilistic model
◦ about / The probabilistic model

• projective dependency parser
◦ about / Dependency parsing

• proper names
◦ tagging / Tagging proper names, How it works...

• proper noun chunks
◦ extracting / Extracting proper noun chunks, There's more...

• PunktSentenceTokenizer class / How it works..., There's more...
• PunktWordTokenizer

◦ about / PunktWordTokenizer
• pure function

◦ about / How it works...
• pure module

◦ about / How it works...
• PyEnchant library

◦ about / Getting ready
◦ URL / Getting ready

• PyMongo documentation
◦ URL / Getting ready

• PySpark

◦ about / PySpark
◦ reference link / PySpark
◦ example / PySpark

• Python
◦ URL / Why learn NLP?, Let's start playing with Python!
◦ using / Let's start playing with Python!
◦ lists / Lists
◦ help() function / Helping yourself
◦ dir() function / Helping yourself
◦ regular expression / Regular expressions
◦ dictionaries / Dictionaries
◦ reference link / Writing functions
◦ streaming, for running NLTK on Hadoop / Python streaming

• Python, on Hadoop
◦ using / Different ways of using Python on Hadoop
◦ Python, streaming / Python streaming
◦ Hive/Pig UDF / Hive/Pig UDF
◦ wrappers, streaming / Streaming wrappers
◦ reference link / Streaming wrappers

• Python subprocesses, distributed chunking / Python subprocesses
• PyYAML

◦ URL, for downloading / YAML synonym replacement

Q
• Quadgram tagger

◦ about / Quadgram tagger
• question answering (QA) systems

◦ about / Question answering systems
• question answering system

◦ about / Question-answering system
◦ issues / Question-answering system
◦ building / Question-answering system

R
• random forest

◦ about / The Random forest algorithm
• rare word

◦ removing / Rare word removal
• re() method

◦ about / The Scrapy shell
• recall

◦ about / The ChunkScore metrics, Measuring precision and recall of a classifier, How it
works...

• Recall / Evaluation of IR system
• recursive descent parser

◦ about / A recursive descent parser

• Redis
◦ frequency distribution, storing / Storing a frequency distribution in Redis, How to do

it..., How it works..., There's more...
◦ URL / Getting ready
◦ conditional frequency distribution, storing / Storing a conditional frequency distribution

in Redis, How to do it..., How it works...
◦ ordered dictionary, storing / Storing an ordered dictionary in Redis, How to do it...,

There's more..., See also
◦ distributed word scoring, used with / Distributed word scoring with Redis and execnet,

How to do it..., How it works..., See also
• redis-py homepage

◦ URL / Getting ready
• Redis commands

◦ URL / How it works...
• reference set

◦ about / How it works...
• regex parser

◦ about / A regex parser
• RegexpParser class / How it works...

◦ about / How it works...
• RegexpReplacer class

◦ about / Replacement before tokenization
/ How to do it...

• RegexpStemmer class
◦ about / The RegexpStemmer class

• RegexpTagger class / How to do it...
• RegexpTokenizer class / How it works...
• regex tagger

◦ about / Regex tagger
• regression

◦ about / Machine learning
• regular expression

◦ about / Regular expressions
• Regular Expressions

◦ using / Tokenization using regular expressions
• regular expressions

◦ used, for tokenizing sentences / Tokenizing sentences using regular expressions, There's
more...

◦ words, tagging with / Tagging with regular expressions, How it works...
◦ used, for defining chunk patterns / Chunking and chinking with regular expressions,

How to do it..., How it works..., There's more...
◦ used, for merging chunks / Merging and splitting chunks with regular expressions, How

to do it..., How it works...
◦ used, for splitting chunks / How to do it..., How it works...
◦ used, for expanding chunks / Expanding and removing chunks with regular expressions,

How it works..., There's more...

◦ used, for removing chunks / Expanding and removing chunks with regular expressions,
How it works..., There's more...

◦ used, for partial parsing / Partial parsing with regular expressions, How it works...
• reinforcement learning

◦ about / Machine learning
• relative link / There's more...
• remote gateway

◦ versus local gateway / Local versus remote gateways
• remove_line() function / How to do it..., How it works...
• repeating characters

◦ removing / Removing repeating characters, How it works..., There's more...
• RepeatReplacer class

◦ about / How it works...
• replace() method / How to do it..., How it works..., How it works...
• replacement technique

◦ before tokenization / Replacement before tokenization
• replace_negations() method / How it works...
• Resnik Score / Disambiguating senses using Wordnet
• reuters_high_info_words() function / How it works...
• reuters_train_test_feats() function / How it works...
• rule-based approach, parsing

◦ about / The two approaches in parsing
• rule-based extraction

◦ about / Information extraction

S
• sampling

◦ about / Sampling
◦ reference link / Sampling
◦ example / Sampling
◦ Naive Bayes / Naive Bayes
◦ decision trees / Decision trees
◦ stochastic gradient descent (SGD) / Stochastic gradient descent
◦ logistic regression / Logistic regression
◦ support vector machines (SVM) / Support vector machines

• scatter plot
◦ about / A scatter plot

• scikit-learn
◦ URL, for scikit classes / Naive Bayes
◦ on Hadoop / Scikit-learn on Hadoop
◦ about / Training scikit-learn classifiers

• scikit-learn classifiers
◦ training / Training scikit-learn classifiers, Getting ready, How it works...

• scikit-learn model / There's more...
• SciPy

◦ about / SciPy
◦ linear algebra / Linear algebra

◦ eigenvalues / eigenvalues and eigenvectors
◦ eigenvectors / eigenvalues and eigenvectors
◦ sparse matrix / The sparse matrix
◦ optimization / Optimization
◦ URL / External references

• score_ngrams(score_fn) function / Scoring ngrams
• score_words() function

◦ about / How it works...
• Scrapy

◦ installing / Writing your first crawler
◦ URL / Writing your first crawler
◦ data flow / Data flow in Scrapy
◦ external references / External references

• Scrapy shell
◦ about / The Scrapy shell
◦ using / The Scrapy shell

• Script Applier Mechanism(SAM)
◦ about / Introducing semantic analysis

• semantic analysis
◦ about / Introducing semantic analysis
◦ Named Entity Recognition (NER) / Introducing NER
◦ NER System, using Hidden Markov Model / A NER system using Hidden Markov

Model
◦ NER, training with Machine Learning toolkits / Training NER using Machine Learning

Toolkits
◦ NER, using POS tagging / NER using POS tagging

• semi-supervised learning
◦ about / Machine learning

• sense disambiguation
◦ URL, for details / Introduction

• senses
◦ disambiguating, Wordnet used / Disambiguating senses using Wordnet

• sentence
◦ insignificant words, filtering from / Getting ready, How to do it...

• Sentence level Construction, CFG
◦ declarative structure / Extracting Context Free Grammar (CFG) rules from Treebank
◦ imperative structure / Extracting Context Free Grammar (CFG) rules from Treebank
◦ Yes-No structure / Extracting Context Free Grammar (CFG) rules from Treebank
◦ Wh-question structure / Extracting Context Free Grammar (CFG) rules from Treebank

• sentences
◦ text, tokenizing into / Getting ready, How to do it...
◦ tokenizing, in other languages / Tokenizing sentences in other languages
◦ tokenizing, into words / Tokenizing sentences into words, There's more...
◦ tokenizing, regular expressions used / Tokenizing sentences using regular expressions,

There's more...
◦ tagging / Tagging sentences

• sentences, tokenizing into words

◦ contractions, separating / Separating contractions
◦ PunktWordTokenizer / PunktWordTokenizer
◦ WordPunctTokenizer / WordPunctTokenizer

• sentence splitter
◦ about / Sentence splitter

• sentence tokenizer
◦ training / Training a sentence tokenizer, How to do it..., How it works...
◦ customizing / Customizing the sentence tokenizer

• sentiment analysis
◦ about / Introducing sentiment analysis
◦ text sentiment analysis / Introducing sentiment analysis
◦ topic-sentiment analysis / Introducing sentiment analysis
◦ NER, used / Sentiment analysis using NER
◦ machine learning, used / Sentiment analysis using machine learning
◦ NER system, evaluation / Evaluation of the NER system

• sent_tokenize function / How it works...
• SequentialBackoffTagger class / How it works..., How to do it..., How to do it...
• sequential taggers

◦ about / Sequential tagger
◦ N-grams tagger / N-gram tagger
◦ regex tagger / Regex tagger

• shallow parsing
◦ versus deep parsing / Shallow versus deep parsing

• shallow tree
◦ creating / Creating a shallow tree, How to do it...

• shallow_tree() function / How to do it..., How it works...
• shift-reduce parser

◦ about / A shift-reduce parser
• show_most_informative_features() method

◦ about / Most informative features
• significant bigrams

◦ including / Including significant bigrams
• significant words

◦ about / Filtering insignificant words from a sentence
• similarity measures

◦ about / Similarity measures
◦ applying, Edit Distance Algorithm used / Applying similarity measures using Ethe edit

distance algorithm
◦ string similarity metrics / Other string similarity metrics

• singularize_plural_noun() function / How to do it...
• singular value decomposition (SVD)

◦ about / eigenvalues and eigenvectors
• Singular Value Decomposition (SVD)

◦ about / Developing an IR system using latent semantic indexing
• Sitemap spider

◦ about / The Sitemap spider
• SklearnClassifier class

◦ using / Getting ready
◦ training / How to do it...
◦ working / How it works...
◦ evaluating, with high information words / The SklearnClassifier class with high

information words
• smoothing

◦ about / Applying smoothing on the MLE model
◦ applying, on MLE model / Applying smoothing on the MLE model

• SnowballStemmer class
◦ about / The SnowballStemmer class

• Snowball stemmers
◦ about / Stemming

• SPANEW (Spanish ANEW) / Introducing sentiment analysis
• sparse matrix

◦ about / The sparse matrix
◦ DOK (Dictionary of keys) / The sparse matrix
◦ LOL (list of list) / The sparse matrix
◦ COL (Coordinate list) / The sparse matrix
◦ CRS/CSR (Compressed row Storage) / The sparse matrix
◦ URL / The sparse matrix
◦ CSC (sparse column) / The sparse matrix

• specific preprocessing
◦ about / What is text wrangling?

• speech recognition
◦ about / Speech recognition

• spell correction
◦ with spellchecker / Spell correction

• spelling issues
◦ correcting, with Enchant / Getting ready, How it works...

• SpellingReplacer class
◦ about / How it works...

/ Personal word lists
• SplitRule class

◦ about / How to do it...
• split_label_feats() function / How to do it..., How it works...
• squared Pearson correlation coefficient

◦ reference link / How it works...
• Stanford parser

◦ URL / Dependency parsing
• Stanford tagger

◦ about / Stanford tagger
• Stanford tools

◦ about / Stanford tagger
◦ reference link / Stanford tagger

• statistical machine translation (SMT)
◦ about / Statistical machine translation

• statistical modeling

◦ with n-gram approach / Statistical modeling involving the n-gram approach
• stem() method / How to do it...
• stemmer

◦ about / Understanding stemmer
◦ developing, for nonenglish language / Developing a stemmer for non-English language

• Stemmer I interface
◦ inheritance diagram / Understanding stemmer

• stemming
◦ about / What is text wrangling?, Stemming, Stemming words
◦ reference link / Stemming
◦ versus lemmatization / There's more...
◦ combining, with lemmatization / Combining stemming with lemmatization

• Stochastic Finite State Automaton (SFSA)
◦ about / A NER system using Hidden Markov Model

• stochastic gradient descent (SGD)
◦ about / Stochastic gradient descent

• stop word removal
◦ about / What is text wrangling?, Stop word removal
◦ implementing / Stop word removal

• stopwords
◦ about / Filtering stopwords in a tokenized sentence
◦ filtering, in tokenized sentence / Filtering stopwords in a tokenized sentence
◦ filtering / Filtering stopwords

• stopwords corpus / How it works..., See also
◦ about / There's more...

• StreamBackedCorpusView class / Creating a custom corpus view
• string functions

◦ split / Helping yourself
◦ strip / Helping yourself
◦ upper/lower / Helping yourself
◦ replace / Helping yourself
◦ reference link / Helping yourself

• subplot
◦ about / Subplot

• subtrees
◦ about / Creating a chunked phrase corpus

• sub_leaves() method / See also
• summarization

◦ about / Building your first NLP application
• supervised classification

◦ about / Selecting a machine learning algorithm
• supervised learning

◦ about / Machine learning
◦ classification / Machine learning
◦ regression / Machine learning

• Support Vector Machines (SVM)
◦ about / Training with LinearSVC

◦ URL / Training with LinearSVC
• support vector machines (SVM)

◦ about / Support vector machines
• support_cutoff value

◦ about / Controlling decisions with support_cutoff
• swap_infinitive_phrase() function / How to do it...
• swap_noun_cardinal() function / How to do it...
• swap_verb_phrase() function / How to do it..., There's more..., How it works...
• synonyms

◦ looking up for / How to do it..., How it works...
◦ about / All possible synonyms
◦ words, replacing with / Replacing synonyms, How it works...

• Synset
◦ about / Looking up Synsets for a word in WordNet, Calculating WordNet Synset

similarity
◦ looking up / Looking up Synsets for a word in WordNet, How it works...

• synset id
◦ generation, from Wordnet / Generation of the synset id from Wordnet

• syntactic matching
◦ about / Metrics based on syntactic matching

• syntactic parser
◦ about / Why we need parsing

• syntactic transfer
◦ about / Machine translation

T
• tag

◦ about / Introduction
• tag() method / How to do it...
• tagged corpus

◦ tagger, analyzing against / Analyzing a tagger against a tagged corpus
◦ analyzing / Analyzing a tagged corpus

• TaggedCorpusReader class / How to do it..., How it works..., Creating a custom corpus view
• tagged sentence

◦ untagging / Untagging a tagged sentence
• tagger

◦ accuracy, evaluating of / Evaluating accuracy
◦ training, with NLTK-Trainer / Training a tagger with NLTK-Trainer, How to do it...,

How it works...
◦ training, with universal tags / Training with universal tags
◦ analyzing, against tagged corpus / Analyzing a tagger against a tagged corpus

• tagger-based chunker
◦ training / Training a tagger-based chunker, How to do it..., How it works...

• taggers
◦ combining, with backoff tagging / Combining taggers with backoff tagging, How it

works...
• tagging

◦ WordNet, using for / Using WordNet for tagging, How to do it..., How it works...
• tags

◦ converting, to universal tagset / Converting tags to a universal tagset
• tags, for treebank corpus

◦ URL / There's more...
• tag separator

◦ customizing / Customizing the tag separator
• tagset

◦ about / Converting tags to a universal tagset
• tag suffixes

◦ passing / There's more...
• tag_equals() function / How to do it...
• tag_pattern2re_pattern() function

◦ about / Getting ready
• tag_sents() method / Tagging sentences
• tag_startswith() function / How to do it..., How to do it...
• term-document matrix

◦ about / Sampling
• term doc matrix (TDM)

◦ about / Text classification
• term frequencies (tf)

◦ about / Sampling
• term frequency (TF)

◦ about / Vector space model
• term frequency-inverse document frequency (tf-idf)

◦ about / Building your first NLP application, Sampling
• test set

◦ about / How it works...
• text

◦ tokenizing, into sentences / How to do it...
◦ chunk tree, converting to / Converting a chunk tree to text, How it works...

• text-processing
◦ reference link / Tokenization

• text classification
◦ about / Text classification, Text classification, Introduction

• text cleansing
◦ about / What is text wrangling?, Text cleansing

• text clustering
◦ about / Text clustering
◦ K-means clustering / Text clustering, K-means
◦ hierarchical clustering / Text clustering

• text feature extraction
◦ about / Bag of words feature extraction
◦ working / How it works...

• text indexing
◦ URL, for details / Replacing synonyms

• text sentiment analysis / Introducing sentiment analysis

• text summarization
◦ about / Text summarization

• text wrangling
◦ about / What is text wrangling?

• TF-IDF (Term Frequency-Inverse Document Frequency) / Information retrieval using a vector
space model

• TF-IDF corpus
◦ about / Installing gensim

• times
◦ parsing, with dateutil / Parsing dates and times with dateutil, How it works...

• timezone
◦ obtaining / Timezone lookup and conversion, How to do it..., How it works...
◦ converting / Timezone lookup and conversion, How to do it..., How it works...
◦ local timezone, searching / Local timezone
◦ custom offset, creating / Custom offsets

• TnT (Trigrams n Tags)
◦ about / Statistical modeling involving the n-gram approach

• TnT tagger
◦ about / Training the TnT tagger
◦ training / How to do it..., How it works...
◦ optional keyword arguments / There's more...
◦ beam search, controlling / Controlling the beam search
◦ capitalization, significance / Significance of capitalization

• token
◦ about / Tokenizing text into sentences

• tokenization
◦ about / What is text wrangling?, Tokenization, Introduction, Tokenizing text into

sentences, Tokenization
◦ text, into sentences / Tokenization of text into sentences
◦ text, in other languages / Tokenization of text in other languages
◦ sentences, into words / Tokenization of sentences into words
◦ TreebankWordTokenizer, using / Tokenization using TreebankWordTokenizer
◦ Regular Expressions, using / Tokenization using regular expressions

• tokenized sentence
◦ stopwords, filtering in / Filtering stopwords in a tokenized sentence

• tokens, replacement
◦ words, replacing with regular expressions / Replacing words using regular expressions
◦ text, replacing with another text / Example of the replacement of a text with another text
◦ substitution, performing before tokenization / Performing substitution before

tokenization
◦ repeating characters, dealing with / Dealing with repeating characters
◦ repeating characters, deleting / Example of deleting repeating characters
◦ word, replacing with synonym / Replacing a word with its synonym, Example of

substituting word a with its synonym
• topic-sentiment analysis / Introducing sentiment analysis
• topic modeling

◦ about / Topic modeling, Topic modeling in text

◦ gensim, installing / Installing gensim
• train() class method

◦ about / How it works...
• trained tagger

◦ saving / Saving and loading a trained tagger with pickle
◦ loading, with pickle / Saving and loading a trained tagger with pickle

• train_binary_classifiers() function / How it works...
• train_chunker.py script / There's more...
• train_classifier.py script

◦ about / How it works..., There's more...
• transform_chunk() function / How to do it..., How it works...
• traverse() function

◦ flow diagram / Anaphora resolution
• Treebank chunk corpus / Treebank chunk corpus
• Treebank construction

◦ about / Treebank construction
• TreebankWordTokenizer

◦ using / Tokenization using TreebankWordTokenizer
• TreebankWordTokenizer class / Separating contractions
• treebank_chunk corpus

◦ using / How to do it...
• tree labels

◦ converting / Converting tree labels, Getting ready, How to do it...
• tree leaves

◦ about / Tree leaves
• tree transforms

◦ about / Introduction
• TrigramTagger class / Training and combining ngram taggers
• true negative

◦ about / Measuring precision and recall of a classifier
• True Negative (TN) / Metrics for error identification
• true positive

◦ about / Measuring precision and recall of a classifier
• True Positive(TP) / Metrics for error identification
• tuple

◦ about / What is Part of speech tagging
• Tweepy

◦ installing / Twitter
◦ URL / Twitter

• Twitter
◦ about / Twitter
◦ data, gathering / Twitter
◦ trending topics, searching / Trending topics
◦ influencers, detecting / Influencers detection

• Twitter libraries
◦ URL / Twitter

U
• Udacity

◦ URL / Web crawlers
• unambiguous antonyms / There's more...
• UnChunkRule pattern / How to do it...
• UnicodeDammit

◦ about / Introduction, UnicodeDammit conversion
• unigram

◦ about / Training a unigram part-of-speech tagger
• unigram part-of-speech tagger

◦ training / How to do it..., How it works...
• UnigramTagger

◦ about / How to do it...
• UnigramTagger class

◦ model, constructing for / There's more...
• universal tags

◦ tagger, training with / Training with universal tags
• universal tagset

◦ tags, converting to / Converting tags to a universal tagset
◦ about / Converting tags to a universal tagset

• unlabeled feature set
◦ about / Introduction

• unsupervised classification
◦ about / Selecting a machine learning algorithm

• unsupervised learning
◦ about / Machine learning

• URLs
◦ extracting, from HTML with lxml / Extracting URLs from HTML with lxml, How it

works...
◦ extracting, directly / Extracting links directly
◦ HTML, parsing from / Parsing HTML from URLs or files
◦ extracting, with xpath() method / Extracting links with XPaths
◦ extracting, BeautifulSoup used / Extracting URLs with BeautifulSoup

• user defined function (UDF)
◦ about / Hive/Pig UDF

V
• values() method / How it works..., How it works...
• vector space model / Information retrieval using a vector space model
• vector space model (VSM)

◦ about / Vector space model
• vector space scoring

◦ about / Vector space scoring and query operator interaction
◦ and query operator interaction / Vector space scoring and query operator interaction

• vector space search engine
◦ constructing / Search engine

• verb forms
◦ correcting / Getting ready, How to do it..., How it works...

• verb phrase (VP)
◦ about / Chunking

• verb phrases
◦ swapping / How to do it..., How it works...

• Verb Phrases (VP)
◦ about / CoNLL2000 corpus

W
• web crawler

◦ about / Web crawlers
◦ writing / Writing your first crawler

• Well-formed Formulas (WFF)
◦ about / Introducing semantic analysis

• Whissell's Dictionary of Affect in Language (WDAL) / Introducing sentiment analysis
• whitespace tokenizer / Simple whitespace tokenizer
• Witten Bell Estimation

◦ about / Witten Bell estimation
• word collocations

◦ discovering / Discovering word collocations, How to do it...
• word collocations, discovering

◦ functions, scoring / Scoring functions
◦ ngrams, scoring / Scoring ngrams

• word frequency
◦ about / Understanding word frequency
◦ maximum likelihood estimation, developing for text / Develop MLE for a given text
◦ Hidden Markov Model Estimation / Hidden Markov Model estimation
◦ Hidden Markov Model Estimation, using / Hidden Markov Model estimation

• wordlist corpus
◦ creating / Getting ready, How it works...

• WordListCorpusReader class / Creating a wordlist corpus, How to do it...
• Wordnet

◦ about / Generation of the synset id from Wordnet
◦ synset id, generating from / Generation of the synset id from Wordnet
◦ used, for disambiguating senses / Disambiguating senses using Wordnet

• WordNet
◦ about / Introduction, Looking up Synsets for a word in WordNet
◦ use cases / Introduction
◦ looking up for Synset / Looking up Synsets for a word in WordNet, How it works...
◦ looking up for lemmas / How to do it..., There's more...
◦ looking up for synonyms / How to do it..., How it works...
◦ words, lemmatizing with / Getting ready, How it works...
◦ using, for tagging / Using WordNet for tagging, How to do it..., How it works...

• WordNetLemmatizer class
◦ used, for finding lemmas / How to do it...
◦ about / How it works...

• WordNet Synset similarity
◦ calculating / How to do it..., How it works...
◦ verbs, comparing / Comparing verbs
◦ Path and Leacock Chordorow (LCH) similarity / Path and Leacock Chordorow (LCH)

similarity
• WordNetTagger class / How it works...
• WordPunctTokenizer

◦ about / WordPunctTokenizer
• WordReplacer class / How it works...
• words

◦ sentences, tokenizing into / Tokenizing sentences into words, There's more...
◦ stemming / Stemming words, How to do it...
◦ lemmatizing, with WordNet / Getting ready, How it works...
◦ replacing, with synonyms / Replacing synonyms, How it works...
◦ tagging, with regular expressions / Tagging with regular expressions, How it works...

• word sense disambiguation (WSD)
◦ about / Word sense disambiguation

• Word Sense Disambiguation (WSD) task / Disambiguating senses using Wordnet
• words matching regular expressions

◦ replacing / Replacing words matching regular expressions, How to do it..., How it
works...

• word tokenizer
◦ customizing / Customizing the word tokenizer

• word_tag_model() function / How it works...
• word_tokenize() function / How to do it..., How it works...
• World Wide Web (WWW)

◦ about / Web crawlers
• wrappers

◦ streaming / Streaming wrappers
• Wu-Palmer Similarity

◦ about / How it works...
/ Disambiguating senses using Wordnet

• wup_similarity method / How it works...

X
• XPath

◦ about / The Scrapy shell
• xpath() method

◦ about / The Scrapy shell
◦ used, for extracting URLs / Extracting links with XPaths
◦ reference link / Extracting links with XPaths

Y
• YAML file

◦ loading / Loading a YAML file
• YAML synonym replacement

◦ about / YAML synonym replacement

Z
• zadd command / How it works...
• zcard command / How it works...
• Zipf's law

◦ applying on text / Applying Zipf's law to text
• zrem command / How it works...
• zrevrange command / How it works...
• zscore command / How it works...
• Zset

◦ about / How to do it...

	Natural Language Processing: Python and NLTK
	Table of Contents
	Natural Language Processing: Python and NLTK
	Natural Language Processing: Python and NLTK
	Natural Language Processing: Python and NLTK
	Credits
	Preface
	What this learning path covers
	What you need for this learning path
	Who this learning path is for
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions

	Part 1. Module 1
	Chapter 1. Introduction to Natural Language Processing
	Why learn NLP?
	Note
	Note

	Let's start playing with Python!
	Note
	Lists
	Helping yourself
	Note

	Regular expressions
	Dictionaries
	Writing functions
	Note

	Diving into NLTK
	Tip
	Note

	Your turn
	Summary
	Chapter 2. Text Wrangling and Cleansing
	What is text wrangling?
	Note

	Text cleansing
	Sentence splitter
	Tokenization
	Tip

	Stemming
	Tip

	Lemmatization
	Stop word removal
	Rare word removal
	Spell correction
	Tip

	Your turn
	Summary
	Chapter 3. Part of Speech Tagging
	What is Part of speech tagging
	Note
	Stanford tagger
	Tip

	Diving deep into a tagger
	Note

	Sequential tagger
	N-gram tagger
	Regex tagger

	Brill tagger
	Note

	Machine learning based tagger
	Note

	Named Entity Recognition (NER)
	NER tagger

	Your Turn
	Note

	Summary
	Chapter 4. Parsing Structure in Text
	Shallow versus deep parsing
	The two approaches in parsing
	Why we need parsing
	Different types of parsers
	A recursive descent parser
	A shift-reduce parser
	A chart parser
	Note

	A regex parser

	Dependency parsing
	Tip

	Chunking
	Information extraction
	Note
	Named-entity recognition (NER)
	Relation extraction

	Summary
	Chapter 5. NLP Applications
	Building your first NLP application
	Note

	Other NLP applications
	Machine translation
	Statistical machine translation
	Information retrieval
	Boolean retrieval
	Vector space model
	The probabilistic model
	Note

	Speech recognition
	Text classification
	Information extraction
	Question answering systems
	Dialog systems
	Word sense disambiguation
	Topic modeling
	Language detection
	Optical character recognition

	Summary
	Chapter 6. Text Classification
	Machine learning
	Text classification
	Note
	Note

	Sampling
	Note
	Tip
	Naive Bayes
	Note
	Note

	Decision trees
	Stochastic gradient descent
	Logistic regression
	Support vector machines

	The Random forest algorithm
	Note

	Text clustering
	K-means
	Tip

	Topic modeling in text
	Installing gensim
	Note
	Note

	References
	Summary
	Chapter 7. Web Crawling
	Web crawlers
	Note

	Writing your first crawler
	Tip

	Data flow in Scrapy
	The Scrapy shell
	Tip

	Items

	The Sitemap spider
	The item pipeline
	External references
	Summary
	Chapter 8. Using NLTK with Other Python Libraries
	NumPy
	ndarray
	Indexing

	Basic operations
	Extracting data from an array
	Complex matrix operations
	Note
	Reshaping and stacking
	Tip
	Random numbers

	SciPy
	Linear algebra
	Note

	eigenvalues and eigenvectors
	The sparse matrix
	Note
	Note

	Optimization

	pandas
	Reading data
	Tip
	Note

	Series data
	Column transformation
	Noisy data

	matplotlib
	Subplot
	Adding an axis
	A scatter plot
	A bar plot
	3D plots

	External references
	Summary
	Chapter 9. Social Media Mining in Python
	Data collection
	Twitter
	Note
	Note

	Data extraction
	Tip
	Trending topics

	Geovisualization
	Influencers detection
	Facebook
	Tip
	Note

	Influencer friends

	Summary
	Chapter 10. Text Mining at Scale
	Different ways of using Python on Hadoop
	Python streaming
	Note

	Hive/Pig UDF
	Streaming wrappers
	Note

	NLTK on Hadoop
	A UDF
	Python streaming

	Scikit-learn on Hadoop
	Note

	PySpark
	Note
	Note

	Summary
	Part 2. Module 2
	Chapter 1. Tokenizing Text and WordNet Basics
	Introduction
	Tokenizing text into sentences
	Getting ready
	How to do it...
	Tip

	How it works...
	There's more...
	Tokenizing sentences in other languages

	See also

	Tokenizing sentences into words
	How to do it...
	How it works...
	There's more...
	Separating contractions
	PunktWordTokenizer
	WordPunctTokenizer

	See also

	Tokenizing sentences using regular expressions
	Getting ready
	How to do it...
	How it works...
	There's more...
	Simple whitespace tokenizer

	See also

	Training a sentence tokenizer
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Filtering stopwords in a tokenized sentence
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Looking up Synsets for a word in WordNet
	Getting ready
	How to do it...
	How it works...
	There's more...
	Working with hypernyms
	Part of speech (POS)

	See also

	Looking up lemmas and synonyms in WordNet
	How to do it...
	How it works...
	There's more...
	All possible synonyms
	Antonyms

	See also

	Calculating WordNet Synset similarity
	How to do it...
	How it works...
	There's more...
	Comparing verbs
	Path and Leacock Chordorow (LCH) similarity

	See also

	Discovering word collocations
	Getting ready
	How to do it...
	How it works...
	There's more...
	Scoring functions
	Scoring ngrams

	See also

	Chapter 2. Replacing and Correcting Words
	Introduction
	Stemming words
	Note
	How to do it...
	How it works...
	There's more...
	The LancasterStemmer class
	The RegexpStemmer class
	The SnowballStemmer class

	See also

	Lemmatizing words with WordNet
	Getting ready
	How to do it...
	How it works...
	There's more...
	Combining stemming with lemmatization

	See also

	Replacing words matching regular expressions
	Getting ready
	How to do it...
	How it works...
	There's more...
	Replacement before tokenization

	See also

	Removing repeating characters
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Spelling correction with Enchant
	Getting ready
	How to do it...
	How it works...
	There's more...
	Tip
	The en_GB dictionary
	Personal word lists

	See also

	Replacing synonyms
	Getting ready
	How to do it...
	How it works...
	There's more...
	CSV synonym replacement
	YAML synonym replacement
	Note

	See also

	Replacing negations with antonyms
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 3. Creating Custom Corpora
	Introduction
	Setting up a custom corpus
	Getting ready
	How to do it...
	Note
	Note

	How it works...
	There's more...
	Loading a YAML file

	See also

	Creating a wordlist corpus
	Getting ready
	How to do it...
	How it works...
	There's more...
	Names wordlist corpus
	English words corpus

	See also

	Creating a part-of-speech tagged word corpus
	Getting ready
	Note

	How to do it...
	How it works...
	There's more...
	Customizing the word tokenizer
	Customizing the sentence tokenizer
	Customizing the paragraph block reader
	Customizing the tag separator
	Converting tags to a universal tagset

	See also

	Creating a chunked phrase corpus
	Getting ready
	How to do it...
	Note

	How it works...
	There's more...
	Tree leaves
	Treebank chunk corpus
	CoNLL2000 corpus

	See also

	Creating a categorized text corpus
	Getting ready
	How to do it...
	How it works...
	There's more...
	Category file
	Categorized tagged corpus reader
	Categorized corpora

	See also

	Creating a categorized chunk corpus reader
	Getting ready
	How to do it...
	How it works...
	There's more...
	Categorized CoNLL chunk corpus reader

	See also

	Lazy corpus loading
	How to do it...
	How it works...
	There's more...

	Creating a custom corpus view
	How to do it...
	How it works...
	Note

	There's more...
	Block reader functions
	Pickle corpus view
	Concatenated corpus view

	See also

	Creating a MongoDB-backed corpus reader
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Corpus editing with file locking
	Getting ready
	How to do it...
	Note

	How it works...
	Tip
	Note

	Chapter 4. Part-of-speech Tagging
	Introduction
	Default tagging
	Getting ready
	How to do it...
	How it works...
	There's more...
	Evaluating accuracy
	Tagging sentences
	Untagging a tagged sentence

	See also

	Training a unigram part-of-speech tagger
	How to do it...
	How it works...
	Note

	There's more...
	Overriding the context model
	Minimum frequency cutoff

	See also

	Combining taggers with backoff tagging
	How to do it...
	How it works...
	There's more...
	Saving and loading a trained tagger with pickle

	See also

	Training and combining ngram taggers
	Getting ready
	How to do it...
	How it works...
	There's more...
	Quadgram tagger

	See also

	Creating a model of likely word tags
	How to do it...
	How it works...
	Note

	There's more...
	See also

	Tagging with regular expressions
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Affix tagging
	How to do it...
	How it works...
	There's more...
	Note
	Working with min_stem_length

	See also

	Training a Brill tagger
	How to do it...
	How it works...
	There's more...
	Note
	Tracing

	See also

	Training the TnT tagger
	How to do it...
	How it works...
	Note

	There's more...
	Controlling the beam search
	Significance of capitalization

	See also

	Using WordNet for tagging
	Getting ready
	How to do it...
	Tip

	How it works...
	See also

	Tagging proper names
	How to do it...
	How it works...
	See also

	Classifier-based tagging
	How to do it...
	Note

	How it works...
	Note

	There's more...
	Note
	Detecting features with a custom feature detector
	Setting a cutoff probability
	Using a pre-trained classifier

	See also

	Training a tagger with NLTK-Trainer
	How to do it...
	How it works...
	Note
	Note

	There's more...
	Saving a pickled tagger
	Training on a custom corpus
	Training with universal tags
	Analyzing a tagger against a tagged corpus
	Analyzing a tagged corpus

	See also

	Chapter 5. Extracting Chunks
	Introduction
	Chunking and chinking with regular expressions
	Getting ready
	How to do it...
	Note

	How it works...
	There's more...
	Parsing different chunk types
	Parsing alternative patterns
	Chunk rule with context

	See also

	Merging and splitting chunks with regular expressions
	How to do it...
	Note

	How it works...
	There's more...
	Specifying rule descriptions

	See also

	Expanding and removing chunks with regular expressions
	How to do it...
	How it works...
	There's more...
	See also

	Partial parsing with regular expressions
	How to do it...
	Note

	How it works...
	There's more...
	The ChunkScore metrics
	Looping and tracing chunk rules

	See also

	Training a tagger-based chunker
	How to do it...
	How it works...
	There's more...
	Using different taggers

	See also

	Classification-based chunking
	How to do it...
	How it works...
	There's more...
	Using a different classifier builder
	Note

	See also

	Extracting named entities
	How to do it...
	How it works...
	There's more...
	Binary named entity extraction

	See also

	Extracting proper noun chunks
	How to do it...
	How it works...
	There's more...
	See also

	Extracting location chunks
	How to do it...
	How it works...
	There's more...
	See also

	Training a named entity chunker
	How to do it...
	How it works...
	There's more...
	See also

	Training a chunker with NLTK-Trainer
	Note
	How to do it...
	Note

	How it works...
	There's more...
	Saving a pickled chunker
	Training a named entity chunker
	Training on a custom corpus
	Training on parse trees
	Analyzing a chunker against a chunked corpus
	Analyzing a chunked corpus

	See also

	Chapter 6. Transforming Chunks and Trees
	Introduction
	Filtering insignificant words from a sentence
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Correcting verb forms
	Getting ready
	How to do it...
	How it works...
	See also

	Swapping verb phrases
	How to do it...
	How it works...
	There's more...
	See also

	Swapping noun cardinals
	How to do it...
	How it works...
	See also

	Swapping infinitive phrases
	How to do it...
	How it works...
	There's more...
	See also

	Singularizing plural nouns
	How to do it...
	How it works...
	See also

	Chaining chunk transformations
	How to do it...
	How it works...
	Note

	There's more...
	See also

	Converting a chunk tree to text
	How to do it...
	How it works...
	There's more...
	See also

	Flattening a deep tree
	Getting ready
	How to do it...
	How it works...
	There's more...
	The cess_esp and cess_cat treebank

	See also

	Creating a shallow tree
	How to do it...
	How it works...
	See also

	Converting tree labels
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 7. Text Classification
	Introduction
	Bag of words feature extraction
	How to do it...
	Tip

	How it works...
	There's more...
	Filtering stopwords
	Including significant bigrams

	See also

	Training a Naive Bayes classifier
	Getting ready
	How to do it...
	How it works...
	There's more...
	Tip
	Classification probability
	Most informative features
	Training estimator
	Manual training

	See also

	Training a decision tree classifier
	How to do it...
	Tip

	How it works...
	There's more...
	Controlling uncertainty with entropy_cutoff
	Controlling tree depth with depth_cutoff
	Controlling decisions with support_cutoff

	See also

	Training a maximum entropy classifier
	Getting ready
	Tip

	How to do it...
	Tip

	How it works...
	Note

	There's more...
	Megam algorithm

	See also

	Training scikit-learn classifiers
	Note
	Getting ready
	How to do it...
	How it works...
	There's more...
	Comparing Naive Bayes algorithms
	Training with logistic regression
	Training with LinearSVC

	See also

	Measuring precision and recall of a classifier
	How to do it...
	How it works...
	Note

	There's more...
	F-measure

	See also

	Calculating high information words
	How to do it...
	How it works...
	Tip

	There's more...
	The MaxentClassifier class with high information words
	The DecisionTreeClassifier class with high information words
	The SklearnClassifier class with high information words

	See also

	Combining classifiers with voting
	Getting ready
	How to do it...
	How it works...
	See also

	Classifying with multiple binary classifiers
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Training a classifier with NLTK-Trainer
	Note
	How to do it...
	Note

	How it works...
	There's more...
	Saving a pickled classifier
	Using different training instances
	The most informative features
	The Maxent and LogisticRegression classifiers
	SVMs
	Combining classifiers
	High information words and bigrams
	Cross-fold validation
	Analyzing a classifier

	See also

	Chapter 8. Distributed Processing and Handling Large Datasets
	Introduction
	Distributed tagging with execnet
	Getting ready
	How to do it...
	Note

	How it works...
	There's more...
	Creating multiple channels
	Note
	Local versus remote gateways

	See also

	Distributed chunking with execnet
	Getting ready
	How to do it...
	How it works...
	Note

	There's more...
	Python subprocesses

	See also

	Parallel list processing with execnet
	How to do it...
	How it works...
	There's more...
	See also

	Storing a frequency distribution in Redis
	Note
	Getting ready
	How to do it...
	Note

	How it works...
	Note

	There's more...
	Note

	See also

	Storing a conditional frequency distribution in Redis
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Storing an ordered dictionary in Redis
	Getting ready
	How to do it...
	Note

	How it works...
	Note

	There's more...
	Note

	See also

	Distributed word scoring with Redis and execnet
	Getting ready
	How to do it...
	How it works...
	Note

	There's more...
	See also

	Chapter 9. Parsing Specific Data Types
	Introduction
	Parsing dates and times with dateutil
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Timezone lookup and conversion
	Getting ready
	How to do it...
	Tip
	Note

	How it works...
	Note

	There's more...
	Local timezone
	Custom offsets

	See also

	Extracting URLs from HTML with lxml
	Getting ready
	How to do it...
	How it works...
	There's more...
	Extracting links directly
	Parsing HTML from URLs or files
	Extracting links with XPaths

	See also

	Cleaning and stripping HTML
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Converting HTML entities with BeautifulSoup
	Getting ready
	How to do it...
	How it works...
	There's more...
	Extracting URLs with BeautifulSoup

	See also

	Detecting and converting character encodings
	Getting ready
	How to do it...
	How it works...
	There's more...
	Converting to ASCII
	UnicodeDammit conversion

	See also

	Appendix A. Penn Treebank Part-of-speech Tags
	Part 3. Module 3
	Chapter 1. Working with Strings
	Tokenization
	Tokenization of text into sentences
	Tokenization of text in other languages
	Tokenization of sentences into words
	Tokenization using TreebankWordTokenizer
	Tokenization using regular expressions

	Normalization
	Eliminating punctuation
	Conversion into lowercase and uppercase

	Dealing with stop words
	Calculate stopwords in English

	Substituting and correcting tokens
	Replacing words using regular expressions
	Example of the replacement of a text with another text

	Performing substitution before tokenization
	Dealing with repeating characters
	Example of deleting repeating characters

	Replacing a word with its synonym
	Example of substituting word a with its synonym

	Applying Zipf's law to text
	Similarity measures
	Applying similarity measures using Ethe edit distance algorithm
	Applying similarity measures using Jaccard's Coefficient
	Applying similarity measures using the Smith Waterman distance
	Note

	Other string similarity metrics

	Summary
	Chapter 2. Statistical Language Modeling
	Understanding word frequency
	Develop MLE for a given text
	Hidden Markov Model estimation

	Applying smoothing on the MLE model
	Add-one smoothing
	Good Turing
	Kneser Ney estimation
	Witten Bell estimation

	Develop a back-off mechanism for MLE
	Applying interpolation on data to get mix and match
	Evaluate a language model through perplexity
	Applying metropolis hastings in modeling languages
	Applying Gibbs sampling in language processing
	Summary
	Chapter 3. Morphology – Getting Our Feet Wet
	Introducing morphology
	Understanding stemmer
	Understanding lemmatization
	Developing a stemmer for non-English language
	Morphological analyzer
	Morphological generator
	Search engine
	Summary
	Chapter 4. Parts-of-Speech Tagging – Identifying Words
	Introducing parts-of-speech tagging
	Default tagging

	Creating POS-tagged corpora
	Selecting a machine learning algorithm
	Statistical modeling involving the n-gram approach
	Developing a chunker using pos-tagged corpora
	Summary
	Chapter 5. Parsing – Analyzing Training Data
	Introducing parsing
	Treebank construction
	Extracting Context Free Grammar (CFG) rules from Treebank
	Creating a probabilistic Context Free Grammar from CFG
	CYK chart parsing algorithm
	Earley chart parsing algorithm
	Summary
	Chapter 6. Semantic Analysis – Meaning Matters
	Introducing semantic analysis
	Introducing NER
	A NER system using Hidden Markov Model
	Training NER using Machine Learning Toolkits
	NER using POS tagging

	Generation of the synset id from Wordnet
	Disambiguating senses using Wordnet
	Summary
	Chapter 7. Sentiment Analysis – I Am Happy
	Introducing sentiment analysis
	Sentiment analysis using NER
	Sentiment analysis using machine learning
	Evaluation of the NER system

	Summary
	Chapter 8. Information Retrieval – Accessing Information
	Introducing information retrieval
	Stop word removal
	Information retrieval using a vector space model

	Vector space scoring and query operator interaction
	Developing an IR system using latent semantic indexing
	Text summarization
	Question-answering system
	Summary
	Chapter 9. Discourse Analysis – Knowing Is Believing
	Introducing discourse analysis
	Discourse analysis using Centering Theory
	Anaphora resolution

	Summary
	Chapter 10. Evaluation of NLP Systems – Analyzing Performance
	The need for evaluation of NLP systems
	Evaluation of NLP tools (POS taggers, stemmers, and morphological analyzers)
	Parser evaluation using gold data

	Evaluation of IR system
	Metrics for error identification
	Metrics based on lexical matching
	Metrics based on syntactic matching
	Metrics using shallow semantic matching
	Summary
	Appendix B. Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

